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ABSTRACT 

The set partitioning embedded block (SPECK) image 

compression algorithm has excellent performance, low 

computational complexity, and produces a rate scalable 

compressed bitstream that can be decoded efficiently at 

multiple bit-rates. Unfortunately, it consumes a huge amount 

of computer memory due to employing lists that store the 

coordinates of the image pixels and the coordinates of the sets 

that are generated during the coding process. In addition, it 

has complex memory management due to using an array of 

random access linked lists to store these sets according to their 

sizes. In this paper, we propose two algorithms that are based 

on SPECK. The main contribution of the first algorithm is 

that, as compared to SPECK, the amount of the algorithm’s 

usable memory is reduced to about 75% and at the same time 

its processing speed is increased and its rate distortion 

efficiency is preserved as will be demonstrated. The second 

algorithm has higher processing speed but has slightly lower 

rate distortion performance than the first algorithm. 
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1. INTRODUCTION 
Modern image compression algorithms are transform-based 

by which the image is transformed to compact most of the 

pixels’ energies into a few numbers of transformed 

coefficients. As such the other coefficients tend to have small 

magnitudes. After quantization, most of these small 

magnitude coefficients will be zero. The coding stage then 

attempts to code these zero valued coefficients efficiently [1]. 

A rate scalable image compression algorithm produces an 

embedded bitstream that can be truncated at any point while 

attempting to maintain the best possible image quality for the 

selected bit-rate [2]. An embedded bitstream can be achieved 

using successive approximation bit-plane coding where all 

coefficients are coded on bit-plane basis rather than on pixel 

basis. That is, the coefficients are coded bit-plane by bit-plane 

starting from the most significant bit (MSB) to the least 

significant bit-plane (LSB). In this way, the most effective bit 

(the MSB) of each coefficient is put in the bitstream before its 

less effective bit (the LSB) [3]. In addition, in order to the 

bitstream to be an optimal embedded bitstream in the sense of 

obtaining the best rate distortion (R-D) performance at any 

truncation point, its information bits must be ordered in 

decreasing order of distortion reduction, i.e., within each bit-

plane level, the bits that have the steepest R-D slope, defined 

as the amount of distortion reduction per coded bit, should be 

put first in the bitstream followed by the bits with the less R-D 

and so on. This is known the embedding principle [4, 5]. 

Most scalable image compression algorithms employ the two 

dimensional discrete wavelet transform (2D-DWT) because – 

in addition to its good energy compaction – it has interesting 

features namely, its space-frequency localization, and its multi 

resolution properties. The localization property permits to 

apply the DWT to the entire image facilitating rate scalability. 

The multi-resolution nature of DWT facilitates resolution 

scalability that permits to reconstruct the image at several 

sizes. The 2D-DWT first decomposes the image into four 

subbands labeled LL1, LH1, HL1, and HH1. Then the LL1 

subband is further decomposed into four subbands labeled 

LL2, HL2, LH2, and HH2. This dyadic decomposition can be 

performed L times resulting in 3L+1 subbands. Figure 1 

depicts the dyadic 2D-DWT for three decomposition levels (L 

= 3). It can be shown that the best DWT efficiency can be 

achieved with L = 5 [2].  

LL3 HL3 
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LH3 HH3 

LH2 HH2 

LH1 HH1 

Fig 1: dyadic 2D-DWT with 3 decomposition levels 

Among all wavelet-based rate scalable image compression 

algorithms, the set partitioning in hierarchical trees (SPIHT) 

[6], and the set partitioning embedded block (SPECK) [7] are 

the most popular ones. They are very efficient and employ a 

low complexity set partitioning technique to jointly code the 

zero bits using some kind of significance testing for sets of 

coefficients. Both algorithms make use of three linked lists 

termed the list of insignificant pixels (LIP), list of significant 

pixels (LSP), and list of insignificant sets (LIS) to store the   

(i, j) coordinates of the pixels and sets that need to be tested 

and coded. However, the algorithms differ by the way the sets 

are formed and partitioned. SPIHT uses the spatial orientation 

trees that exploit the correlation between wavelet coefficients 

across the different subbands. In contrast, SPECK uses quad 
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trees that exploit the correlation between wavelet coefficients 

within the same subbands. In addition, in SPECK, the 

generated sets have different sizes. Thus SPECK replaces LIS 

by an array of smaller lists each containing sets of a fixed 

size. That is, LIS is replaced by an array of linked lists LISz, z 

= 2, 4... Z, where Z is the size of the largest set. In any coding 

pass, LISz is processed in increasing order, i.e. LIS2, LIS4… 

LISZ. In this way information ordering is preserved because 

the probability of finding significant pixels is inversely 

proportional to the set sizes [7].   

Unfortunately, these algorithms suffer from the high memory 

requirements and the complex memory management due to 

using these lists [8, 9]. In particular, LIP and LSP which store 

the individual pixels, dominate the total memory. In addition, 

the actual size of each one of LSP, LIP and each one of the 

lists in LISz array depends on the image size, image type and 

on the compression bit-rate. Therefore, the algorithm must 

either initialize each list to the maximum size or use the 

dynamic memory allocation technique. It is well known that 

the former solution increases the memory requirements of the 

algorithm while the latter slows the algorithm due to its high 

computational complexity [10, 11]. On the other hand, these 

lists are the main reason of the algorithm’s reduced 

complexity, and its good embedding performance. The 

reduced complexity is mainly due to processing only the 

pixels and sets that are stored in these lists. The good 

embedding performance is attained because the pixels and sets 

are stored in these lists following a specific order which is 

consistent with the embedding principle [12]. Therefore, 

removing the lists may lead to increase the algorithm’s 

complexity and/or reduce its efficiency. 

2. RELATED WORK 
Several works attempted to reduce the memory requirements 

of the wavelet-based rate scalable algorithms. Latte et al. [12] 

presented a low memory SPECK called Listless SPECK 

(LSK). It stores the DWT image coefficients in a 1-D array. In 

addition, each coefficient has 4 bits marker to determine its 

status. Unfortunately, the cost of this memory reduction is the 

increase of algorithm’s complexity due to the repeated search 

and test for all coefficients twice per every bit-plane coding 

pass. Senapati [13] presented the listless embedded block 

partitioning (LEBP) algorithm. LEBP also has about the same 

memory as LSK but it improved the performance of LSK 

especially at very low bit-rates by testing a cluster of 

subbands instead of individual subbands. However, this 

increased the coding time by about 1.3 times as compared to 

LSK. Lamsrichan [8] presented an efficient memory 

embedded algorithm that uses two status bits per pixel only. 

In this coder, the wavelet coefficients are coded using the 

wavelet difference reduction (WDR) coding technique in 

combination with a context-based adaptive arithmetic coder. 

The algorithm has good performance but at the expense of 

highly increased complexity since the complexity of the 

context-based arithmetic coder is about (4-8) times higher 

than that of the set partitioning technique used by SPIHT or 

SPECK [15, 16]. 

In [17] Al-Janabi A.K presented the single list SPIHT (SLS) 

algorithm. SLS uses two status bits per pixel and a list of size 

equal to ¼ the image size to store the coordinates of the roots 

of the spatial orientation trees. The proposed SLS preserves 

the same information ordering as the original SPIHT. 

Consequently, both algorithms have nearly the same 

performance. More importantly, SLS has nearly the same 

complexity as the original SPIHT. This is due to avoiding the 

repeated search for all coefficients in every bit-plane coding 

pass and due to simplifying the memory management as the 

list is implemented as a simple array that is accessed 

sequentially instead of the random access linked list that are 

used by SPIHT.  

The remainder of the paper is organized as follows: section 3 

presents the proposed algorithms. Section 4 investigates the 

simulation results of the proposed and some existing 

algorithms. Finally, section 5 concludes the paper. 

3. THE PROPOSED ALGORITHMS 
The proposed algorithms use nearly the same approach of 

SLS [17] to reduce the memory of SPECK. In addition, they 

employ the step-wise quad tree partitioning coding method 

adopted by the ultrafast and efficient scalable image 

compression algorithm presented by Al-Janabi A.K [18] 

instead of the recursive quad tree partitioning used by SPECK 

[7] to simplify its memory management. 

Like other rate scalable algorithms, the proposed algorithms 

produce an embedded bitstream for the wavelet image using 

some form of bit-plane coding. To this end, every wavelet 

coefficient is initially quantized by rounding it to the nearest 

integer and represented by a sign-magnitude format using W 

bits (e.g. 16 bits), where the first bit is the sign bit (e.g. 0 for 

positive and 1 for negative coefficient) and the other W1 bits 

are the magnitude bits. Then the quantized wavelet image 

(QW) is encoded by multiple coding passes where each pass 

corresponds to bit-plane level. The maximum bit-plane nmax 

depends on the maximum value of the coefficients in QW and 

it is given by [6, 7]: 

                                                                   (1) 

where x is the nearest integer ≤ x and  qij is a quantized 

wavelet coefficient at location (i, j) in QW. nmax should be sent 

to the decoder in order to start decoding at bit-plane nmax. In 

the following description, the terms pixel and coefficient are 

used interchangeably. At any bit-plane, n, a pixel qij is 

considered significant (SIG) with respect to n if:  

                                                                              (2) 

otherwise qij is insignificant (ISIG). Similarly, a set of pixels 

T is considered SIG with respect to n if T contains at least one 

SIG pixel; otherwise T is ISIG. 

3.1 Codec1 
Compared to SPECK, the proposed Codec1 has widely lower 

memory requirements and lower computational complexity. 

More importantly, these features are attained without affecting 

the embedding performance of the original algorithm as will 

be demonstrated experimentally. Memory is greatly reduced 

by removing the lists LIP and LSP which store the individual 

pixels. Complexity is reduced due to avoiding the repeated 

search of all coefficients in each coding pass as done in [8, 9, 

12, 13] and due to simplifying the memory management. This 

is achieved by replacing the array of the linked lists LISz by 

two lists only: the List of Pixels Roots (LPR) and LIS. LPR 

stores the SIG and ISIG sets that have (2×2) pixels and LIS 

stores the ISIG sets that have at least (4×4) pixels. As shown 

shortly in the proposed coding method, once a set is added to 

LPR, the set will be never removed. Therefore LPR can be 

implemented as a simple 1-D array that is accessed 

sequentially in first in first out (FIFO) manner which is the 

fastest and simplest access method [11]. Each entry r in LPR 

in addition to the set’s (i, j) coordinates is provided by a 

single bit marker termed r to distinguish the significance 
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state of the set. That is, for each entry r, its r is initialized as 

ISIG and updated to SIG once its corresponding set    
  

becomes SIG, where    
  denotes a set at entry r whose root is 

at location (i, j) in the image. 

Codec1 removes LIP and LSP by exploiting the fact that the 

pixels that are stored in these lists belong to the SIG sets of 

size (2×2) pixels. So, instead of storing these pixels in these 

lists, they can be easily deduced from these sets. That is, each 

(2×2) set at location (i, j) in LPR can act as a root for the four 

pixels at location (i, j), (i+1, j), (i, j+1), and (i+1, j+1) in the 

image. Notice that LIP stores the pixels that are tested ISIG in 

the previous coding passes while LSP stores the pixels found 

SIG in the previous coding passes and the pixels that are just 

become SIG in the current pass. So in order to distinguish 

between these three types of pixels, each pixel qij in QW is 

provided by a two status bits marker termed ij to identify the 

pixel’s type as follows: 

 ij =  0: qij is tested ISIG pixel in the previous passes 

and will be tested again in the current pass. 

  ij = 1: qij is New SIG (NSIG) pixel that just becomes 

SIG in the current bit-plane pass and will not be refined 

in the current coding pass.  

  ij = 2: qij is Previous SIG (PSIG) pixel that is found 

SIG in the previous passes and will be refined in the 

current pass. 

As mentioned before, each coefficient in QW can be 

represented by W bits with typical value of at least 16 bits (2 

bytes) [6]. It is worth noting that the maximum value of the 

coefficients in QW (|qmax|) is equal to 2L times the maximum 

pixel value in the original image, where L is the number of 

wavelet decomposition levels [19, 20]. Therefore, for an 

image with pixel bit depth of b bits, |qmax| is given by: 

                                                (3) 

Thus, L+b+1 bits are sufficient to represent each coefficient, 

where the additional bit is for the sign bit. Typical value for b 

is 8 bits and for L is 5, so each coefficient can be represented 

by 5+8+1 = 14 bits. Therefore, there are 16-14 = 2 unused bits 

per coefficient. These 2 bits can be used as the status marker 

bits () [19, 21], i.e. there is no need to use an auxiliary status 

marker bits.  

An important difference between SPECK and the proposed 

Codec1 lies on the method of sets partitioning. SPECK starts 

with sets of variable sizes and uses recursive quad-tree 

partitioning. As such, there isn’t any particular order of the 

sets stored in LIS leading to use the array of linked lists LISz 

that needs complex memory management [7]. In contrast, 

Codec1 makes use the implicit step-wise quad-tree 

partitioning adopted in [18] in order to eliminate the need of 

LISz as follows: the algorithm starts with sets of equal size 

and when a set Tij in LIS is found to be SIG, one step of quad-

tree partitioning is performed on Tij by which it is partitioned 

from middle along each side into four subsets collectively 

denoted as O(T). The size of each one of these subsets is one 

half (in each of the x and y dimensions) the size of the parent 

set Tij. Then these four subsets are added to the end of LIS to 

be tested later on at the same bit-plane coding pass. The 

adopted method provides nearly the same embedding 

performance as the recursive quad tree partitioning used by 

SPECK without the need to employ the array of linked lists 

LISz leading to simplify the memory management of the 

algorithm and hence reducing its complexity [17]. However, 

since the sets stored in LIS have different sizes, each entry in 

these lists must have an additional field of s bits to store the 

size of the corresponding set. As shown in the next section, 

for an image of size (512×512) pixels, s consumes at most 3 

bits per entry.  

Another memory management simplification of Codec1 is 

that in SPECK, each list of LISz should be implemented as a 

linked list as it is subject to add and remove operations. 

However, in the proposed coding method, LIS is divided to 

two lists termed the LISO and LISE. LISO is processed in the 

Odd parity coding passes and reinitialized (i.e., it is set as 

empty) at the beginning of the Even parity coding passes 

while LISE is processed in the Even parity coding passes and 

reinitialized at the beginning of the Odd parity coding passes. 

As shown next, the two lists will be subject to add operation 

only and thus can be implemented as 1-D arrays that are 

accessed in FIFO manner leading to simplify the algorithm’s 

memory management and hence reducing its complexity 

further. Another advantage of list re-initialization at the 

beginning of each bit-plane is to avoid the inter-dependency 

on the previous bit-planes. This will improve the algorithm’s 

error resilience since the encoding pass is independent of the 

previous passes, so if an error occurs in any pass, it will affect 

the decoding of that pass only [21]. It is worth noting that the 

size of both LISO and LISE doesn’t exceed the size of LIS 

because they have the same number of sets but rather than 

storing them in LIS, they are distributed between LISO and 

LISE.  

The coding stage is initialized by computing the maximum 

bit-plane nmax; outputting nmax to the bitstream, and setting n to 

nmax; and setting LPR as empty list. Then the image is divided 

into Q sets of equal sizes, where Q is a power of two integer ≥ 

4. For instance, for an image size (512×512) pixels and Q = 4, 

there are four sets of size (256×256) pixels each. The (i, j) 

coordinates of the roots of these equal size sets are stored in 

LISO. Each bit-plane coding pass n has three sub-passes. The 

first two sub-passes test the pixels and sets that are still ISIG, 

while the third sub-pass codes the pixels that are found SIG in 

the previous bit-plane passes.  

The first sub-pass starts by processing the sets of size (2×2) 

pixels in LPR. Each entry r in the LPR is processed according 

to its significance status r. If r is ISIG, this means that its 

corresponding set    
  is still marked ISIG, so it is passed to 

the         
     procedure to be tested and encoded. 

        
     first tests    

  for significance with respect to n. If 

   
  is still ISIG, then a ‘0’ is sent to the bitstream and the 

process is terminated. Else if    
  is found to be SIG, (i.e., one 

or more of its four pixels just become SIG in the current pass), 

then a ‘1’ is sent; its r is marked as SIG (i.e.    
  becomes 

SIG); finally, each one of its four children which is at location 

(x, y), x = i, i+1, and y = j, j+1 is passed to the 

Code_pixel(qxy,n) procedure for encoding. Code_pixel(qxy,n) 

tests each qxy for significance with respect to n. If qxy is still 

ISIG, then a ‘0’ is sent to the bitstream. Else if qxy just 

becomes SIG in the current pass, then a ‘1’ and its sign bit are 

sent to the bitstream and it is marked as NSIG (xy = 1). On 

the other hand, if for entry r r is marked SIG, this means that 

its    
  is marked SIG at any one of the previous passes. In this 

case    
  may contain one or more pixels that are found SIG in 

the previous passes but they are still marked as NSIG pixel 

and may contain one or more ISIG pixels. Thus each NSIG 

pixel is marked as a PSIG pixel to be refined later on at the 

third sub-pass of current coding pass while each ISIG pixel is 

coded by the Code_pixel(qxy,n). Updating NSIG pixels to 

PSIG at this stage is necessary in order to distinguish them 
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from the pixels that will become NSIG later on in the current 

coding pass during the QTree procedure described shortly.  

The second sub-pass processes the sets in LISO or LISE 

according to the pass parity (P). If P is odd, LISE is 

reinitialized and each set Tij in LISO is passed to the 

procedure QTree(Tij,z,n,P) for encoding, where z > 2 is the set 

size. QTree(Tij,z,n,P) starts by testing Tij with respect to n. If 

Tij is still ISIG, ‘0’ is sent to the bitstream, and if P is odd, 

(i.e., Tij belongs to LISO), Tij is not kept in LISO; rather, it is 

added to LISE to be tested in the next even pass. On the other 

hand, if Tij is SIG, ‘1’ is sent to the bitstream, then it is quad-

tree partitioned into the four children subsets O(Tij) each of 

size z/2. Then z is updated to z/2 and if z > 2, these subsets are 

added to the end of LISO to be passed to the QTree procedure 

later on at the same sub-pass; otherwise, if z = 2, each subset 

O(Tij) is added to LPR and passed to         
     procedure 

described before. It is worth noting that if the pass parity P is 

even, the same process is performed but the lists are 

interchanged.  

The third sub-pass deals with the sets of (2×2) pixels in LPR 

that are marked SIG in the previous passes (i.e., except those 

that are marked as SIG in the current pass). For each one of 

these set, only PSIG pixels (with  = 2) are refined. A PSIG 

pixel is refined to more bit precision by sending its nth MSB to 

the bitstream. Finally, the bit-plane n is decremented by one to 

start a new coding pass. This process continues until all the 

pixels are encoded or until the target bit-rate is achieved. The 

following pseudo code describes the main coding steps of 

Codec1 algorithm. 

Step1: Initialization 

 Compute                                   

 Output nmax and Set n = nmax. 

 LPR = , LISO = {Tm},   1 ≤ m ≤ Q. 

 

Step 2: Bit-plane Coding Passes  

2.1 The first sub-pass 

  Entry r  LPR do:      

 if          then         
    ;   //  Tij is still ISIG 

 else do:                                  // Tij is SIG 

 (x, y)  Tij : x = i, i+1, y = j, j+1, do: 

 if  xy  = 1  then  xy  = 2;   

 else Code_pixel(qxy, n);     //  xy  = 0   

2.2 The second sub-pass 

 if  P is Odd do:   // pass is odd 

 LISE = ;  

  entry r  LISO do:                     

 else do:          // pass is even  

 LISO = ;  

  entry r  LISE do:                     

2.3 The third sub-pass 

  entry r  LPR &    is SIG in previous passes do:        

(x, y)Tij & xy =2  then output the nth MSB of qxy.   
 

2.4  if  n > 0, then n  =  n – 1 and go to 2.1;  

       else end coding; 
 

Procedure         
    { 

 if Tij is ISIG then  output(0); 

 else do:   // Tij is SIG 

 output(1);  

      

  (x, y)  Tij do:  Code_pixel(qxy, n); } 

 

Procedure Code_pixel(qxy, n) { 

 if  qxy is ISIG then output (0); 

 else do:    // qxy is SIG  

 output(1); 

 output sign(qij);  

 xy  = 1;   } 

 

Procedure                  {    // z  ≥ 4 

 if   Tij is SIG do: 

 output (1); 

 quad-tree partition Tij into four subsets    

 z = z / 2; 

 if z  > 2 do: 

 O(Tij)  Tij   do:  

 if P is Odd then add each O(Tij) to the end 

of LISO; 

 Else add each O(Tij) to the end of LISE;    

 else if  z = 2 do: 

 O(Tij)  Tij do:  

 Add O(Tij) to LPR;  

 Pass O(Tij) to          
      

 else  do:                  //   Tij is ISIG  

 output (0); 

 if P is Odd then Add Tij to the end of LISE; 

 else Add Tij to the end of LISO; } 

Like other set partitioning algorithms, the decoding process 

mirrors the encoding process. That is, the decoder duplicates 

the encoder's execution path as follows: replace the word 

‘output’ by the word ‘input’ for all procedures, then at any 

execution point, when the decoder receives ‘1’, this means 

that the corresponding set or pixel is SIG; otherwise it is ISIG. 

More precisely, if the corresponding set is SIG, it is 

partitioned, and if it is ISIG, it is simply bypassed. On the 

other hand, if the corresponding pixel is SIG, the decoder 

knows that it lies in the interval [2n, 2n+1), so it is 

reconstructed at the center of the interval which is equal to 

±1.52n depending on its sign bit. For example, assume that n 

= 5, so at the encoder a pixel with magnitude = +35 is SIG 

because 25 ≤ +35 < 26. At the decoder it is reconstructed to 1.5 

 25 = +48. Every refinement (REF) bit updates the value of 

the pixel found SIG in previous bit-planes by adding or 

subtracting a value of (0.52n) depending on its sign. More 

specifically, if the pixel is positive, a value of (0.52n) is 

added to it if the REF bit is ‘1’, and a value of (0.52n) is 

subtracted from it if the REF bit is ‘0’. On the other hand, if 

the pixel is negative, a value of (0.52n) is subtracted from it 

if the REF bit is ‘1’ and (0.52n) is added if the REF bit is ‘0’. 

For example, the pixel +35 which is reconstructed to +48 at n 

= 5, is updated to 48(0.524) = 40 at n = 4 as its REF bit is 

‘0’ at this bit-plane. In this way the values of reconstructed 

pixels approach the originals ones and hence the distortion 

decreases as more bits are decoded. 

3.2 Codec2 
The proposed codec2 algorithm has lower complexity than the 

Codec1. This is achieved by merging the first and third sub-

passes. The adopted coding method doesn’t differentiate 

between the NSIG and the PSIG pixels. In other words, there 

are only two types of pixels: ISIG and SIG. Therefore a single 

status bit per pixel is sufficient: ij = 0 if qij is ISIG and ij = 1 

if qij is SIG. Codec2 works exactly as Codec1 except that LPR 

is processed in one sub-pass only as follows: a set    
  in LPR 

that is yet marked ISIG (r = 0), it is passed to the 

        
      procedure for encoding as before. On the other 



International Journal of Computer Applications (0975 – 8887) 

Volume 136 – No.9, February 2016 

16 

hand, if the set    
  is marked SIG (r = 1) at any one of the 

previous passes, this means that it may contain one or more 

pixels that are found SIG in the previous passes and may 

contains ISIG pixels. Thus each ISIG pixel (with  = 0) is 

coded by the Code_pixel(qxy,n) procedure as given before 

while each SIG pixel (with  = 1) is refined directly by 

sending its nth MSB to the bitstream. The pseudo code of 

Codec2 is identical to that of Codec1 except that the first sub-

pass (step 2.1) is modified as given below and the third sub-

pass is eliminated because it is merged with the first sub-pass. 

2.1 The first sub-pass 

 entry r  LPR do:  

 if          then         
           //  Tij is still ISIG 

 else do:                                       // Tij is SIG 

  (x, y)  Tij : x = i, i+1, y = j, j+1, do: 

 if  xy  = 0  then  Code_pixel(qxy,n);  // qxy  is still ISIG.   

 else output the nth MSB of qxy. //qxy  is SIG to be refined 

Notice that with Codec2, LPR is scanned and processed once 

per bit-plane coding pass, while in Codec1 it is scanned and 

processed twice per pass. Therefore, it has lower complexity 

than Codec1. The price to be paid is a very slight decrement 

in the embedding performance. This is mainly due to merging 

the first sub-pass that is dedicated to test and code the ISIG 

pixels with the third sub-pass that is dedicated to refine the 

PSIG pixels. This will lead to deteriorate the embedding 

ordering slightly [2]. However, the performance decrement is 

very small as will be demonstrated experimentally in the next 

section.  

4. SIMULATION RESULTS 
In this section, the proposed Codec1 and Codec2 algorithms 

are evaluated and tested using the standard 8 bpp gray-scale 

(512×512) pixels ‘Lena’, ‘Barbara’, ‘Mandrill’, and ‘Goldhill’ 

test images. Each image is transformed using the bi-

orthogonal 9/7 Daubechies 2D-DWT with L = 5 dyadic 

decomposition levels and the wavelet coefficients are rounded 

to the nearest integer prior to coding. The initial set size for 

Codec1 and Codec2 was (128×128) pixels (Q = 8).  The 

algorithms were implemented by MATLAB 7.10 under 

Window 7, Intel Core 2 Duo CPU with 2.3 GHz speed and 

2GB of RAM. The algorithms were compared with SPECK 

[7], and LEBP [13] algorithms. The test includes the 

algorithm’s rate distortion performance, its memory 

requirements, and its computational complexity.  

4.1 Rate Distortion Performance 
The rate distortion performance is represented by the Peak 

Signal to Noise Ratio (PSNR) vs. bit-rate (the average number 

of bits per pixel (bpp) for the compressed image). The PSNR 

is given by [2, 22]: 

                       
     

   
                                         (4) 

where MSE is Mean-Squared Error between the original 

image Io and the reconstructed image Ir each of size MN 

pixels defined as: 

          
 

   
                   

  
   

 
                       (5) 

Table 1 illustrates the algorithms’ PSNR vs. bit-rate for the 

four test images. For each bit-rate, the best PSNR is bolded. 

No arithmetic coding was used in the significance test or any 

symbols produced by the algorithms for these results, i.e. the 

output bits were written directly to the bitstream. Using 

contexts-based modeling arithmetic coding generally 

improves PSNR by about 0.5 dB but at the same time 

increases the algorithm’s complexity [6]. 

Table 1. PSNR vs. bpp for test images 

 
Bit-rate 

(bpp) 
SPECK LEBP Codec1 Codec2 

L
en

a 

0.0156 23.25 23.71 23.25 23.35 

0.0313 25.38 25.67 25.35 25.24 

0.0625 27.73 27.90 27.72 27.75 

0.125 30.36 30.56 30.65 30.44 

0.25 33.56 33.54 33.62 33.42 

0.5 36.79 36.62 36.77 36.57 

1 39.98 39.75 39.97 39.72 

2 44.37 - 44.39 43.77 

B
ar

b
ar

a 

0.0156 21.38 21.68 21.45 21.48 

0.0313 22.51 22.63 22.49 22.50 

0.0625 23.68 23.64 23.67 23.57 

0.125 24.70 25.05 25.16 25.14 

0.25 27.48 27.43 28.02 27.86 

0.5 31.26 31.48 31.97 31.51 

1 36.18 36.72 37.05 36.51 

2 42.22 - 43.12 43.21 

G
o

ld
h
il

l 

0.0156 23.59 - 23.57 23.46 

0.0313 24.92 - 24.90 24.97 

0.0625 26.39 - 26.37 26.35 

0.125 28 - 28.07 27.90 

0.25 30.13 - 30.15 29.91 

0.5 32.71 - 32.59 32.40 

1 36.01 - 35.88 35.69 

2 41.13 - 41.02 40.64 

M
an

d
ri

ll
 

0.0156 19.42 19.52 19.40 19.38 

0.0313 19.85 19.94 19.84 19.84 

0.0625 20.54 20.95 20.53 20.51 

0.125 21.45 21.40 21.44 21.43 

0.25 22.87 22.90 22.87 22.90 

0.5 25.08 24.77 25.08 25.07 

1 28.63 28.30 28.60 28.27 

2 34.11 - 34.07 33.40 
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The table depicts the following: 

 For Lena, the proposed Codec1 algorithm and the 

original SPECK have close PSNR at all bit-rates. 

SPECK outperforms Codec1 by at most 0.03 dB at 

0.0313 bpp. On the other hand, Codec1 outperforms 

SPECK by at most 0.29 dB at 0.125 bpp. LEBP has 

slightly higher PSNR than Codec1 at very low bit-

rates between 0.0156-0.0625 bpp. On the other hand, 

Codec1 perform better at bit-rates between 0.125-1 

bpp, which is the most useful bit-rate range.  

 For Barbara, which has high frequency content, 

Codec1 has higher PSNR than SPECK at most bit-

rates with maximum PSNR difference of 0.9 dB at 2 

bpp. Again, LEBP has slightly higher PSNR at bit-

rates between 0.0156 and 0.0313 bpp only. 

 For Goldhill, Codec1 and SPECK have very close 

PSNR. 

 For Mandrill, which is the most complex image, all 

algorithms have also very close PSNR.   

 Finally, the proposed Codec2 is also competitive with 

SPECK and Codec1 for all images.    

These results demonstrate that the proposed Codec1 and 

Codec2 have competitive PSNR efficiency with the other 

state-of-art algorithms. The advantages of these algorithms are 

the reduced memory and complexity as shown in the next 

subsections. 

4.2 Memory Requirements 
The algorithm’s memory Requirements is represented by the 

memory size required by its auxiliary lists. Notice that 

SPECK uses LSP, LIP and the array LISz, z = 2, 4 …Z. Most 

authors assume that since each individual pixel can be marked 

as either significant of insignificant, so the total number of 

entries of LIP and LSP is equal to the number of image pixels 

[9, 12, 13]. As mentioned before, the list size cannot be 

preallocated because it depends on the image size, image type 

and on the compression bit-rate. Therefore, this assumption 

can be realized only if the slow dynamic memory allocation 

technique is employed leading to increase the complexity 

greatly [10]. The more practical solution is to pre-allocate the 

size of each list to the worst case which occurs when the 

compression bit-rate is at full bit-rate. Table 2 depicts the 

actual size of all LISz, z = 2, 4…Z, LIP, and LSP used by 

SPECK and the actual size of LPR, LISE, and LISO used by 

the proposed Codec1 for the four test images compressed at 

full bit-rate. The size is with respect to the number of image 

pixels (M×N).   

 

As shown, the size of the lists varies with the aforementioned 

parameters. So, for algorithm reliability, the maximum size 

values must be adopted. Table 2 also depicts that the 

maximum size of LIP and LSP is about 1.3 the image size. In 

addition, the maximum size of LISz is 0.22 the image size and 

the maximum size of both LISE and LISO is 0.25 the image 

size. This means that the cost of implementing linked list LIS 

with random access as two 1-D arrays with FIFO access is 

very negligible which is 0.03 of memory increment with 

respect to image size.        

Each entry of these lists must have c bits to store the i and j 

coordinates of the corresponding pixel. For an image with 

(M×N) pixels, c = log2(M) + log2(N), where x is the 

nearest integer ≥ x [12, 21]. Furthermore, for LIP and LIS 

which are implemented as linked lists, each entry must be 

provided by a pointer to point out to the next entry [8, 11]. 

Thus, the maximum memory requirement of SPECK is equal 

to: 

        
                                

                                      (6) 

where the three terms correspond to the maximum memory of 

LSP, LIP, and LISz respectively, and pLIP and pLIS are the 

pointer size for LIP and LIS respectively. Lamsrichan [8] 

assume that the size of the pointer (p) is 4 bytes = 32 bits per 

entry. However, a more precise calculation for p is that since 

every list entry may be the next entry, so, p is equal to 

log2(max. list size) bits per entry. For LIP, pLIP = 

log2(0.37MN), and for LIS, pLIS = log2(0.22MN). For 

instance, For an image with (512×512) pixels, c = 

log2(5122) = 18 bits, pLIP = log2(0.37×5122) = 17 bits, and 

pLIS = log2(0.22×5122) = 16 bits. Thus the maximum 

memory requirement of SPECK is equal to: 

        
                               

                                    

For Codec1 and Codec2, LPR, LISO and LISE are 

implemented as simple 1-D arrays. So, they don’t need to use 

the pointer p. However, each one of LPR entries must have 

c+1 bit, where the additional bit is for set’s significance 

marker (r). In addition, each entry in LISO and LISE must 

have c+s bits, where the additional s bits are used to store the 

size z of its corresponding set. It is worth noting that s 

depends on the size of the initial Q sets (Z×Z). However, as Z 

is a power of two, the set can be represented as         

pixels, where      . So, t = log2(Z) and s = log2(t). 

Therefore, the maximum memory requirement of Codec1 and 

Codec2 is equal to: 

                
                        

                                               (7) 

where the two terms correspond to the maximum memory 

requirements of LPR, and LISO + LISE respectively. For an 

image with (512×512) pixels and Q = 4, i.e. the initial set size 

is (256×256) = (28×28) pixels. So s = log2(8) = 3 bits, and c = 

18 bits. Thus the maximum memory requirement of Codec1 is 

equal to:  

       
                                    

The LEBP algorithm uses a list of length (M×N) to store the 

magnitudes of all wavelet coefficients. Thus each list entry 

must have W bits. In addition, each coefficient is provided 

with a 4 bits status marker. Thus the total memory required 

for LEBP is given by [13]:  

Table 2. The memory size of the auxiliary lists of SPECK 

and the proposed Codec1 at full compression bit-rate 

Image 

SPECK Codec1 

LISz LIP LSP LPR LISE LISO 

Lena 0.22 0.37 0.73 0.25 0.15 0.08 

Barbara 0.16 0.30 0.74 0.25 0.10 0.06 

Goldhill 0.18 0.33 0.81 0.24 0.11 0.08 

Mandrill 0.16 0.30 0.91 0.25 0.08 0.10 

Max. 0.22 0.37 0.91 0.25 0.15 0.10 
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                                       (8) 

For a (512×512) pixels image, and L = 5, the total memory 

required for LEBP is equal to                   
             

As it can be seen, the memory requirements of the proposed 

algorithms are about 27% and about 50% of SPECK and 

LEBP respectively. The size of an (512×512) pixels gray-

scale image with 1 byte per pixel is equal to 5122   262 

Kbytes. Thus SPECK and LEBP need additional memory of 

about 4.5 and 2.5 times the image size respectively. On the 

other hand, the proposed algorithms need additional memory 

of 1.25 times the image size. More importantly, memory 

reduction is accompanied with the reduction of the 

algorithm’s complexity as shown in the next subsection.  

4.3 Computational Complexity 
The algorithm’s computational complexity is represented by 

the execution time needed to encode/decode the image against 

bit-rate. The proposed algorithms and SPECK were evaluated 

using MATLAB 7.10.0 under Window 7, Intel Core 2 Duo 

CPU with 2.3 GHz speed and 2 GB of RAM. Only the coding 

and decoding times were reported because the wavelet 

transform consumes the same time for all algorithms. Tables 3 

reports the coding and decoding times (measured in seconds) 

vs. the bit-rate for Lena image. For LEBP, the coding and 

decoding times were taken from [13] knowing that it was 

implemented in MATLAB 7.10.0 under Window XP, Intel 

Core 2 Duo CPU with 3GHz speed and 4GB of RAM which 

is nearly the same computer environment used by the 

proposed algorithms. 

Table 3. The coding and decoding time (in seconds) vs. 

bit-rate of the algorithms for Lena image 

 Bit-Rate 

(bpp) 
SPECK LEBP Codec1 Codec2 

C
o

d
in

g
 t

im
e 

(s
ec

o
n

d
s)

 

0.0156 0.065 0.11 0.056 0.032 

0.0313 0.075 0.14 0.068 0.066 

0.0625 0.135 0.24 0.077 0.075 

0.125 0.260 0.42 0.145 0.145 

0.25 0.485 0.79 0.164 0.165 

0.5 0.843 1.47 0.310 0.294 

1 1.330 2.87 0.527 0.500 

D
ec

o
d

in
g

 t
im

e 
(s

ec
o

n
d

s)
  0.0156 0.025 0.03 0.003 0.003 

0.0313 0.040 0.05 0.008 0.008 

0.0625 0.010 0.11 0.020 0.017 

0.125 0.184 0.23 0.037 0.034 

0.25 0.387 0.45 0.081 0.071 

0.5 0.622 0.90 0.122 0.105 

1 1.133 1.78 0.252 0.219 

 

As clearly shown, the coding time of Codec1 is about two 

times faster than that of SPECK especially at bit-rates 

(0.0625-1) bpp. This is achieved due to the many memory 

simplifications adopted by the proposed coding method. In 

contrast, LEBP runs by about two times slower than SPECK. 

This means that Codec1 is about four times faster than LEBP. 

Finally, Codec2 is the fastest among all algorithms because of 

the adopted sub-pass merging which led to scanning LPR one 

time per bit-plane instead of two. However, as shown in 

subsection 4.1, Codec2 has slightly lower PSNR than Codec1 

due to not preserving the information ordering according to 

the embedding principle. On the other hand, for all 

algorithms, the decoding time is shorter than the coding time 

because that the decoder doesn’t need to scan and test the 

sets’ pixels at every bit-plane to see if the set becomes SIG. 

However, the decoding time of Codec1 is also about two 

times faster than that of SPECK while LEBP runs by about 

1.1-1.5 times slower than that of SPECK. Finally, Codec2 is 

also the fastest among all algorithms. However, the speed 

improvement is less than that of the coding time as there is no 

set testing at the decoder side. 

5. CONCLUSION 
In this paper, we presented two wavelet-based rate scalable 

algorithms. As shown from the experimental performance 

results, the proposed algorithms have competitive PSNR, have 

about 75% lower memory and run by about two times faster 

as compared to SPECK. In addition, they have lower 

complexity, lower memory and better PSNR as compared 

with other low memory algorithms (e.g., LSK and LEBP). 

These factors make the proposed algorithms very attractive 

because with current technology, memory is not a limiting 

factor for most applications. The low memory and complexity 

of the proposed algorithms makes them very suitable for 

multispectral, hyper-spectral, 3D image compression, and 

real-time applications such as video transmission, where 

compression speed is vital. Furthermore, a fast algorithm 

requires short execution time and hence it consumes less 

power. Consequently the proposed algorithms can be very 

useful for wireless sensor networks (WSNs), mobile phones, 

digital cameras, etc. which have limited resources in terms of 

power, processing speed, and memory. Another advantage of 

the algorithms is their asymmetric property as its decoding 

time is much faster than its encoding time. This property is 

very valuable with scalable image compression as the image 

is compressed only once and may be decompressed many 

times. Finally, the proposed algorithms have weak list 

memory dependency due to using simple 1-D arrays with 

sequential FIFO access [3]. This interesting feature permits to 

upgrade them easily to be highly scalable algorithms that 

produce a compressed bitstream which is both rate and 

resolution scalable [23]. That is, an image at several 

resolutions and bit-rates can be obtained from the compressed 

bitstream by a simple scaling process. This flexibility makes 

the highly scalable bitstream very useful for modern 

heterogeneous users that have diverse bit-rate and resolutions 

requirements interconnected via heterogeneous wired and 

wireless networks that have diverse bandwidths.      
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