
International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

10

Parallel Approach for Optimized Travelling Salesman

Problem using GPU

Mita A. Landge
Department of Computer Engineering

Pimpri Chinchwad College of Engineering,
Pune, India.

 K. Rajeswari, PhD
Department of Computer Engineering

Pimpri Chinchwad College of Engineering,
Pune, India.

ABSTRACT

The Travelling Salesman Problem (TSP) is the most widely

studied optimization problem used in many practical and real

time applications. The TSP needs large computational power

to be optimally solved by exact algorithms. In recent years,

the increased development of general-purpose Graphics

Processing Unit (GPUs) has led to huge improvement in

decreasing the execution time of algorithm. An Optimization

algorithm to solve Graphic TSP instance with parallel

approach using GPU is proposed. The new approximation

algorithm using GPU can be implemented to optimize the

results upto 3/2 -  approximation ratio. This paper also

enlists different approaches that have been proposed to solve

various instances of TSP using GPU.

General Terms

Parallel Computing, GPU Computing

Keywords

Travelling Salesman Problem (TSP), Optimization

Algorithms, Graphics Processing Units GPU, Approximation

Algorithms.

1. INTRODUCTION

1.1.Travelling Salesman Problem
Travelling Salesman Problem is also referred in representing

set of problem called combinatorial optimization problem [1].

In Traveling Salesman Problem a salesman has to visit all the

cities exactly once and has to return back with the minimum

cost length tour from all the possible tour included in that map

to the starting city. Hence with n vertices there can be total (n-

1)! number of possible tour in a graph. There are tremendous

approaches to solve TSP and various instances of TSP. The

best classical approaches to solve TSP are dynamic

programming, branch and bound that uses exact and heuristic

resulting to exact solution. But since, TSP is an NP-hard

problem so the time complexity of these algorithms is of

exponential time. Hence the small problem can be solved in

optimal time but as compared to the problem with large

instance take huge time to execute. The solution to this type

of problem in reasonable time has No classical approach as

the size of the problem increases complexity increases

exponentially. Several alternate approaches are used to solve

TSP which may not give the exact solution but an optimal

solution in reasonable time. To solve such type of problems

with small size methods based on the greedy approach like

nearest neighbor, spanning tree is efficiently used. To

overcome this different other approaches and techniques such

as stimulated annealing, genetic algorithm, particle swarm

optimization, bee colony optimization are based on natural

and population techniques.

TSP is an NP-hard problem as it cannot be solved optimally in

polynomial time [2]. Instead, one can hope to find an

approximate solution, one that is not optimal, but is

guaranteed to be within a small factor from the optimal

solution. For a minimization problem to which a polynomial

time algorithm is an approximation problem, if the output of

the algorithm is within a factor of the optimum in the worst

case.

1.2. GPU Accelerated TSP
The TSP needs huge computational power and takes huge

time to solve. To solve such large problems single handedly it

takes lots of time for a single processor. In the Era of Parallel

computing the new paradigm to solve such type of problems

is using General Purpose Graphical Processing Unit. This

parallel programing solution GPUs are meant to do graphical

processing such as arithmetic operations in the form of

matrices also on the graphics. Hence we can speed up the

computational time by utilizing GPUs processor to solve this

problem. GPU consist of large no. of processors embedded

together on a chip to perform a specific type of operations.

OpenCL (OPEN Computing Language) is also an parallel

programming framework used implementing programs that

can be executed on heterogeneous platforms.

This paper presents a high performance GPU accelerated

implementation algorithm for the Traveling Salesman

Problem (TSP). The use of GPU significantly reduces

execution time required for tour optimization; however it also

requires a well-tuned and complicated implementation. The

time required for local optimization comparing the graph

edges grows significantly with the increase problem size.

2. LITERATURE REVIEW
The Traveling Salesman Problem (TSP) considered as one of

the most complex and optimization problem with numerous

real-time applications. There is massive amount of literature

on TSP solutions. Following are a few GPU accelerated

solutions:

The Christofides 3/2 approximation for symmetric TSP was

one of the first approximation algorithms proposed [2], it

always find a solution that is at most 50% longer than

optimum. Oveis Gharan, Saberi and Singh [1] conjectured

that this algorithm has better approximation ratio than 3/2 but

they could prove this only for the Graphic TSP, and only for a

slight variant of this algorithm. Here, first a random solution

is taken and then for building a neighborhood the pairwise

exchange operations and evaluation of candidate solution is

done. And results are putted back into fitness structure and

then are copied back on CPU and repeat the steps select

optimized solution. Here, in this approach high data transfer

rate arises from CPU to GPU.

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

11

The traveling salesman problem using Ant Colony

Optimization (ACO) [3], a meta-heuristic algorithm to

discover, collaboratively, the shortest path between their nest

and a food source by depositing pheromones along their

traveled paths based on the natural ability of ants. ACO

algorithms simulate the behavior of individual ants, which

construct a solution and travel independently based on the

pheromone trails that are left by the ants in previous

iterations. Thus, this algorithm is highly parallelizable [6].

Many CUDA implementations of TSP solvers exist [5][6][12.

There are several approaches till date proposed for GPU

implementations of genetic algorithms (GAs) applied to TSP

[7][8]. Heuristic algorithm initially generates a solution

randomly and then attempt to improvise the results using

heuristic techniques until it get locally optimal solution.

O’Neil [17] also describe solution to TSP by evaluating

parallel approach for implementation of iterative hill

climbing with random restart for getting high quality

solution.

Christofides’s Algorithm[2]

1. Choose a Minimum spanning tree T.

2. Add the minimum cost on odd degree veritces of T.

 α= Cost of Computed Solution / Cost of The Optimum

5.1

New Approximation Algorithm[1]

1. Choose a Random spanning tree T based on the

Solution of LP relaxation

2. Add the minimum cost on odd degree vertices of T.

α= Cost of Computed Solution / Cost of The Optimum

25.1

3. BACKGROUND
The Parallel approach for TSP using GPU for a graphic TSP

instance can be given. The architecture shows the flow of

problem solving instance using parallel optimization

algorithms on GPU. Graphic TSP is a natural special case of

TSP where we are given an underlying connected graph

),(00 EVG  and for all),(,, vucVvu  is the length of the

shortest path that connects u to v [3]. Equivalently, we can

reformulate graphic TSP as follows: we are given an weighted

graph, and we want to find an Euclidian connected sub graph

with the minimum number of edges. We recall that a graph is

Euclidian if every vertex has an even degree. Similarly, one

can also define graphic ATSP problem where 0G is directed

graph and),(vuc is the length of the shortest directed path

from u to v . The importance of graphic TSP is that all of the

known hard instances of TSP are essentially instances of

graphic TSP. So, it seems graphic TSP capture the main

difficulty of the problem. Also, similar to TSP, graphic TSP is

APX-hard, meaning that under the P = NP conjecture there is

no PTAS for graphic TSP. The best known approximation

algorithm for graphic TSP is also the 3/2 approximation

algorithm of Christofides [2].

3.1. Parallel GPU Approach for Traveling

Salesmen Problem (TSP)
For Parallel GPU approach to TSP we find minimum tour

length with less amount of time where all vertices are visited

at least once. In the TSP algorithm, thread allocation is based

on thread control function because if threads are not used then

data transfer rate and allocation of thread is waste hence only

require numbers of threads to be created.

Parallel TSP work as follows:

Input: graph G(V,E)

Output: optimized tour length

Begin:

1. Choose an initial random solution.

2. To evaluate the initial solution using LSM

initialization.

3. Allocate memory on GPU for problem input,

solution, finesses structure and additional structure

4. Copy problem inputs, initial solution and additional

structure on GPU memory.

5. Evaluate the neighbor candidate solution and insert

the resulting fitness into fitness structure for each

neighbor in parallel.

6. The solution selection strategy is applied to the

fitness structure and new candidate solution has

been selected.

7. Finding neighbor of new candidate solution and

repeat step 6 and 7upto stopping criterion satisfied.

8. Copy chosen solution on CPU and display

minimum tour length.

3.2.The GPU implementation is as
1. Copy the initial ordered coordinates to the GPU

global memory.

2. Execute the kernel function.

3. Copy the ordered coordinates sets to the shared

memory.

4. To calculate swapping effect of one pair of each

coordinate.

5. To find the best value for the TSP instance and store

it back to global memory.

6. Read the result from (CPU).

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

12

4. PROPOSED ARCHITECTURE

Fig. 1 TSP-GPU Architecture

Algorithm is very simple to describe: it chooses a random

spanning tree based on the solution of the LP relaxation using

the rounding by sampling method using GPU. Then it adds

the minimum cost matching on the odd degree vertices of the

tree.

Rounding by Sampling Algorithm for TSP [9]:

1. Compute an Optimum solution of LP

2. Write LP solution as a  -uniform dist. Of

spanning trees.

3. Sample a spanning tree T.

4. Add a minimum cost matching an odd degree

vertices of T

5. MATHEMATICAL MODEL

5.1. Approximation Ratio For The Graphic

TSP
1. Let (V, c) be an instance of the Symmetric TSP

satisfying the triangle inequality.

2. Let x be an optimum solution of sub-tour

elimination.

3. let (V,S) be a spanning tree picked at random

according to the maximum entropy distribution

SSSP ),(with

ex

n

n
PSeSS

1
:




 (1)

For all .Ee

4. Let ST be the set of odd degree vertices Of

),(SV .

5. Assign edge e good if e does not belong to any ST -

cut)(U with .102))((15 Ux

Then at least one of the following holds:

a. there is a subset
*E of edges with

nEx 12* 10)( such that for each
*Ee

the probability that e is good is at least
2410

.

b. there are at least n
20

19 edges e with

7101 ex .

5.2.Minimum Distance Entropy Calculation
The weighted uniform distribution on spanning trees[1]

max 
T

PTPT)log((2)

 



eT

ezPT ,Ee

 0PT T .

z represents a fractional point inside the spanning tree

polytope, and PT represents the probability of selecting an

extreme point of the spanning tree polytope, which in this

case is a spanning tree T.

5.3. Improved Approximation Algorithm

for Graphic TSP [1]

1. Find an optimal solution
*x of LP and let

**)/11(xnz  be a fractional spanning tree

and let G = (V,E) be the support graph of
*x .

2. if
*x contains n)1(2 edges of fraction

greater than 1 then

3. Let S = }1:{ * exe , and let
*T be a

minimum cost spanning tree with respect to the cost

function c() among all trees T such that ST  =

rank(S).

4. else

5. Use minimum distance entropy using equation (2)

to find weights
 RE such that the  -

random spanning tree distribution,  ,

approximates the marginal probabilities imposed by
*z , i.e., for all Ee ,

 *3)/11(][eU znTeP 
 (3)

6. Sample a tree
*T from 

7. end if

8. Let O denotes the set of odd-degree vertices of
*T

. Find the minimum cost O-join
*J .

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.8, February 2016

13

Return: Shortcut multi-graph
** TJ  and output the

resulting Hamiltonian cycle.

6. RESULT
Solution quality achieved by the GPU implementation for five

100-city inputs from TSPLIB[11]

Table 1 : TSP optimal tour cost results

TSPLIB Database CUDA GPU Solution Quality

Name Optimal

Cost

Min.Tour

Cost

Min

Tour #

Runtime

(s)

kroA100 21,282 21,282 33,188 2.540

kroB100 22,141 22,141 5,969 2.499

kroC100 20,749 20,749 23,092 2.543

kroD100 21,294 21,294 32,142 2.499

kroE100 22,068 22,084 16,941 2499

22,068 117,583 4.952

Table 1 addresses the solution quality and shows the number

of the shortest tour and cost by the GPU implementation of

approximation algorithm for five 100-city inputs from the

TSPLIB library when using 100,000 random restarts. The the

runtime for each input and the optimal tour cost [11]. The

GPU code finds the optimal tour in all, on kroE200, where the

tour is 0.08% longer. Doubling the number of iterations to

200,000 allows the GPU code to find the optimal tour in the

last case as well.

7. CONCLUSION

This paper provides a parallel approach for graphic instance

of Traveling Salesman Problem. The optimized

approximation algorithms achieve parallelism using GPU

implementation of approximation algorithm. Thus, the GPU

accelerated approximation algorithm can be implemented to

optimize the results upto 3/2 -  approximation ratio. The

experimental result shows that algorithm gives an optimized

tour length.

8. REFERENCES
[1] Shayan Oveis Gharan “New Approximation Algorithms

for Traveling Salesman Problem”2013.

[2] Nicos Christofides. Worst case analysis of a new

heuristic for the traveling salesman problem. Report 388,

Graduate School of Industrial Administration, Carnegie-

Mellon.

[3] Dorigo, M. 1992. Optimization, Learning and Natural

Algorithms, Ph.D. thesis, Politecnico di Milano, Italy,

1992.

[4] Dorigo, M. and Gambardella, L.M. 1997. Ant Colony

System: A Cooperative Learning Approach to the

Traveling Salesman Problem. IEEE Transactions on

Evolutionary Computation 1, 1 (Apr. 1997),

[5] Bai, H., OuYang, D., Li, X., He, L., and Yu, H. 2009.

MAX-MIN,Ant System on GPU with CUDA.

Proceedings of the Fourth International Conference on

Innovative Computing, Information and Control (Dec.

2009), 801-804.

[6] Cecilia, J.M., García, J.M., Nisbet, A., Amos, M., and

Ujaldón, M.2013. Enhancing Data Parallelism for Ant

Colony Optimization on GPUs. J. Parallel Distrib.

Comput. 73, 1 (Jan. 2013), 42-51.

[7] Chen, S., Davis, S., Jiang, H., and Novobilski, A

2011.CUDABased Genetic Algorithm on Traveling

Salesman Problem. Computer and Information Science

2011, R. Lee, Ed. Springer Berlin, Heidelberg.

[8] Fujimoto, N. and Tsutsui, S. 2010. A Highly-Parallel

TSP Solver for a GPU Computing Platform. Proceedings

of the Seventh International Conference on Numerical

Methods and Applications (Aug. 2010), 264-271.

[9] Shayan Oveis Gharan, “A Randomized Rounding

Approach to the Traveling Salesman Problem”2013.

[10] Molly A. O’Neil, “Rethinking the Parallelization of

Random - Restart Hill Climbing A Case Study in

Optimizing a 2- Opt TSP Solver for GPU Execution”,

GPGPU-15 , February 07 2015, San Francisco, CA, USA

[11] Molly A. O’Neil, “A Parallel GPU Version of the

Traveling Salesman Problem”, February 07 2015, San

Francisco, CA, USA.

[12] Murilo Zangari de Souza, A GPU Implementation of

MOEA/D-ACO for the Multiobjective Traveling

Salesman Problem, 2014 Brazilian Conference on

Intelligent Systems.

IJCATM : www.ijcaonline.org

