
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

14

Android Security Vulnerabilities Due to User

Unawareness and Frameworks for Overcoming Those

Vulnerabilities

Tauseef Ibne Mamun
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Dhaka, Bangladesh

Lamia Alam
Department of Computer Science and Engineering

Military Institute of Science and Technology
Dhaka, Bangladesh

ABSTRACT

With the popularity of Android smart phones everyone finds it

convenient to make transactions through these smart phones.

And the users of these smart phones, in most cases unaware of

different types of threats. The purpose for this survey paper is

to conduct a survey on users to get the information about the

security vulnerabilities they are creating unknowingly,

bringing forward some security frameworks for these threats

& giving a basic knowledge to the new comer to the android

about android OS architecture and the threats to this

architecture.

General Terms

Android security architecture, Security vulnerabilities occur

due to user unawareness, Security frameworks

Keywords

Android Security Framework, Security Vulnerabilities, User

Unawareness, Android App Permission, Malware Detection,

Survey on User Awareness.

1. INTRODUCTION
A smart phone is an intricate combination of a mobile phone

and a computing platform with powerful computing system

and high speed connectivity. In the market of smart phones,

android dominates the market with 78% share. Smart phones

have become indispensable part of our daily lives in recent

years, since they are involved in keeping in touch with friends

and family, doing business, accessing the internet and other

activities. Andy Rubin, Google‟s director of mobile platforms,

has commented: “There should be nothing that users can

access on their desktop that they can‟t be access on their cell

phone” [1]. We are keeping data which are private in nature

inside our smart phone for easy access. Since users keep a

huge amount of data in our smart phone, the hackers are

targeting our smart phones more and more. In this paper a

survey is done to see what vulnerabilities occur due to a user‟s

unawareness. Some security frameworks are also discussed

which will help to remove these vulnerabilities if these

frameworks are adopted in an android phone.

2. ANDROID SECURITY

ARCHITECTURE
Android seeks to be the most secure and usable operating

system for mobiles by providing security measures to protect

user data, system resources and it isolate applications. Google

provides following security features to achieve these

objectives

 Robust security at the operating system level

through the Linux kernel

 The OS is sandboxed, preventing malicious

processes from crossing between applications

 Secure interposes communication

 User defined permissions.

 Application signing

Despite of this attempts, it fails to address the issue of

infection all together

Figure 1: Summarizes security provided at various levels

of Android. Every level assumes that level below is

properly secured.

In the Linux Kernel, the main purpose of memory space

protection is to prevent a task from accessing memory without

proper access permissions. Without memory protection,

memory segment like code and data segment are vulnerable to

memory related bugs and code injection attacks. Disk

encryption ensures that files are always stored on disk in an

encrypted form. Security Enhanced Linux (SELinux), an

access control implementation for the Linux kernel which was

introduced recently has prevented multiple vulnerabilities, and

now it has been strengthened even more to meet the needs of

enterprise customers that have strict security requirements. All

process run above the Linux kernel is restricted by the

application sandbox.

In the Libraries, The Android platform takes advantage of the

Linux user-based protection as a means of identifying and

isolating application resources. This approach is different

from other operating systems (including the traditional Linux

configuration), where multiple applications run with the same

user permissions. This sandbox is dissimilar than the sandbox

found on the J2ME or Blackberry platforms.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

15

3. ANDROID THREATS
Security breach on this architecture may come in two ways

from outside offensive activities; attack due to user

unawareness and attack due to system defects. Most attacks

exploit vulnerabilities of the smart phone. The threats we see

appearing on mobile are rootkits, Trojans, and even botnets.

Since new malwares are appearing almost on a daily basis and

it is hard to replace depicted secured device with a latest

secured device in this pace by a user; user awareness can go in

a great length to stop outside interferences to the current

device.

4. SURVEY ON USER AWARENESS
For research purpose we conducted a survey on a focus group

of 20 people while they are using android device. We asked

following questions

a. How often you install third party applications (third

party means applications which are not from Google

play store)?

b. Have you rooted your android device at least once?

c. How often you connect to an unsecured WI-FI

network?

d. Do you give your android device remote access to

your PC?

e. Do you maintain unsecured Bluetooth connection?

f. When you disconnect an external device from your

android device how often you check for virus in the

device after disconnection?

g. Do you click on unknown emails and any spam

contents in social media?

h. When you install an application do you check all the

permissions on the permission list?

i. Do you know the risk of third party sites?

The summary result of our survey on user awareness is shown

in the following figures (for details: -

https://www.surveymonkey.com/results/SM-GTHMR3CQ/):

Figure 2: How often you install third party applications?

Figure 3: Have you rooted your android device at least

once?

Figure 4: How often you connect to an unsecured WI-FI

network?

Figure 5: Do you give your android device remote access

to your PC?

Figure 6: Do you maintain unsecured Bluetooth

connection?

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

16

Figure 7: When you disconnect an external device from

your android device how often you check for virus in the

device after disconnection?

Figure 8: Do you click on unknown emails and any spam

contents in social media?

Figure 9: When you install an application do you check all

the permissions on the permission list?

Figure 10: Do you know the risk of third party sites?

5. VULNURBILITIES DUE TO USER

UNAWARENESS
After going through the survey from focus group; numerous

vulnerabilities were identified which are caused due to user

unawareness. This vulnerabilities occur a when a user

 installs third party applications

 roots a device

 connects to a unsecured WI-FI network&

maintaining unsecured Bluetooth connection

 gives remote access to PC

 connects to SD card and external device

 clicks on spam emails/sms/mms

 grants unnecessary permission to an application

Studying these vulnerabilities, an android device is prone to

these following attacks due to user unawareness

1. Spam: Spam is generally sent in SMS, MMS and email.

VoIP and Instant Messaging (IM) have also become

common ways for spamming. It is seen from our survey

that 25% people click on unknown links or spam

contents from their e-mail or messenger.

2. Malware: Users are not always aware of downloaded

applications‟ functions. Even if applications have

acquired explicit user consent, users may be unaware that

the applications are executing malicious code[2].A case

study shows that,in AAMU after connecting to the WiFi

using Intercepter-NG, after running the scan command it

showed all the devices with IP addresses that are

connected to AAMU WIFI. After that, the application

started to collect packets that is sending and receiving

through this WIFI. In most case, this application can

collect the information like user name and password.

3. Peripheral Interfaces Attacks: Smart phones usually

have many peripheral interfaces, such as Wi-Fi,

Bluetooth, USB, etc. While peripheral interfaces can

increase smart phones communication capabilities,

unfortunately, they also become a popular steppingstone

for outside attacks. In our survey it is seen that most of

the people do not connect to unsecured Bluetooth

connection. So it is possible that users are much aware

about this type of security risk.

4. Data hijacking: Granting unnecessary permission gives

attackers full control over the contents (e.g. photo

gallery) and information (e.g. location) of a phone.

Private and confidential data can easily be hijacked by an

attacker.

5.1 Permission
Permissions are the rights that a specific application has that

allow it to perform certain actions on a device. Examples of

these actions include taking pictures, using the GPS, reading

contacts, or making phone calls. All applications have their

permissions available for users to check; many users do not

check the permission properly and thus cyber criminals can

exploit user information for their personal gain. In our survey,

only 15% people said that they check all permission before

installing an app.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

17

5.2 Third Party Installation
One of the main advantages of android is that as it is an open

source operating system, one can easily install applications

which do not belong to the google play store from the internet.

In 2012, researchers uncovered an increase in the number of

malicious domain accounts related to Android apps. From

approximately 3,000 domains in January 2012, the number

jumped to almost 8,000 by the end of the year. These

malicious domains host suspicious .APK files or files

containing data needed in Android app installation. Just an

example of these malicious apps is the recent fake versions of

the popular Candy Crush app with features that can be abused

by cyber criminals [3]. By using these features, they can get

hold of your important data and aggressively push ads onto

your device. In the survey, all the people in our survey keep

personal data and private documents in the mobile. We have

seen from our survey that most of the people often install app

from third party websites.

5.3 Rooting
Rooting an Android phone simply means to

gain administrative privileges on the system. For malware

publishers, if they got the root control; they could design

malwares to get users‟ private information and credential. [4]

Researchers from University of California, Berkeley, have

chosen 6 most popular Android systems from 2010 to 2011 to

count the days that root exploits are exposed, and shown that

the percent of time with known root exploit are very high. The

least one is 74%. It means that the root exploit is exposed only

one day per five days. [5] It is observed from our survey that

most of the people even do not know the exact meaning of

“Rooting.”

5.4 Unsecured Connection
We have already stated that majority people do not maintain

unsecured Bluetooth connection. Most of them know threats

of android security mainly come from the attacks during data

transformation. Malicious Applications also make

unauthorized actions when Android exchanging data through

the technology such as messaging, wireless network and Near

Filed Communication. 45% People from our survey told that

they never connect to unsecured Wi-Fi network though 40%

people told that they use unsecured network when they find it

necessary. 55% people said that they do give their android

phone remote access to their PC. 9 out of 20 people said they

do not check for virus in their smart phones after

disconnecting from an external device.

5.5 Accessing Unknown Contents
"Stagefright" is the nickname given to a potential exploit that

lives fairly deep inside the Android operating system.

Stagefright that's used to process, play and record multimedia

files. Some of the flaws in android allow for remote code

execution and can be triggered when receiving an MMS

message, downloading a specially crafted video file through

the browser or opening a Web page with embedded

multimedia content. On a finding, researchers of FireEye [6],

a security company found out an example of such exploit.

Users just have to click on the featured link in the email and

the malicious .apk (Android Package File) is downloaded.

Researchers at FireEye went through HTTP requests and

found nearly two-dozen URLs serving up the .apk, some

disguised as LabelReader.apk. According to them this

malware isn't entirely new. It surfaced earlier and is known for

deceiving users into paying for cleanup of other non-existent

infections on their device. As long as the user pays the fee, the

phone will purportedly remain uninfected with malware

6. LITERATURE SURVEY
Number of frameworks has been proposed to encounter

android security vulnerabilities and many re-search works

have been done regarding this perspective. We have discussed

few of them here to explain how threats can be minimized

facing with the vulnerabilities. We will represent them in

tabular form in the paper.

Paper Name Abstract View

Scandroid: Automated security

certification of android applications [7]

SCANDROID is a tool proposed by Fuchs, et al. for reasoning automatically

about the security of Android applications to understand the flow of information

from one component to another component.

-SCANDROID's analysis is modular to allow incremental checking of

applications as they are installed on an Android device. Based on information

flow, it can make security-relevant decisions automatically.

-It can decide whether it is safe for an application to run with certain

permissions judging the permissions enforced by other applications.

-Though SCANDROID is among one of the first program analysis tool for

Android, it suffers from the limitation of security policy express ability. If a

policy writer does not define certain constraints before executing the policy, an

information flow will not be explicitly added to the set of constraints and the

framework will consider it to be safe.

Semantically Rich Application-Centric

Security in Android[8]

Secure Application INTeraction (Saint) framework proposed by Ongtang, et al.

is a modified infrastructure that governs install-time permission assignment and

their run-time use as dictated by application provider policy.

-Saint's install-time policy regulates granting of application defined permissions.

More specifically, an application declaring permission P defines the conditions

under which P is granted to other applications at install-time.

-Saint's runtime policy regulates the interaction of software components within

Android's middleware framework. Any such interaction involves a caller

application that sends the IPC and callee (B) application that receives that IPC.

The IPC is allowed to continue only if all policies supplied by both the caller

http://blog.trendmicro.com/trendlabs-security-intelligence/dubious-developers-cash-in-on-candy-crush/

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

18

and callee are satisfied.

-This framework is not user-centric as it gives the option of policy specification

to the application developers and not to the user.

A methodology for empirical analysis of

permission-based security models and its

application to android[9]

D. Barrera, H. Güne¸ S. Kayacık, P.C. van Oorschot, A.Somayaji study on „a

methodology for empirical analysis of permission-based security models and its

application to android‟.

-In the paper, the proposed methodology is of independent interest for

visualization of permission based systems beyond current Android-specific

empirical analysis.

-They provide some discussion identifying potential points of improvement for

the android permission model, trying to increase quality where required without

increasing number variety of permissions or overall complexity.

Android Permissions Demystified[10] In this paper, Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, David

Wagner determined the general causes of over-privilege and provided ideas

about how to avoid it.

-A permission map is developed that can be used by existing or future tool to

further study permission usage in Android. It determines whether Android

developers follow least privilege with their permission requests.

-An applicant analysis is done to compare manual and automatic analysis that

provides opportunity to calculate false positive rates and eventually gage how

accurate the remaining automatic analysis was.

-A tool Stowaway is built that detects over-privilege in compiled Android

applications. Stowaway determines the set of API calls that an application uses

and then maps those API calls to permissions. The authors used automated

testing tools on the Android API in order to build the permission map that is

necessary for detecting over-privilege.

Application collusion attack on the

permission-based security model and its

implications for modern smart phone

systems[11]

C. Marforio, A. Francillon, S. Capkun show technique in which permission

based mechanisms are used on mobile platforms allows attacks by colluding

applications that communicate over explicit and covert communication

channels.

-These security bugs allow applications to indirectly execute operations that

those applications, based on their declared permissions, should not be able to

execute. Example operations include disclosure of user‟s private data (e.g.,

phone book and calendar entries) to remote parties by applications that do not

have direct access to such data or cannot directly establish remote connections.

-They further showed that on mobile platforms users are not aware of possible

implications of application collusion. Application permissions should be

displayed to the users differently, reflecting their actual implications.

Survey on android security framework[12] S. Powar, Dr. B. B. Meshram described android security framework in this

paper. Increased exposure of open source Smartphone is increasing the security

risk. Android provide a basic set of permissions to secure phone. The technique

to make Android security mechanism more versatile, the current security

mechanism is too rigid. User has only two options at the time of application

installation first allow all requested permissions and second deny requested

permissions leads to stop installation.

AndroidLeaks: automatically detecting

potential privacy leaks in android

applications on a large scale[13]

AndroidLeaks, a static analysis framework is presented by C. Gibler, J. Crussell,

J. Erickson and H. chen in this paper for automatically finding potential leaks of

sensitive information in Android applications on a massive scale.

-AndroidLeaks drastically reduces the number of applications and the number of

traces that a security auditor has to verify manually. The authors evaluated the

efficacy of AndroidLeaks on 24,350 Android applications from several Android

markets. AndroidLeaks found 57,299 potential privacy leaks in 7,414 Android

applications, out of which are manually verified that 2,342 applications leak

private data including phone information, GPS location, WiFi data, and audio

recorded with the microphone.

CRePE: Context-Related Policy

Enforcement

for Android[14]

This is a context based security system for android. A context can be defined by

the status of some variables (e.g. Location time, temperature, noise, and light),

the presence of other devices, a particular interaction between the user and the

smart phone, or a combination of these.

-CRePE allows context-related policies to be defined either by the user or by

trusted third parties. Depending on the authorization, third parties can set a

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

19

policy on a smart phone at any moment or just when the phone is within a

particular context, e.g. within a building, or a plane.

-To protect users‟ privacy, the current security models restrict trusted third

parties‟ control on mobile phones. Typically, only the device manufacturer and

the telephone company have a small control on the smart phone. There are no

mechanisms to allow other authorized parties. By implementing this framework

we control applications like Wi-Fi or Bluetooth.

TaintDroid: An Information-Flow

Tracking System for Realtime Privacy

Monitoring on Smartphones[15]

TaintDroid is an extension to the Android mobile-phone platform that tracks the

flow of privacy sensitive data through third-party applications.

-TaintDroid assumes that downloaded, third-party applications are not trusted,

and monitors–in real time. How these applications access and manipulate users‟

personal data. Analysis of applications‟ behavior requires sufficient contextual

information about what data leaves a device and where it is sent.

-TaintDroid automatically labels (taints) data from privacy-sensitive sources and

transitively applies labels as sensitive data propagates through program

variables, files, and inter process messages. When tainted data are transmitted

over the network, or otherwise leave the system, TaintDroid logs the data‟s

labels, the application responsible for transmitting the data, and the data‟s

destination.

On Lightweight Mobile Phone Application

Certification[16]

Kirin provides:

-a methodology for retrofitting security requirements in Android. As a

secondary consequence of following the methodology, it identified multiple

vulnerabilities in Android, including flaws affecting core functionality such as

SMS and voice.

-a practical method of performing lightweight certification of applications at

install time. This benefits the Android community, as the Android Market

currently does not perform rigorous certification.

-practical rules to mitigate malware. These rules are constructed purely from

security configuration available in application package manifests.

PREC: Practical Root Exploit

Containment for Android Devices[17]

PREC performs classified system call monitoring by separating the system calls

originated from high risk third-party native code from the system calls issued by

the less dangerous Java code. (e.g., third-party native libraries) and execute

those system calls within isolated threads.

-PREC can detect and stop root exploits with high accuracy while imposing low

interference to benign applications. After extracting the system calls from the

high-risk native code, it needs to build a normal behavior model for the app

before it is released to the market.

-The behavior model is then transferred to the smart phone device for runtime

root exploit detection. A new lightweight and robust behavior learning scheme

based on the self-organizing map (SOM) technique is used in this process.

Apex: Extending android permission

model and enforcement with user-defined

runtime constraints[18]

Apex is an extension to the Android permission model that is more user-centric

in allowing applications to access the device resources.

-Apex allows users to specify detailed runtime constraints to restrict the use of

sensitive resources by applications. It is designed to overcome the limitation that

the Android framework grants all the permissions to an application, which the

application requests at install time.

-There are some limitations in the Apex framework. In the current Android

architecture, the application developers assume that all the permissions that their

application requests will be present in the manifest file. The developers often do

not handle the unexpected security exceptions that are thrown when an

application requests to access some resource(s) but the application does not have

the required permissions to access it.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

20

Crowdroid: behaviour-based malware

detection system for Android[19]

In this paper, I. Burguera, U. Zurutuza, S. Nadjm used earlier approaches for

dynamic analysis of application behaviour for detecting malware in the android

platform. The detector is embedded in framework for assortment of traces from

limitless number of real users supported crowd sourcing.

-This framework has been demonstrated by analysing information collected in

the central server using two sorts of data sets: those from artificial malware

created for test functions, and people from real malware found in the world. -

The technique is shown to be an effective means of analytic the malware and

alerting the users of a downloaded malware. This method is avoiding the

spreading of a detected malware to a larger community.

Andromaly: a behavioural malware

detection framework for

android devices[20]

The proposed framework realizes a Hostbased Malware Detection System that

continuously monitors various features and events obtained from the mobile

device and apply Machine Learning anomaly detectors to classify the collected

data as normal or abnormal.

-They developed four malicious applications and check Andromaly‟s ability to

detect new malware based on samples of known malware.

-They evaluated many combinations of anomaly detection algorithms, feature

choice methodologies in order to find out the combination that yields the best

performance in detecting new malware on android.

MADAM: a multi-level anomaly detector

for android

malware[21]

MADAM can monitors android at the kernel-level and user-level to notice real

malware infections using machine learning techniques to differentiate between

normal behaviours and malicious ones.

The primary prototype of MADAM is able to notice several real malware found

in the world. The device is not affected by MADAM due to the low range of

false positives generated after the training phase.

Static analysis of executables for

collaborative malware detection on

android[22]

The contribution of this title is twofold. First, A.D. Schmidt, R. Bye, H.G.

Schmidt, J. Clausen, O. Kiraz, K. Yuksel, A. Camtepe, and S. Albayrak,

perform static analysis on the executables to extract their operate calls in android

environment using the command readelf.

Method call lists are matched with malware executables for classifying them

with part, Nearest Neighbour Algorithms and Prism. Second, they present a

cooperative malware detection approach to improve results.

Reputation based security model for

android applications[23]

In this work, W. B. Tesfay, T. Booth, and K. Andersson proposed a cloud based

reputation security model as a solution which greatly mitigates the malicious

attacks targeting the Android market.

-This security solution takes advantage of the fact that each application in the

android platform is assigned a unique user id (UID). The solution stores the

reputation of Android applications in an anti-malware providers' cloud (AM

Cloud).

-The experimental results witness that the proposed model could well identify

the reputation index of a given application and hence its potential of being risky

or not.

-A given anti-malware provider is able to keep track of the number of their

users, who are running any given Android application. If a given vendor‟s

application has under ten users, the reputation would be extremely low

(unknown reputation). The reputation would increase (good reputation) as

hundreds, thousands and even millions of users run a given application.

7. CONCLUSION
This paper presented the existing research proposals for

removing vulnerabilities caused due to user unawareness. It

was found that the prime threat is install time granting access

without reading the permission list. Fortunately from API

level 23 Google introduced run time permission granting

option. But runtime granting permission may be tedious to the

user. So whether it would be fruitful is still uncertain. After

studying the frameworks in this paper, there is a future scope

to build a new framework for tackling multiple threats to

android phone.

8. REFERENCES
[1] http://news.bbc.co.uk/2/hi/technology/7266201.stm

[2] Choosilp, Wichien, and Yujian Fu. "A Case STUDY OF

MALWARE DETECTION AND REMOVAL IN

ANDROID APPS."

[3] http://blog.trendmicro.com/trendlabs-security-

intelligence/the-hidden-dangers-in-third-party-app-sites

[4] Tse, Daniel, X. Liu, Christopher Nusaputra, B. Hu, Y.

Wang, and M. W. Xing. "STRATEGIES IN

IMPROVING ANDROID SECURITY." (2014)

[5] www.acumin.co.uk

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.1, March 2016

21

[6] http://www.konsultek.com/10/cyber-attacks-2/fireeye-

discovers-emails-carrying-malware-in-android-devices

[7] Fuchs, Adam P., Avik Chaudhuri, and Jeffrey S. Foster.

"Scandroid: Automated security certification of android

applications." Manuscript, Univ. of Maryland,

http://www. cs. umd. edu/avik/projects/scandroidascaa 2,

no. 3 (2009).

[8] Ongtang, Machigar, Stephen McLaughlin, William Enck,

and Patrick McDaniel. "Semantically rich

application‐centric security in Android."Security and

Communication Networks 5, no. 6 (2012): 658-673.

[9] Barrera, David, H. Güneş Kayacik, Paul C. van

Oorschot, and Anil Somayaji. "A methodology for

empirical analysis of permission-based security models

and its application to android." In Proceedings of the

17th ACM conference on Computer and communications

security, pp. 73-84. ACM, 2010.

[10] Felt, Adrienne Porter, Erika Chin, Steve Hanna, Dawn

Song, and David Wagner. "Android permissions

demystified." In Proceedings of the 18th ACM

conference on Computer and communications security,

pp. 627-638. ACM, 2011.

[11] Marforio, Claudio, and Aurélien Francillon. Application

collusion attack on the permission-based security model

and its implications for modern smartphone systems.

Department of Computer Science, ETH Zurich, 2011.

[12] Powar, Swapnil, and B. B. Meshram. "Survey on

Android Security Framework." International Journal of

Engineering Research and Applications3, no. 2 (2013):

907-911.

[13] Gibler, Clint, Jonathan Crussell, Jeremy Erickson, and

Hao Chen.AndroidLeaks: automatically detecting

potential privacy leaks in android applications on a

large scale. Springer Berlin Heidelberg, 2012.

[14] Conti, Mauro, Vu Thien Nga Nguyen, and Bruno Crispo.

"CRePE: Context-related policy enforcement for

Android." In Information Security, pp. 331-345. Springer

Berlin Heidelberg, 2011.

[15] Enck, William, Peter Gilbert, Seungyeop Han, Vasant

Tendulkar, Byung-Gon Chun, Landon P. Cox, Jaeyeon

Jung, Patrick McDaniel, and Anmol N. Sheth.

"TaintDroid: an information-flow tracking system for

realtime privacy monitoring on smartphones." ACM

Transactions on Computer Systems (TOCS) 32, no. 2

(2014): 5.

[16] Enck, William, Machigar Ongtang, and Patrick

McDaniel. "On lightweight mobile phone application

certification." In Proceedings of the 16th ACM

conference on Computer and communications security,

pp. 235-245. ACM, 2009.

[17] Ho, Tsung-Hsuan, Daniel Dean, Xiaohui Gu, and

William Enck. "PREC: practical root exploit containment

for android devices." In Proceedings of the 4th ACM

conference on Data and application security and

privacy, pp. 187-198. ACM, 2014.

[18] Nauman, Mohammad, Sohail Khan, and Xinwen Zhang.

"Apex: extending android permission model and

enforcement with user-defined runtime constraints."

In Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security,

pp. 328-332. ACM, 2010.

[19] Burguera, Iker, Urko Zurutuza, and Simin Nadjm-

Tehrani. "Crowdroid: behavior-based malware detection

system for android." In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and

mobile devices, pp. 15-26. ACM, 2011.

[20] Shabtai, Asaf, Uri Kanonov, Yuval Elovici, Chanan

Glezer, and Yael Weiss. "“Andromaly”: a behavioral

malware detection framework for android

devices." Journal of Intelligent Information Systems 38,

no. 1 (2012): 161-190.

[21] Dini, Gianluca, Fabio Martinelli, Andrea Saracino, and

Daniele Sgandurra. "MADAM: A Multi-level Anomaly

Detector for Android Malware." In MMM-ACNS, vol. 12,

pp. 240-253. 2012.

[22] Schmidt, Aubrey-Derrick, Rainer Bye, Hans-Gunther

Schmidt, Jan Clausen, Osman Kiraz, Kamer Yüksel,

Seyit Camtepe, and Sahin Albayrak. "Static analysis of

executables for collaborative malware detection on

android." InCommunications, 2009. ICC'09. IEEE

International Conference on, pp. 1-5. IEEE, 2009.

[23] Tesfay, Welderufael Berhane, Todd Booth, and Karl

Andersson. "Reputation based security model for android

applications." In Trust, Security and Privacy in

Computing and Communications (TrustCom), 2012 IEEE

11th International Conference on, pp. 896-901. IEEE,

2012.

IJCATM : www.ijcaonline.org

