
International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

12

Efficient Scalable Image Compression Algorithms with

Low Memory and Complexity

Ali Kadhim Jaber Al-Janabi, PhD
Department of Electrical Engineering

Faculty of Engineering
University of Kufa

Najaf, Iraq

Abdulkareem Abdulrahman Kadhim, PhD
College of Information Engineering

Al-Nahrain University
Baghdad, Iraq

ABSTRACT

The set partitioning embedded block (SPECK) image

compression algorithm has excellent performance, low

computational complexity, and produces a rate scalable

compressed bitstream that can be decoded efficiently at

multiple bit-rates. Unfortunately, it consumes a huge amount

of computer memory due to employing lists that store the

coordinates of the image pixels and the coordinates of the sets

that are generated during the coding process. In addition, it

has complex memory management due to using an array of

random access linked lists to store these sets according to their

sizes. In this paper, we propose two algorithms that are based

on SPECK. The main contribution of the first algorithm is

that, as compared to SPECK, the amount of the algorithm’s

usable memory is reduced to about 75% and at the same time

its processing speed is increased and its rate distortion

efficiency is preserved as will be demonstrated. The second

algorithm has higher processing speed but has slightly lower

rate distortion performance than the first algorithm.

General Terms

Image Compression, Image Coding.

Keywords

DWT, Embedded Coding, Low Memory Scalable Image

Compression, Set Partitioning algorithms, SPECK, SPIHT,

Wavelet-based Image Compression

1. INTRODUCTION
Modern image compression algorithms are transform-based

by which the image is transformed to compact most of the

pixels’ energies into a few numbers of transformed

coefficients. As such the other coefficients tend to have small

magnitudes. After quantization, most of these small

magnitude coefficients will be zero. The coding stage then

attempts to code these zero valued coefficients efficiently [1].

A rate scalable image compression algorithm produces an

embedded bitstream that can be truncated at any point while

attempting to maintain the best possible image quality for the

selected bit-rate [2]. An embedded bitstream can be achieved

using successive approximation bit-plane coding where all

coefficients are coded on bit-plane basis rather than on pixel

basis. That is, the coefficients are coded bit-plane by bit-plane

starting from the most significant bit (MSB) to the least

significant bit-plane (LSB). In this way, the most effective bit

(the MSB) of each coefficient is put in the bitstream before its

less effective bit (the LSB) [3]. In addition, in order to the

bitstream to be an optimal embedded bitstream in the sense of

obtaining the best rate distortion (R-D) performance at any

truncation point, its information bits must be ordered in

decreasing order of distortion reduction, i.e., within each bit-

plane level, the bits that have the steepest R-D slope, defined

as the amount of distortion reduction per coded bit, should be

put first in the bitstream followed by the bits with the less R-D

and so on. This is known the embedding principle [4, 5].

Most scalable image compression algorithms employ the two

dimensional discrete wavelet transform (2D-DWT) because –

in addition to its good energy compaction – it has interesting

features namely, its space-frequency localization, and its multi

resolution properties. The localization property permits to

apply the DWT to the entire image facilitating rate scalability.

The multi-resolution nature of DWT facilitates resolution

scalability that permits to reconstruct the image at several

sizes. The 2D-DWT first decomposes the image into four

subbands labeled LL1, LH1, HL1, and HH1. Then the LL1

subband is further decomposed into four subbands labeled

LL2, HL2, LH2, and HH2. This dyadic decomposition can be

performed L times resulting in 3L+1 subbands. Figure 1

depicts the dyadic 2D-DWT for three decomposition levels (L

= 3). It can be shown that the best DWT efficiency can be

achieved with L = 5 [2].

LL3 HL3

HL2

HL1

LH3 HH3

LH2 HH2

LH1 HH1

Fig 1: dyadic 2D-DWT with 3 decomposition levels

Among all wavelet-based rate scalable image compression

algorithms, the set partitioning in hierarchical trees (SPIHT)

[6], and the set partitioning embedded block (SPECK) [7] are

the most popular ones. They are very efficient and employ a

low complexity set partitioning technique to jointly code the

zero bits using some kind of significance testing for sets of

coefficients. Both algorithms make use of three linked lists

termed the list of insignificant pixels (LIP), list of significant

pixels (LSP), and list of insignificant sets (LIS) to store the

(i, j) coordinates of the pixels and sets that need to be tested

and coded. However, the algorithms differ by the way the sets

are formed and partitioned. SPIHT uses the spatial orientation

trees that exploit the correlation between wavelet coefficients

across the different subbands. In contrast, SPECK uses quad

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

13

trees that exploit the correlation between wavelet coefficients

within the same subbands. In addition, in SPECK, the

generated sets have different sizes. Thus SPECK replaces LIS

by an array of smaller lists each containing sets of a fixed

size. That is, LIS is replaced by an array of linked lists LISz, z

= 2, 4... Z, where Z is the size of the largest set. In any coding

pass, LISz is processed in increasing order, i.e. LIS2, LIS4…

LISZ. In this way information ordering is preserved because

the probability of finding significant pixels is inversely

proportional to the set sizes [7].

Unfortunately, these algorithms suffer from the high memory

requirements and the complex memory management due to

using these lists [8, 9]. In particular, LIP and LSP which store

the individual pixels, dominate the total memory. In addition,

the actual size of each one of LSP, LIP and each one of the

lists in LISz array depends on the image size, image type and

on the compression bit-rate. Therefore, the algorithm must

either initialize each list to the maximum size or use the

dynamic memory allocation technique. It is well known that

the former solution increases the memory requirements of the

algorithm while the latter slows the algorithm due to its high

computational complexity [10, 11]. On the other hand, these

lists are the main reason of the algorithm’s reduced

complexity, and its good embedding performance. The

reduced complexity is mainly due to processing only the

pixels and sets that are stored in these lists. The good

embedding performance is attained because the pixels and sets

are stored in these lists following a specific order which is

consistent with the embedding principle [12]. Therefore,

removing the lists may lead to increase the algorithm’s

complexity and/or reduce its efficiency.

2. RELATED WORK
Several works attempted to reduce the memory requirements

of the wavelet-based rate scalable algorithms. Latte et al. [12]

presented a low memory SPECK called Listless SPECK

(LSK). It stores the DWT image coefficients in a 1-D array. In

addition, each coefficient has 4 bits marker to determine its

status. Unfortunately, the cost of this memory reduction is the

increase of algorithm’s complexity due to the repeated search

and test for all coefficients twice per every bit-plane coding

pass. Senapati [13] presented the listless embedded block

partitioning (LEBP) algorithm. LEBP also has about the same

memory as LSK but it improved the performance of LSK

especially at very low bit-rates by testing a cluster of

subbands instead of individual subbands. However, this

increased the coding time by about 1.3 times as compared to

LSK. Lamsrichan [8] presented an efficient memory

embedded algorithm that uses two status bits per pixel only.

In this coder, the wavelet coefficients are coded using the

wavelet difference reduction (WDR) coding technique in

combination with a context-based adaptive arithmetic coder.

The algorithm has good performance but at the expense of

highly increased complexity since the complexity of the

context-based arithmetic coder is about (4-8) times higher

than that of the set partitioning technique used by SPIHT or

SPECK [15, 16].

In [17] Al-Janabi A.K presented the single list SPIHT (SLS)

algorithm. SLS uses two status bits per pixel and a list of size

equal to ¼ the image size to store the coordinates of the roots

of the spatial orientation trees. The proposed SLS preserves

the same information ordering as the original SPIHT.

Consequently, both algorithms have nearly the same

performance. More importantly, SLS has nearly the same

complexity as the original SPIHT. This is due to avoiding the

repeated search for all coefficients in every bit-plane coding

pass and due to simplifying the memory management as the

list is implemented as a simple array that is accessed

sequentially instead of the random access linked list that are

used by SPIHT.

The remainder of the paper is organized as follows: section 3

presents the proposed algorithms. Section 4 investigates the

simulation results of the proposed and some existing

algorithms. Finally, section 5 concludes the paper.

3. THE PROPOSED ALGORITHMS
The proposed algorithms use nearly the same approach of

SLS [17] to reduce the memory of SPECK. In addition, they

employ the step-wise quad tree partitioning coding method

adopted by the ultrafast and efficient scalable image

compression algorithm presented by Al-Janabi A.K [18]

instead of the recursive quad tree partitioning used by SPECK

[7] to simplify its memory management.

Like other rate scalable algorithms, the proposed algorithms

produce an embedded bitstream for the wavelet image using

some form of bit-plane coding. To this end, every wavelet

coefficient is initially quantized by rounding it to the nearest

integer and represented by a sign-magnitude format using W

bits (e.g. 16 bits), where the first bit is the sign bit (e.g. 0 for

positive and 1 for negative coefficient) and the other W1 bits

are the magnitude bits. Then the quantized wavelet image

(QW) is encoded by multiple coding passes where each pass

corresponds to bit-plane level. The maximum bit-plane nmax

depends on the maximum value of the coefficients in QW and

it is given by [6, 7]:

 (1)

where x is the nearest integer ≤ x and qij is a quantized

wavelet coefficient at location (i, j) in QW. nmax should be sent

to the decoder in order to start decoding at bit-plane nmax. In

the following description, the terms pixel and coefficient are

used interchangeably. At any bit-plane, n, a pixel qij is

considered significant (SIG) with respect to n if:

 (2)

otherwise qij is insignificant (ISIG). Similarly, a set of pixels

T is considered SIG with respect to n if T contains at least one

SIG pixel; otherwise T is ISIG.

3.1 Codec1
Compared to SPECK, the proposed Codec1 has widely lower

memory requirements and lower computational complexity.

More importantly, these features are attained without affecting

the embedding performance of the original algorithm as will

be demonstrated experimentally. Memory is greatly reduced

by removing the lists LIP and LSP which store the individual

pixels. Complexity is reduced due to avoiding the repeated

search of all coefficients in each coding pass as done in [8, 9,

12, 13] and due to simplifying the memory management. This

is achieved by replacing the array of the linked lists LISz by

two lists only: the List of Pixels Roots (LPR) and LIS. LPR

stores the SIG and ISIG sets that have (2×2) pixels and LIS

stores the ISIG sets that have at least (4×4) pixels. As shown

shortly in the proposed coding method, once a set is added to

LPR, the set will be never removed. Therefore LPR can be

implemented as a simple 1-D array that is accessed

sequentially in first in first out (FIFO) manner which is the

fastest and simplest access method [11]. Each entry r in LPR

in addition to the set’s (i, j) coordinates is provided by a

single bit marker termed r to distinguish the significance

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

14

state of the set. That is, for each entry r, its r is initialized as

ISIG and updated to SIG once its corresponding set

becomes SIG, where
 denotes a set at entry r whose root is

at location (i, j) in the image.

Codec1 removes LIP and LSP by exploiting the fact that the

pixels that are stored in these lists belong to the SIG sets of

size (2×2) pixels. So, instead of storing these pixels in these

lists, they can be easily deduced from these sets. That is, each

(2×2) set at location (i, j) in LPR can act as a root for the four

pixels at location (i, j), (i+1, j), (i, j+1), and (i+1, j+1) in the

image. Notice that LIP stores the pixels that are tested ISIG in

the previous coding passes while LSP stores the pixels found

SIG in the previous coding passes and the pixels that are just

become SIG in the current pass. So in order to distinguish

between these three types of pixels, each pixel qij in QW is

provided by a two status bits marker termed ij to identify the

pixel’s type as follows:

 ij = 0: qij is tested ISIG pixel in the previous passes

and will be tested again in the current pass.

  ij = 1: qij is New SIG (NSIG) pixel that just becomes

SIG in the current bit-plane pass and will not be refined

in the current coding pass.

  ij = 2: qij is Previous SIG (PSIG) pixel that is found

SIG in the previous passes and will be refined in the

current pass.

As mentioned before, each coefficient in QW can be

represented by W bits with typical value of at least 16 bits (2

bytes) [6]. It is worth noting that the maximum value of the

coefficients in QW (|qmax|) is equal to 2L times the maximum

pixel value in the original image, where L is the number of

wavelet decomposition levels [19, 20]. Therefore, for an

image with pixel bit depth of b bits, |qmax| is given by:

 (3)

Thus, L+b+1 bits are sufficient to represent each coefficient,

where the additional bit is for the sign bit. Typical value for b

is 8 bits and for L is 5, so each coefficient can be represented

by 5+8+1 = 14 bits. Therefore, there are 16-14 = 2 unused bits

per coefficient. These 2 bits can be used as the status marker

bits () [19, 21], i.e. there is no need to use an auxiliary status

marker bits.

An important difference between SPECK and the proposed

Codec1 lies on the method of sets partitioning. SPECK starts

with sets of variable sizes and uses recursive quad-tree

partitioning. As such, there isn’t any particular order of the

sets stored in LIS leading to use the array of linked lists LISz

that needs complex memory management [7]. In contrast,

Codec1 makes use the implicit step-wise quad-tree

partitioning adopted in [18] in order to eliminate the need of

LISz as follows: the algorithm starts with sets of equal size

and when a set Tij in LIS is found to be SIG, one step of quad-

tree partitioning is performed on Tij by which it is partitioned

from middle along each side into four subsets collectively

denoted as O(T). The size of each one of these subsets is one

half (in each of the x and y dimensions) the size of the parent

set Tij. Then these four subsets are added to the end of LIS to

be tested later on at the same bit-plane coding pass. The

adopted method provides nearly the same embedding

performance as the recursive quad tree partitioning used by

SPECK without the need to employ the array of linked lists

LISz leading to simplify the memory management of the

algorithm and hence reducing its complexity [17]. However,

since the sets stored in LIS have different sizes, each entry in

these lists must have an additional field of s bits to store the

size of the corresponding set. As shown in the next section,

for an image of size (512×512) pixels, s consumes at most 3

bits per entry.

Another memory management simplification of Codec1 is

that in SPECK, each list of LISz should be implemented as a

linked list as it is subject to add and remove operations.

However, in the proposed coding method, LIS is divided to

two lists termed the LISO and LISE. LISO is processed in the

Odd parity coding passes and reinitialized (i.e., it is set as

empty) at the beginning of the Even parity coding passes

while LISE is processed in the Even parity coding passes and

reinitialized at the beginning of the Odd parity coding passes.

As shown next, the two lists will be subject to add operation

only and thus can be implemented as 1-D arrays that are

accessed in FIFO manner leading to simplify the algorithm’s

memory management and hence reducing its complexity

further. Another advantage of list re-initialization at the

beginning of each bit-plane is to avoid the inter-dependency

on the previous bit-planes. This will improve the algorithm’s

error resilience since the encoding pass is independent of the

previous passes, so if an error occurs in any pass, it will affect

the decoding of that pass only [21]. It is worth noting that the

size of both LISO and LISE doesn’t exceed the size of LIS

because they have the same number of sets but rather than

storing them in LIS, they are distributed between LISO and

LISE.

The coding stage is initialized by computing the maximum

bit-plane nmax; outputting nmax to the bitstream, and setting n to

nmax; and setting LPR as empty list. Then the image is divided

into Q sets of equal sizes, where Q is a power of two integer ≥

4. For instance, for an image size (512×512) pixels and Q = 4,

there are four sets of size (256×256) pixels each. The (i, j)

coordinates of the roots of these equal size sets are stored in

LISO. Each bit-plane coding pass n has three sub-passes. The

first two sub-passes test the pixels and sets that are still ISIG,

while the third sub-pass codes the pixels that are found SIG in

the previous bit-plane passes.

The first sub-pass starts by processing the sets of size (2×2)

pixels in LPR. Each entry r in the LPR is processed according

to its significance status r. If r is ISIG, this means that its

corresponding set
 is still marked ISIG, so it is passed to

the
 procedure to be tested and encoded.

 first tests

 for significance with respect to n. If

 is still ISIG, then a ‘0’ is sent to the bitstream and the

process is terminated. Else if
 is found to be SIG, (i.e., one

or more of its four pixels just become SIG in the current pass),

then a ‘1’ is sent; its r is marked as SIG (i.e.
 becomes

SIG); finally, each one of its four children which is at location

(x, y), x = i, i+1, and y = j, j+1 is passed to the

Code_pixel(qxy,n) procedure for encoding. Code_pixel(qxy,n)

tests each qxy for significance with respect to n. If qxy is still

ISIG, then a ‘0’ is sent to the bitstream. Else if qxy just

becomes SIG in the current pass, then a ‘1’ and its sign bit are

sent to the bitstream and it is marked as NSIG (xy = 1). On

the other hand, if for entry r r is marked SIG, this means that

its
 is marked SIG at any one of the previous passes. In this

case
 may contain one or more pixels that are found SIG in

the previous passes but they are still marked as NSIG pixel

and may contain one or more ISIG pixels. Thus each NSIG

pixel is marked as a PSIG pixel to be refined later on at the

third sub-pass of current coding pass while each ISIG pixel is

coded by the Code_pixel(qxy,n). Updating NSIG pixels to

PSIG at this stage is necessary in order to distinguish them

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

15

from the pixels that will become NSIG later on in the current

coding pass during the QTree procedure described shortly.

The second sub-pass processes the sets in LISO or LISE

according to the pass parity (P). If P is odd, LISE is

reinitialized and each set Tij in LISO is passed to the

procedure QTree(Tij,z,n,P) for encoding, where z > 2 is the set

size. QTree(Tij,z,n,P) starts by testing Tij with respect to n. If

Tij is still ISIG, ‘0’ is sent to the bitstream, and if P is odd,

(i.e., Tij belongs to LISO), Tij is not kept in LISO; rather, it is

added to LISE to be tested in the next even pass. On the other

hand, if Tij is SIG, ‘1’ is sent to the bitstream, then it is quad-

tree partitioned into the four children subsets O(Tij) each of

size z/2. Then z is updated to z/2 and if z > 2, these subsets are

added to the end of LISO to be passed to the QTree procedure

later on at the same sub-pass; otherwise, if z = 2, each subset

O(Tij) is added to LPR and passed to
 procedure

described before. It is worth noting that if the pass parity P is

even, the same process is performed but the lists are

interchanged.

The third sub-pass deals with the sets of (2×2) pixels in LPR

that are marked SIG in the previous passes (i.e., except those

that are marked as SIG in the current pass). For each one of

these set, only PSIG pixels (with  = 2) are refined. A PSIG

pixel is refined to more bit precision by sending its nth MSB to

the bitstream. Finally, the bit-plane n is decremented by one to

start a new coding pass. This process continues until all the

pixels are encoded or until the target bit-rate is achieved. The

following pseudo code describes the main coding steps of

Codec1 algorithm.

Step1: Initialization

 Compute

 Output nmax and Set n = nmax.

 LPR = , LISO = {Tm}, 1 ≤ m ≤ Q.

Step 2: Bit-plane Coding Passes

2.1 The first sub-pass

  Entry r  LPR do:

 if then
 ; // Tij is still ISIG

 else do: // Tij is SIG

 (x, y)  Tij : x = i, i+1, y = j, j+1, do:

 if xy = 1 then xy = 2;

 else Code_pixel(qxy, n); // xy = 0

2.2 The second sub-pass

 if P is Odd do: // pass is odd

 LISE = ;

  entry r  LISO do:

 else do: // pass is even

 LISO = ;

  entry r  LISE do:

2.3 The third sub-pass

  entry r  LPR & is SIG in previous passes do:

(x, y)Tij & xy =2 then output the nth MSB of qxy.

2.4 if n > 0, then n = n – 1 and go to 2.1;

 else end coding;

Procedure
 {

 if Tij is ISIG then output(0);

 else do: // Tij is SIG

 output(1);



  (x, y)  Tij do: Code_pixel(qxy, n); }

Procedure Code_pixel(qxy, n) {

 if qxy is ISIG then output (0);

 else do: // qxy is SIG

 output(1);

 output sign(qij);

 xy = 1; }

Procedure { // z ≥ 4

 if Tij is SIG do:

 output (1);

 quad-tree partition Tij into four subsets

 z = z / 2;

 if z > 2 do:

 O(Tij)  Tij do:

 if P is Odd then add each O(Tij) to the end

of LISO;

 Else add each O(Tij) to the end of LISE;

 else if z = 2 do:

 O(Tij)  Tij do:

 Add O(Tij) to LPR;

 Pass O(Tij) to

 else do: // Tij is ISIG

 output (0);

 if P is Odd then Add Tij to the end of LISE;

 else Add Tij to the end of LISO; }

Like other set partitioning algorithms, the decoding process

mirrors the encoding process. That is, the decoder duplicates

the encoder's execution path as follows: replace the word

‘output’ by the word ‘input’ for all procedures, then at any

execution point, when the decoder receives ‘1’, this means

that the corresponding set or pixel is SIG; otherwise it is ISIG.

More precisely, if the corresponding set is SIG, it is

partitioned, and if it is ISIG, it is simply bypassed. On the

other hand, if the corresponding pixel is SIG, the decoder

knows that it lies in the interval [2n, 2n+1), so it is

reconstructed at the center of the interval which is equal to

±1.52n depending on its sign bit. For example, assume that n

= 5, so at the encoder a pixel with magnitude = +35 is SIG

because 25 ≤ +35 < 26. At the decoder it is reconstructed to 1.5

 25 = +48. Every refinement (REF) bit updates the value of

the pixel found SIG in previous bit-planes by adding or

subtracting a value of (0.52n) depending on its sign. More

specifically, if the pixel is positive, a value of (0.52n) is

added to it if the REF bit is ‘1’, and a value of (0.52n) is

subtracted from it if the REF bit is ‘0’. On the other hand, if

the pixel is negative, a value of (0.52n) is subtracted from it

if the REF bit is ‘1’ and (0.52n) is added if the REF bit is ‘0’.

For example, the pixel +35 which is reconstructed to +48 at n

= 5, is updated to 48(0.524) = 40 at n = 4 as its REF bit is

‘0’ at this bit-plane. In this way the values of reconstructed

pixels approach the originals ones and hence the distortion

decreases as more bits are decoded.

3.2 Codec2
The proposed codec2 algorithm has lower complexity than the

Codec1. This is achieved by merging the first and third sub-

passes. The adopted coding method doesn’t differentiate

between the NSIG and the PSIG pixels. In other words, there

are only two types of pixels: ISIG and SIG. Therefore a single

status bit per pixel is sufficient: ij = 0 if qij is ISIG and ij = 1

if qij is SIG. Codec2 works exactly as Codec1 except that LPR

is processed in one sub-pass only as follows: a set
 in LPR

that is yet marked ISIG (r = 0), it is passed to the

 procedure for encoding as before. On the other

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

16

hand, if the set
 is marked SIG (r = 1) at any one of the

previous passes, this means that it may contain one or more

pixels that are found SIG in the previous passes and may

contains ISIG pixels. Thus each ISIG pixel (with  = 0) is

coded by the Code_pixel(qxy,n) procedure as given before

while each SIG pixel (with  = 1) is refined directly by

sending its nth MSB to the bitstream. The pseudo code of

Codec2 is identical to that of Codec1 except that the first sub-

pass (step 2.1) is modified as given below and the third sub-

pass is eliminated because it is merged with the first sub-pass.

2.1 The first sub-pass

 entry r  LPR do:

 if then
 // Tij is still ISIG

 else do: // Tij is SIG

  (x, y)  Tij : x = i, i+1, y = j, j+1, do:

 if xy = 0 then Code_pixel(qxy,n); // qxy is still ISIG.

 else output the nth MSB of qxy. //qxy is SIG to be refined

Notice that with Codec2, LPR is scanned and processed once

per bit-plane coding pass, while in Codec1 it is scanned and

processed twice per pass. Therefore, it has lower complexity

than Codec1. The price to be paid is a very slight decrement

in the embedding performance. This is mainly due to merging

the first sub-pass that is dedicated to test and code the ISIG

pixels with the third sub-pass that is dedicated to refine the

PSIG pixels. This will lead to deteriorate the embedding

ordering slightly [2]. However, the performance decrement is

very small as will be demonstrated experimentally in the next

section.

4. SIMULATION RESULTS
In this section, the proposed Codec1 and Codec2 algorithms

are evaluated and tested using the standard 8 bpp gray-scale

(512×512) pixels ‘Lena’, ‘Barbara’, ‘Mandrill’, and ‘Goldhill’

test images. Each image is transformed using the bi-

orthogonal 9/7 Daubechies 2D-DWT with L = 5 dyadic

decomposition levels and the wavelet coefficients are rounded

to the nearest integer prior to coding. The initial set size for

Codec1 and Codec2 was (128×128) pixels (Q = 8). The

algorithms were implemented by MATLAB 7.10 under

Window 7, Intel Core 2 Duo CPU with 2.3 GHz speed and

2GB of RAM. The algorithms were compared with SPECK

[7], and LEBP [13] algorithms. The test includes the

algorithm’s rate distortion performance, its memory

requirements, and its computational complexity.

4.1 Rate Distortion Performance
The rate distortion performance is represented by the Peak

Signal to Noise Ratio (PSNR) vs. bit-rate (the average number

of bits per pixel (bpp) for the compressed image). The PSNR

is given by [2, 22]:

 (4)

where MSE is Mean-Squared Error between the original

image Io and the reconstructed image Ir each of size MN

pixels defined as:

 (5)

Table 1 illustrates the algorithms’ PSNR vs. bit-rate for the

four test images. For each bit-rate, the best PSNR is bolded.

No arithmetic coding was used in the significance test or any

symbols produced by the algorithms for these results, i.e. the

output bits were written directly to the bitstream. Using

contexts-based modeling arithmetic coding generally

improves PSNR by about 0.5 dB but at the same time

increases the algorithm’s complexity [6].

Table 1. PSNR vs. bpp for test images

Bit-rate

(bpp)
SPECK LEBP Codec1 Codec2

L
en

a

0.0156 23.25 23.71 23.25 23.35

0.0313 25.38 25.67 25.35 25.24

0.0625 27.73 27.90 27.72 27.75

0.125 30.36 30.56 30.65 30.44

0.25 33.56 33.54 33.62 33.42

0.5 36.79 36.62 36.77 36.57

1 39.98 39.75 39.97 39.72

2 44.37 - 44.39 43.77

B
ar

b
ar

a

0.0156 21.38 21.68 21.45 21.48

0.0313 22.51 22.63 22.49 22.50

0.0625 23.68 23.64 23.67 23.57

0.125 24.70 25.05 25.16 25.14

0.25 27.48 27.43 28.02 27.86

0.5 31.26 31.48 31.97 31.51

1 36.18 36.72 37.05 36.51

2 42.22 - 43.12 43.21

G
o

ld
h
il

l

0.0156 23.59 - 23.57 23.46

0.0313 24.92 - 24.90 24.97

0.0625 26.39 - 26.37 26.35

0.125 28 - 28.07 27.90

0.25 30.13 - 30.15 29.91

0.5 32.71 - 32.59 32.40

1 36.01 - 35.88 35.69

2 41.13 - 41.02 40.64

M
an

d
ri

ll

0.0156 19.42 19.52 19.40 19.38

0.0313 19.85 19.94 19.84 19.84

0.0625 20.54 20.95 20.53 20.51

0.125 21.45 21.40 21.44 21.43

0.25 22.87 22.90 22.87 22.90

0.5 25.08 24.77 25.08 25.07

1 28.63 28.30 28.60 28.27

2 34.11 - 34.07 33.40

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

17

The table depicts the following:

 For Lena, the proposed Codec1 algorithm and the

original SPECK have close PSNR at all bit-rates.

SPECK outperforms Codec1 by at most 0.03 dB at

0.0313 bpp. On the other hand, Codec1 outperforms

SPECK by at most 0.29 dB at 0.125 bpp. LEBP has

slightly higher PSNR than Codec1 at very low bit-

rates between 0.0156-0.0625 bpp. On the other hand,

Codec1 perform better at bit-rates between 0.125-1

bpp, which is the most useful bit-rate range.

 For Barbara, which has high frequency content,

Codec1 has higher PSNR than SPECK at most bit-

rates with maximum PSNR difference of 0.9 dB at 2

bpp. Again, LEBP has slightly higher PSNR at bit-

rates between 0.0156 and 0.0313 bpp only.

 For Goldhill, Codec1 and SPECK have very close

PSNR.

 For Mandrill, which is the most complex image, all

algorithms have also very close PSNR.

 Finally, the proposed Codec2 is also competitive with

SPECK and Codec1 for all images.

These results demonstrate that the proposed Codec1 and

Codec2 have competitive PSNR efficiency with the other

state-of-art algorithms. The advantages of these algorithms are

the reduced memory and complexity as shown in the next

subsections.

4.2 Memory Requirements
The algorithm’s memory Requirements is represented by the

memory size required by its auxiliary lists. Notice that

SPECK uses LSP, LIP and the array LISz, z = 2, 4 …Z. Most

authors assume that since each individual pixel can be marked

as either significant of insignificant, so the total number of

entries of LIP and LSP is equal to the number of image pixels

[9, 12, 13]. As mentioned before, the list size cannot be

preallocated because it depends on the image size, image type

and on the compression bit-rate. Therefore, this assumption

can be realized only if the slow dynamic memory allocation

technique is employed leading to increase the complexity

greatly [10]. The more practical solution is to pre-allocate the

size of each list to the worst case which occurs when the

compression bit-rate is at full bit-rate. Table 2 depicts the

actual size of all LISz, z = 2, 4…Z, LIP, and LSP used by

SPECK and the actual size of LPR, LISE, and LISO used by

the proposed Codec1 for the four test images compressed at

full bit-rate. The size is with respect to the number of image

pixels (M×N).

As shown, the size of the lists varies with the aforementioned

parameters. So, for algorithm reliability, the maximum size

values must be adopted. Table 2 also depicts that the

maximum size of LIP and LSP is about 1.3 the image size. In

addition, the maximum size of LISz is 0.22 the image size and

the maximum size of both LISE and LISO is 0.25 the image

size. This means that the cost of implementing linked list LIS

with random access as two 1-D arrays with FIFO access is

very negligible which is 0.03 of memory increment with

respect to image size.

Each entry of these lists must have c bits to store the i and j

coordinates of the corresponding pixel. For an image with

(M×N) pixels, c = log2(M) + log2(N), where x is the

nearest integer ≥ x [12, 21]. Furthermore, for LIP and LIS

which are implemented as linked lists, each entry must be

provided by a pointer to point out to the next entry [8, 11].

Thus, the maximum memory requirement of SPECK is equal

to:

 (6)

where the three terms correspond to the maximum memory of

LSP, LIP, and LISz respectively, and pLIP and pLIS are the

pointer size for LIP and LIS respectively. Lamsrichan [8]

assume that the size of the pointer (p) is 4 bytes = 32 bits per

entry. However, a more precise calculation for p is that since

every list entry may be the next entry, so, p is equal to

log2(max. list size) bits per entry. For LIP, pLIP =

log2(0.37MN), and for LIS, pLIS = log2(0.22MN). For

instance, For an image with (512×512) pixels, c =

log2(5122) = 18 bits, pLIP = log2(0.37×5122) = 17 bits, and

pLIS = log2(0.22×5122) = 16 bits. Thus the maximum

memory requirement of SPECK is equal to:

For Codec1 and Codec2, LPR, LISO and LISE are

implemented as simple 1-D arrays. So, they don’t need to use

the pointer p. However, each one of LPR entries must have

c+1 bit, where the additional bit is for set’s significance

marker (r). In addition, each entry in LISO and LISE must

have c+s bits, where the additional s bits are used to store the

size z of its corresponding set. It is worth noting that s

depends on the size of the initial Q sets (Z×Z). However, as Z

is a power of two, the set can be represented as

pixels, where . So, t = log2(Z) and s = log2(t).

Therefore, the maximum memory requirement of Codec1 and

Codec2 is equal to:

 (7)

where the two terms correspond to the maximum memory

requirements of LPR, and LISO + LISE respectively. For an

image with (512×512) pixels and Q = 4, i.e. the initial set size

is (256×256) = (28×28) pixels. So s = log2(8) = 3 bits, and c =

18 bits. Thus the maximum memory requirement of Codec1 is

equal to:

The LEBP algorithm uses a list of length (M×N) to store the

magnitudes of all wavelet coefficients. Thus each list entry

must have W bits. In addition, each coefficient is provided

with a 4 bits status marker. Thus the total memory required

for LEBP is given by [13]:

Table 2. The memory size of the auxiliary lists of SPECK

and the proposed Codec1 at full compression bit-rate

Image

SPECK Codec1

LISz LIP LSP LPR LISE LISO

Lena 0.22 0.37 0.73 0.25 0.15 0.08

Barbara 0.16 0.30 0.74 0.25 0.10 0.06

Goldhill 0.18 0.33 0.81 0.24 0.11 0.08

Mandrill 0.16 0.30 0.91 0.25 0.08 0.10

Max. 0.22 0.37 0.91 0.25 0.15 0.10

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

18

 (8)

For a (512×512) pixels image, and L = 5, the total memory

required for LEBP is equal to

As it can be seen, the memory requirements of the proposed

algorithms are about 27% and about 50% of SPECK and

LEBP respectively. The size of an (512×512) pixels gray-

scale image with 1 byte per pixel is equal to 5122 262

Kbytes. Thus SPECK and LEBP need additional memory of

about 4.5 and 2.5 times the image size respectively. On the

other hand, the proposed algorithms need additional memory

of 1.25 times the image size. More importantly, memory

reduction is accompanied with the reduction of the

algorithm’s complexity as shown in the next subsection.

4.3 Computational Complexity
The algorithm’s computational complexity is represented by

the execution time needed to encode/decode the image against

bit-rate. The proposed algorithms and SPECK were evaluated

using MATLAB 7.10.0 under Window 7, Intel Core 2 Duo

CPU with 2.3 GHz speed and 2 GB of RAM. Only the coding

and decoding times were reported because the wavelet

transform consumes the same time for all algorithms. Tables 3

reports the coding and decoding times (measured in seconds)

vs. the bit-rate for Lena image. For LEBP, the coding and

decoding times were taken from [13] knowing that it was

implemented in MATLAB 7.10.0 under Window XP, Intel

Core 2 Duo CPU with 3GHz speed and 4GB of RAM which

is nearly the same computer environment used by the

proposed algorithms.

Table 3. The coding and decoding time (in seconds) vs.

bit-rate of the algorithms for Lena image

 Bit-Rate

(bpp)
SPECK LEBP Codec1 Codec2

C
o

d
in

g
 t

im
e

(s
ec

o
n

d
s)

0.0156 0.065 0.11 0.056 0.032

0.0313 0.075 0.14 0.068 0.066

0.0625 0.135 0.24 0.077 0.075

0.125 0.260 0.42 0.145 0.145

0.25 0.485 0.79 0.164 0.165

0.5 0.843 1.47 0.310 0.294

1 1.330 2.87 0.527 0.500

D
ec

o
d

in
g

 t
im

e
(s

ec
o

n
d

s)
 0.0156 0.025 0.03 0.003 0.003

0.0313 0.040 0.05 0.008 0.008

0.0625 0.010 0.11 0.020 0.017

0.125 0.184 0.23 0.037 0.034

0.25 0.387 0.45 0.081 0.071

0.5 0.622 0.90 0.122 0.105

1 1.133 1.78 0.252 0.219

As clearly shown, the coding time of Codec1 is about two

times faster than that of SPECK especially at bit-rates

(0.0625-1) bpp. This is achieved due to the many memory

simplifications adopted by the proposed coding method. In

contrast, LEBP runs by about two times slower than SPECK.

This means that Codec1 is about four times faster than LEBP.

Finally, Codec2 is the fastest among all algorithms because of

the adopted sub-pass merging which led to scanning LPR one

time per bit-plane instead of two. However, as shown in

subsection 4.1, Codec2 has slightly lower PSNR than Codec1

due to not preserving the information ordering according to

the embedding principle. On the other hand, for all

algorithms, the decoding time is shorter than the coding time

because that the decoder doesn’t need to scan and test the

sets’ pixels at every bit-plane to see if the set becomes SIG.

However, the decoding time of Codec1 is also about two

times faster than that of SPECK while LEBP runs by about

1.1-1.5 times slower than that of SPECK. Finally, Codec2 is

also the fastest among all algorithms. However, the speed

improvement is less than that of the coding time as there is no

set testing at the decoder side.

5. CONCLUSION
In this paper, we presented two wavelet-based rate scalable

algorithms. As shown from the experimental performance

results, the proposed algorithms have competitive PSNR, have

about 75% lower memory and run by about two times faster

as compared to SPECK. In addition, they have lower

complexity, lower memory and better PSNR as compared

with other low memory algorithms (e.g., LSK and LEBP).

These factors make the proposed algorithms very attractive

because with current technology, memory is not a limiting

factor for most applications. The low memory and complexity

of the proposed algorithms makes them very suitable for

multispectral, hyper-spectral, 3D image compression, and

real-time applications such as video transmission, where

compression speed is vital. Furthermore, a fast algorithm

requires short execution time and hence it consumes less

power. Consequently the proposed algorithms can be very

useful for wireless sensor networks (WSNs), mobile phones,

digital cameras, etc. which have limited resources in terms of

power, processing speed, and memory. Another advantage of

the algorithms is their asymmetric property as its decoding

time is much faster than its encoding time. This property is

very valuable with scalable image compression as the image

is compressed only once and may be decompressed many

times. Finally, the proposed algorithms have weak list

memory dependency due to using simple 1-D arrays with

sequential FIFO access [3]. This interesting feature permits to

upgrade them easily to be highly scalable algorithms that

produce a compressed bitstream which is both rate and

resolution scalable [23]. That is, an image at several

resolutions and bit-rates can be obtained from the compressed

bitstream by a simple scaling process. This flexibility makes

the highly scalable bitstream very useful for modern

heterogeneous users that have diverse bit-rate and resolutions

requirements interconnected via heterogeneous wired and

wireless networks that have diverse bandwidths.

6. REFERENCES
[1] Goyal V.K, “Theoretical Foundations of Transform

Coding”, IEEE Signal Processing Magazine, Vol. 18,

No.9, pp. 9-21, Sep.2001.

[2] Rabbani, M. and Joshi, R., “An Overview of the JPEG

2000 Still Image Compression Standard”, Signal

Processing: Image Communication, Vol. 17, No. 1, pp.

3-48, Jan. 2002.

[3] Taubman D., Weinberger M., Seroussi G., Ueno I., and

Ono F., “Embedded Block Coding in JPEG2000,” Signal

Processing: Image Communication Vol. 17, No. 1, pp.

49-72, Jan. 2002.

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.9, February 2016

19

[4] Ordentlich E., Weinberger M. and Seroussi G., “A Low-

Complexity Modeling Approach for Embedded Coding of

Wavelet Coefficients”, Proc. IEEE Data Compression

Conference, DCC 98, Snowbird, pp. 408-417, March

1998.

[5] Li J. and Lei S., “An Embedded Still Image Coder with

Rate-Distortion Optimization”, IEEE Trans. on Image

Processing, Vol. 8, No. 7, pp. 913-924, July 1999.

[6] Said, A. and Pearlman, W.A., “A New, Fast, and

Efficient Image Codec Based on Set Partitioning in

Hierarchical Trees”, IEEE Trans. on Circuits & Systems

for Video Technology, Vol. 6, No. 3, pp. 243-250, 1996.

[7] Pearlman, W.A, Islam, A., Nagaraj, N. and Said, A.,

“Efficient, Low Complexity Image Coding with a Set-

Partitioning Embedded Block Coder”, IEEE Trans. on

Circuits &Systems for Video Technology, Vol. 14, No.

11, pp. 1219-1235, Nov. 2004.

[8] Lamsrichan P., “A fast algorithm for low-memory

embedded wavelet-based image coding without list”, the

8th Int. Conf. on Electrical Engineering/Electronics,

Computer, Telecom. & Information Technology (ECTI-

CON), pp. 979-982, Khon Kaen, May 2011.

[9] Jianjum, W. and Bo Liu, “Modified SPIHT Based Image

Compression for Hardware Implementation”, IEEE

Computer Society, Second Int. Workshop on Computer

Science and Engineering, Qingdao, Vol. 2, pp. 572-576,

Oct. 2009.

[10] Chrysafis C., Said A., Drukarev A., Islam A., &

Pearlman, W.A, “SBHP-A Low Complexity Wavelet

Coder,” IEEE Int. Conf. Acoustic., Speech and Sig. Proc.

(ICASSP2000), Istanbul, Vol. 4, pp. 2035-2038, June

2000.

[11] Berman, A.M., “Data Structures via C++: Objects by

Evolution”, 1st edition, Oxford University Press, New

York, USA, 1997.

[12] Latte M., Ayachit N. and Deshpande D., “Reduced

memory listless SPECK image compression”, Elsevier

Science, Digital Signal Process. Vol. 16, No. 6, pp. 817–

824, Nov. 2006.

[13] Senapati R. and Mankar P., “Improved Listless

Embedded Block Partitioning Algorithms for Image

Compression”, International Journal of Image and

Graphics, Vol. 14, No. 4, pp. 1–32, Dec. 2014.

[14] Hsiang S. and Woods J., “Embedded Image Coding

Using Zeroblocks of Subband/Wavelet Coefficients and

Context Modeling”, the 2000 IEEE Int. Symp. on

Circuits and Systems (ISCAS2000), Geneva, Vol. 3, pp.

662–665, May 2000.

[15] Zhang Y.Z, Chao X., Wen T. W., and Liang B. C.,

“Performance Analysis and Architecture Design for

Parallel EBCOT Encoder of JPEG2000,” IEEE Trans.

on Circuits & Systems for Video Technology, Vol. 17,

No. 10, pp. 1336-1347, Oct. 2007.

[16] Pearlman, W.A., “Trends of Tree-Based, Set-Partitioning

Compression Techniques in Still and Moving Image

Systems”, Proceedings Picture Coding Symposium

(PCS-2001), Seoul, Korea, 25-27, pp. 1-8, April, 2001.

[17] Al-Janabi A.K, “Low Memory Set-Partitioning in

Hierarchical Trees Image Compression Algorithm,”

International Journal of Video & Image Processing and

Network Security IJVIPNS-IJENS, Vol. 13, No. 2, pp.

12-18, April 2013.

[18] Al-Janabi A.K, “Ultrafast and Efficient Scalable Image

Compression Algorithm”, Journal of ICT Res. Appl., to

be published.

[19] Sakalli M., Pearlman W.A, and Farshchian M., “SPIHT

algorithms using Depth First Search Algorithm with

minimum memory usage”, IEEE 40th Annual Conference

on Information Sciences and Systems, pp. 1158-1163,

Princeton, NJ, 22-24 March 2006.

[20] Wern L., Minn A. and Seng K, “Reduced Memory SPIHT

Coding using Wavelet Transform with Post-Processing”,

IEEE Inter. Conf. on Intelligent Human-Machine

Systems and Cybernetics, IHMSC '09, pp. 371-374,

Hangzhou, Zhejiang, Aug. 2009.

[21] Arora H., Singh P., Khan E., and Ghani F., “Memory

Efficient Set Partitioning in Hierarchical Tree (MESH)

for Wavelet Image Compression”, ICASSP 2005, pp.

385-388, Mar. 2005.

[22] Salomon, D., “Data Compression: the Complete

Reference”, 3rd ed., Springer, New York, USA, 2004.

[23] Al-Janabi, A.K., “Highly Scalable Single List Set

Partitioning in Hierarchical Trees Image Compression”,

IOSR Journal of Electronics and Communication

Engineering, Vol. 9, No. 1, pp. 36-47, 2014. DOI:

10.9790/2834-09133647.

IJCATM : www.ijcaonline.org

