
International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

A Survey of Software Clone Detection Techniques

Abdullah Sheneamer
Department of Computer Science

University of Colorado at Colo. Springs, USA
Colorado Springs, USA

Jugal Kalita
Department of Computer Science

University of Colorado at Colo. Springs, USA
Colorado Springs, USA

ABSTRACT
If two fragments of source code are identical or similar to each
other, they are called code clones. Code clones introduce difficul-
ties in software maintenance and cause bug propagation. Software
clones occur due to several reasons such as code reuse by copying
pre-existing fragments, coding style, and repeated computation us-
ing duplicated functions with slight changes in variables or data
structures used. If a code fragment is edited, it will have to be
checked against all related code clones to see if they need to be
modified as well. Removal, avoidance or refactoring of cloned code
are other important issues in software maintenance. However, sev-
eral research studies have demonstrated that removal or refactoring
of cloned code is sometimes harmful. In this study, code clones,
common types of clones, phases of clone detection, the state-of-
the-art in code clone detection techniques and tools, and challenges
faced by clone detection techniques are discussed.

Keywords
Software Clone, Code Clone, Duplicated Code Detection, Clone
Detection

1. INTRODUCTION
When a programmer copies and pastes a fragment of code, possibly
with minor or even extensive edits, it is called code cloning. Code
clones introduce difficulties in software maintenance and lead to
bug propagation. For example, if there are many identical or nearly
duplicated or copy-pasted code fragments in a software system and
a bug is found in one code clone, it has to be detected everywhere
and fixed. The presence of duplicated but identical bugs in many
locations within a piece of software increases the difficulty of
software maintenance. Recent research [5, 8, 10, 11] with large
software systems [8, 35] has detected that 22.3% of Linux code has
clones. Kamiya et al. [4] has reported 29% cloned code in JDK.
Baker [8] has detected clones in large systems in 13% - 20% of the
source code. Baxter et al. [13] also have found that 12.7% code is
cloned in a large software system. Mayrand et al. [20] have also
reported that 5% - 20% code is cloned. Code clone detection can
be useful for code simplification, code maintainability, plagiarism
detection [41, 42], copyright infringement detection, malicious
software detection and detection of bug reports. Many code clone
detection techniques have been proposed [1]. The focus of this
paper is to present a review of such clone detection techniques.

The rest of the paper is organized as follows. Section 2 dis-

cusses background material. Prior survey papers on the topic of
code clone detection are introduced in Section 3. In Section 4,
the seven phases in clone detection are described. Several clone
detection approaches, techniques and tools are discussed in great
details in Section 5. Evaluation of clone detection techniques
is discussed in Section 6. How detected clones can be removed
automatically and areas related to clone detection are discussed in
Section 7. Open problems related to code clone detection research
are covered in Section 8. Finally, the paper is concluded in Section
9.

2. BACKGROUND
Code clones are used frequently because they can be created fast,
and easily inserted with little expense [2]. However, code clones
affect software maintenance, may introduce poor design, lead to
wasted time in repeatedly understanding a fragment of poorly
written code, increase system size, and reincarnate bugs that are
present in the original of code segment. All these make it a difficult
job to maintain a large system [1, 2].

Additional reasons that make code clone detection essential
are the following. 1) Detecting cloned code may help detect
malicious software [3]. 2) Code clone detection may find similar
code and help detect plagiarism and copyright infringement
[2, 4, 5]. 3) Code clone detection helps reduce the source code size
by performing code compaction [6]. 4) Code clone detection also
helps detect crosscutting concerns, which are aspects of a program
that impact other issues that arise when code is duplicated all over
the system [6].

2.1 Basic Definitions
Each paper in the literature defines clones in its own way [1]. Here,
common definitions which used throughout this paper are provided.

Definition 1: Code Fragment. A code fragment (CF) is a
part of the source code needed to run a program. It usually
contains more than five statements that are considered interesting,
but it may contain fewer than five statements. It can contain a
function or a method, begin-end blocks or a sequence of statements.

Definition 2: Software Clone/Code Clone/Clone Pair. If a
code fragment CF1 is similar to another code fragment CF2
syntactically or semantically, one is called a clone of the other. If
there is a relation between two code fragments such that they are
analogous or similar to each other, the two are called a clone pair

1

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

(CF1, CF2).

Definition 3: Clone Class. A clone class is a set of clone
pairs where each pair is related by the same relation between the
two code fragments. A relation between two code fragments is an
equivalence relation which is reflexive, symmetric and transitive,
and holds between two code fragment if and only if they are the
same sequence.

2.2 Types of Clones
There are two groups of clones. The first group refers to two code
fragments which are similar based on their text [16, 25]. There are
three types within the first group as shown in Table 1.

Type-1 (Exact clones): Two code fragments are the exact
copies of each other except whitespaces, blanks and comments.

Type-2 (Renamed/Parameterized): Two code fragments are
similar except for names of variables, types, literals and functions.

Type-3 (Near miss clones/Gapped clones): Two copied code
fragments are similar, but with modifications such as added or
removed statements, and the use of different identifiers, literals,
types, whitespaces, layouts and comments.

The second group refers to two code fragments which are
similar based on their functions [23]. Such clones are also called
Type-4 clones as shown in Table 1.

Type-4 (Semantic clones): Two code fragments are semanti-
cally similar, without being syntactically similar.

3. PREVIOUS SURVEYS
Several reviews related to cloned code have been published
as shown in Table 2. Most reviews are related to cloned code
detection techniques and tools. Burd and Baily [53] evaluate and
compare three state-of-the-art clone detection tools (CCFinder [4],
CloneDr [14], and Covet [55]) and two plagiarism detection tools
(JPlag [33] and Moss [56]) in large software applications. This
work focuses on benefits of clone identification for preventative
maintenance. The paper shows that there is no one single winner.
Their work is not comprehensive in coverage of clone detection
techniques.

Koschke [72] focuses on clone detection tools and techniques up
to 2007. Koschke discusses subareas within the study of clones
and summarizing important results and presents open research
questions. Koschke compares six clone detectors in terms of re-
call, precision, clone type, number of candidates, and running time.

Roy and Cordy [74] also survey state-of-the-art in clone de-
tection techniques up to 2007. They provide a taxonomy of
techniques, review detection approaches and evaluate them. In
addition, this paper discusses how clone detection can assist in
other areas of software engineering and how other areas can help
clone detection research.

Bellon et al. [64] compare six clone detectors in terms of re-
call, precision, and space and time requirements. They perform
experiments on six detectors using eight large C and Java pro-
grams. Their approach to evaluation has become the standards for

every a new clone detector introduced since 2007.

Roy et al. [27] classify, compare and evaluate clone detec-
tion techniques till 2009. They classify the techniques based
on a number of facets. In addition, they evaluate the classified
techniques based on a taxonomy of scenarios.

Rysselberghe and Demeyer [54] compare three representative
detection techniques: simple line matching, parameterized match-
ing and metric fingerprints. They provide comparison in terms of
portability, scalability and the number of false positives. However,
they evaluate only on small systems which are smaller than 10
KLOCs (thousands of lines of code) in length.

Ratten et al. [1] perform a systematic review of existing code clone
approaches. This review summarizes existing code clone detection
techniques, tools and management of clones up to 2012.

Fontana et al. [73] discuss refactored code clone detection
and find that certain code quality metrics are improved after the
refactoring. They use three clone detection tools and analyze
five versions of two open-source systems. The differences in the
evaluation results using the three tools are outlined. The impact of
clone factoring on different quality metrics is

Many methods have been published recently in the literature
for detecting code clones. The goal is to discuss, compare and
analyze the state-of-the- art tools, and discuss the tools that
have not been discussed in previous survey papers. The selected
common clone detectors that were covered by previous surveys.
Adding clone detectors that are not covered by previous work.
Several tools have been excluded from this survey since they are
not widely used, are similar to papers that selected based on the
texts of the titles, abstracts of the papers, or the use of the same or
similar computational techniques. We have found relevant papers
to include in this survey by reading other survey papers, by starting
from highly cited papers obtained by searching Google Scholar
by using keywords such as ”software clones”, ”code clones” and
”duplicated code” as shown in Table 4, but then added recent
papers that may have lower numbers of citations. We compare and
classify techniques and tools considering the types of clones they
can detect, the granularity of code fragments they analyze, the
transformation they perform on code fragments before compar-
ison, the manner in which they store code fragments to perform
comparison, the method used for comparison, the complexity of
the comparison process, the outputs they produce, the results they
are able to obtain (in terms of precision and recall), and general
advantages and disadvantages. We compare this survey with prior
surveys in Table 2.

This study particularly differs from previous surveys in our
identify the essential strengths and weaknesses of each clone
detection technique and tool in contrast to previous studies, which
focus on empirically evaluating tools. The goal is not only to
compare the current status of the tools and techniques, but also
to make an observation indicates that the future potential can be
developing a new hybrid technique. The use of evaluation of clone
detection techniques based on recall, precision and F-measure
metrics, scalability, portability and clone relation in order to
choose the right technique for a specific task and several evaluation
metrics can be used.

2

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 1. Types of code clones. The table presents an original code fragment and four clones, one from each type.
Original Code Fragment Code Fragment 1 Code Fragment 2 Code Fragment 3 Code Fragment 4
if (a==b)
{
c=a*b; //C1
}
else
c=a/b; //C2

if (a==b)
{
//comment1
c=a*b;
}
else
//comment2
c=a/b;

if (g==f)
{
//comment1
h=g*f;
}
else
//comment2
h=g/f;

if (a==b)
{
//comment1
c=a*b;
// New Stat.
b=a-c;
}
else
//comment2
c=a/b;

switch(true)
{
//comment1
case a==b:
c=a*b;
//comment2
case a!=b:
c=a/b;
}

Type-1 Type-2 Type-3 Type-4

Table 2. Summary of Previous Surveys.
Reference Year Surveyed

up to
No. of Detectors How to Detectors to be Compared Refactoring Dis-

cussed?
Plagiarism Cov-
ered?

Open questions?

[53] 2002 2002 5 Supported languages, precision, and recall. No No No
[54] 2004 2002 5 Portability, scalability, precision, and recall Yes No No
[72] 2007 2007 6 Precision, recall, running time, and clone types. Yes No Yes
[74] 2007 2007 23 Comparison technique, complexity, comparison granularity, and clone

refactoring.
Yes Yes Yes

[64] 2007 2007 6 Precision, recall, RAM, speed, and clone types. No No No
[27] 2009 2009 >30 Clone information, technical aspects, adjustment, evaluation, and clas-

sification and attributes.
Yes Yes Yes

[1] 2013 2012 >40 Clone matching technique, advantages, disadvantages, application area,
model clone granularity, and tools

Yes Yes Yes

[73] 2013 2012 3 Number of methods, cyclomatic complexity, coupling factor, distance
from the main sequence, weighted method complexity, lack of cohesion,
and response for a class.

Yes No No

Our survey 2015 2015 25 Comparison technique, complexity, comparison granularity, language
independence, advantages, and disadvantages.[74].

Yes Yes Yes

4. CLONE DETECTION PHASES
A clone detector is a tool that reads one or more source files and
finds similarities among fragments of code or text in the files.
Since a clone detector does not know where the repeated code
fragments occur in advance, it must compare all fragments to find
them. There are many previous proposed techniques that perform
the necessary computation and attempt to reduce the number of
comparisons.

We first discuss the phases of clone detection in general. A
clone detection technique may focus on one or more of the phases.
The first four of phases are shown in Figure 1

4.1 Code Preprocessing
This process removes uninteresting pieces of code, converts source
code into units, and determines comparison units. The three major
purposes of this phase are given below.

(1) Remove uninteresting pieces of code. All elements in the
source code that have no bearing in the comparison process
are removed or filtered out in this phase.

(2) Identify units of source code. The rest of the source code is
divided into separate fragments, which are used to check for
the existence of direct clone relations to each other. Fragments
may be files, classes, functions, begin-end blocks or state-
ments.

(3) Identify comparison units. Source units can be divided into
smaller units depending upon the comparison algorithm. For
example, source units can be divided into tokens.

4.2 Transformation
This phase is used by all approaches except text-based techniques
for clone detection. This phase transforms the source code into a
corresponding intermediate representation for comparison.

There are various types of representations depending on the
technique. The usual steps in transformation are given below.

(1) Extract Tokens. Tokenization is performed during lexical anal-
ysis by compiler front ends in programing languages [5, 8, 9,
10]. Each line of source code is converted into a sequence of
tokens.

(2) Extract Abstract Syntax Tree. All of the source code is parsed
to convert into an abstract syntax tree or parse tree for subtree
comparisons [15, 44].

(3) Extract PDG. A Program Dependency Graph (PDG) repre-
sents control and data dependencies. The nodes of a PDG
represent the statements and conditions in a program. Control
dependencies represent flow of control information within the
program. Data dependencies represent data flow information
in a program. A PDG is generated by semantics-aware
techniques from the source code for sub-graph comparison
[31].

Example 1. Given the source code below, the corresponding
PDG is given in Figure 2.

i n t main ()
{

i n t a = 0 ; i n t i = 0 ;
w h i l e (i <10)
{

a = a+ i ;

3

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Fig. 1. Four Phases in CCFinder clone detection tool [4].

Fig. 2. Example of Program dependency graph (PDG).

i = i + 1 ;
}
p r i n t f (”%d ” , a) ;
p r i n t f (”%d ” , i) ;

}

Table 3. Simple Example of
Normalization.

Original Code Normalization
int a, b, c;
a = b + c;

int id, id, id;
id = id + id;

(4) Other Transformations. Some techniques apply transforma-
tion rules to the source code elements before proceeding with
clone detection. These include the CCFinder tool by Kamiya
et al. [4], which has transformation rules for C++ remove tem-
plate parameters. The rule is Name ′<′ParameterList′>′ →
Name. For example, foo<int > is transformed into foo [4].

(5) Normalization. This step to remove differences is optional.
Some tools perform normalization during transformation. This
involves removing comments, whitespaces and differences in
spacing as well as normalizing identifiers as shown in Table 3.

4.3 Match Detection
The result of transformation or normalization is the input to this
phase. Every transformed fragment of code is compared to all other
fragments using a comparison algorithm to find similar source code
fragments. The output is a set of similar code fragments either in a
clone pair list or a set of combined clone pairs in one class or one
group as shown in Figure 1. For example, each clone pair may be
represented as a quadruplet (LBegin, LEnd, RBegin, REnd), where
LBegin and LEnd are the left beginning and ending positions of a
clone, and RBegin and REnd are the right beginning and ending
positions of another clone that following a clone pair [4].

4

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

4.4 Formatting
This step converts a clone pair list obtained by the comparison al-
gorithm in the previous step into a new clone pair list related to the
original source code.

4.5 Filtering
Not all clone detectors perform this step. In this phase, code clones
are extracted and a human expert filters out the false-positive
clones. This step is called Manual Analysis [27]. The false positives
can also be filtered out by automated heuristics based on length, di-
versity or frequency.

4.6 Aggregation
This phase is optional. It can be done in Match Detection phase.
To reduce the amount of data, clone pairs can be aggregated into
clusters, groups, sets or classes. For example, clone pairs (C1, C2),
(C1, C3), and (C2, C3) can be combined into the clone group (C1,
C2, C3).

5. CLONE DETECTION TECHNIQUES
Many approaches for detection of code clones have been published
in the past years. In this section, the characteristics that can be used
to describe clone detection techniques are discussed and follow by
a detailed description of a large number of such techniques under
appropriate classes.

5.1 Characteristics of Detection Techniques
Several characteristics can be used to describe a clone detection
technique. These characteristics depend upon how the technique
works. Some characteristics that are used throughout the rest of the
paper are given below.

(1) Source Transformations or Normalizations. Some transforma-
tion or normalization is applied before going to comparison
phase in most approaches, but other approaches just remove
comments and whitespaces. Some approaches perform de-
tailed transformations or normalizations so that the comparison
methods can be applied effectively.

(2) Source Code Representation. A comparison algorithm repre-
sents code using its own format or representation scheme. Most
comparison algorithms use appropriate code that results from
the transformation or normalization phase.

(3) Comparison Granularity. Different comparison algorithms
look at code at different levels of granularity such as lines, to-
kens, nodes of abstract syntax trees (ASTs) or nodes of a pro-
gram dependency graph (PDG).

(4) Comparison Algorithms. There are many algorithms that are
used to detect clones such as suffix-tree algorithms [5, 10], se-
quence matching algorithms [4], dynamic pattern matching al-
gorithms [15] and hash-value comparison algorithms [13].

(5) Computational Complexity. A technique must be expandable to
detect clones in millions of lines of source code in a large sys-
tem. In other words, it must be computationally efficient. The
complexity of a tool is based on the kind of transformations or
normalizations performed in addition to the comparison algo-
rithm.

(6) Clone Types. Some techniques detect Type-1 clones while oth-
ers find Type-1 or Type-2 or Type-3 clones or may even detect
all types of clones.

(7) Language Independence. A language-independent tool can
work on any system without any concern. Thus, we should
be aware of any language-dependent issues for our chosen
method.

(8) Output of Clones. Some techniques report clones as clone pairs
while others return clones as clone classes or both. Clone
classes are better than clone pairs for software maintenance.
Clone classes, which are reported without filtering are better
than the ones that are returned after filtering because the use of
clone classes reduces the number of comparisons and amount
of clone data that needs to be reported.

5.2 Categories of Detection Techniques
Detection techniques are categorized into four classes. The tex-
tual, lexical, syntactic and semantic classes are discussed. Syntactic
approaches can be divided into tree-based and metric-based tech-
niques and semantic approaches can be divided into PDG-based
and hybrid techniques as shown in Table 4. In this section, state-of-
the-art in clone detection techniques are described and compared,
under these classes and subclasses.

5.2.1 Textual Approaches. Text-based techniques compare two
code fragments and declare them to be clones if the two code frag-
ments are literally identical in terms of textual content. Text-based
clone detection techniques generate fewer false positives, are easy
to implement and are independent of language. Text-based clone
detection techniques perform almost no transformation to the lines
of source code before comparison. These techniques detect clones
based on similarity in code strings and can find only Type-1 clones.
In this section, several well-known textual approaches or text-based
techniques as shown in Table 5 are discussed. These include Dup
[8] by Baker, Duploc tool [15], Ducasse et al. [26], Koschke et al.
[14], NICAD by Roy and James [11] and SSD by Seunghak and
Jeong [12].

5.2.1.1 Dup by Baker. Dup [8] reads source code line by
line in the lexical analysis phase. Dup uses normalization, which
removes comments and whitespaces and also handles identifier
renaming. It hashes each line for comparison among them and
extracts matches by a suffix-tree algorithm. The purpose of this
tool is to find maximal sections of code that are either exact
copies or near miss clones of each other. The Dup tool can also be
classified as a token-based technique since it tokenizes each line
for line-by-line matching.

To explain Dup’s technique, it is necessary to introduce the
term parameterized string (p-string), which is a string over the
union of two alphabets, say Σ and Π. It also introduces the notion
of parameterized match (p-match), which refers to the process
in which is a p-string is transformed into another p-string by
applying a renaming function from the symbols of the first p-string
to the symbols of the second p-string. Parameterized matches
can be detected using parameterized strings or p-strings, which
are strings that contain ordinary characters from an alphabet
Σ, and parameter characters from a finite alphabet Π. Dup
implements a p-match algorithm. The lexical analyzer produces
a string containing non-parameter symbol and zero or more
parameter symbols. When sections of code match except for
the renaming of parameters, such as variables and constants, p-
match occurs. Exact match can be detected using a plain suffix tree.

The Dup algorithm encodes a p-string in the following way.
The first appearance of each parameter symbol is replaced by

5

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 4. Techniques for Clone Detection.
Approach Technique Tool/Author Year Reference Citation
Textual Text Dup 1995 [8] 631

Duploc 1999 [15] 533
NICAD 2008 [11] 183
SDD 2005 [12] 26

Lexical Token CCFinder 2002 [4] 1126
CP-Miner 2006 [7] 395
Boreas 2012 [9] 9
FRISC 2012 [65] 10
CDSW 2013 [66] 9

Syntactic Tree CloneDr 1998 [13] 1003
Wahler et al. 2004 [34] 118
Koschke et al. 2006 [14] 189
Jiang et al. 2007 [28] 385
Hotta et al. 2014 [67] 2

Metric Mayrand et al. 1996 [20] 469
Kontogiannis et al. 1996 [37] 254
Kodhai, et al. 2010 [19] 8
Abdul-El-Hafiz et al. 2012 [48] 8
Kanika et al. 2013 [29] 3

Semantic Graph Duplix 2001 [31] 474
GPLAG 2006 [32] 239
Higo and Kusumoto 2009 [49] 21

Hybrid ConQAT 2011 [39] 78
Agrawal et al. 2013 [18] -
Funaro et al. 2010 [17] 12

zero and each subsequent appearance of a parameter symbol is
substituted by the distance from the previous appearance of the
same symbol. The non-parameter symbol is not changed as shown
in Example 2 below. The Dup algorithm uses Definition 4 and
Proposition 1, given below from [31, 32], to represent parameter
strings in a p-suffix tree. In Definition 4, the f function, called
transform, computes the j-th symbol value of p-suffix(S,i) in
constant time from j and (j+i-1).

A parameterized suffix tree (P-suffix tree) is a data structure
for generalization of suffix trees for strings. P-suffix encoding
requires that a p-string P and a p-string P̀ are p-match of each
other if and only if prev(P) = prev(P̀), where prev is the resulting
encoding of P. For example, when we have a p-string T that has
the same encoding as the p-string P, and T and P are a p-match.
Therefore, prev is used to test for p-matches. If P is a p-string
pattern and P̀ is a p-string text, P has a p-match starting at position
i of T if and only if prev(P) is a prefix of p-suffix(P̀,i).

Definition 4. If b belongs to alphabet Σ union alphabet Π,
f(b,j)=0 if b is a nonegative integer larger than j-1, and otherwise,
f(b,j)=b [60].

Proposition 1. Two p-strings P and T p-match when prev(P)
= prev(T). Also, P <T when prev(P)< prev(T) and P > T when
prev (P) > prev(T) [60].

Example 2. Let P = yxbxxby$, where x and y are parameter
symbols and b and $ are non-parameter symbols. The p-suffixes
are 00b21b6$, 0b21b0$, b01b0$, 01b0$, 0b0$, b0$, 0$, and $
as shown in Figure 3. The Dup algorithm finds parameterized
duplication by constructing a p-suffix tree and recursing over it.

Fig. 3. A p-suffix tree for the p-string P= yxbxxby$, where Σ = {b,$} and
Π = {x,y}.

In the example in Figure 3, 0 is detected as duplicated in 0b0$,
01b0$, 0b21b0$, and 00b21b6$. b0 is detected as duplicated also
in b01b0$.

5.2.1.2 Duploc by Ducasse et al. Duploc [15] is also a text-
based clone detection technique. Duploc uses an algorithm that has
two steps. The first step transforms source files into normalized
files after eliminating noise including all whitespaces, comments

6

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

and converts all characters to lower case. Noise elimination reduces
false positives by removing common constructs. It also reduces
false negatives by removing insignificant differences between code
clones. The second step compares normalized files line-by-line
using a simple string-matching algorithm. The hits and misses that
the comparison produces are stored in a matrix and are visualized
as a dotplot [17, 29, 30]. The computational complexity is O(n2)
for an input of n lines. Preprocessing transformed lines reduces the
search space. Each line is hashed into one of a number of buckets.
Every occurrence of the same hashed line value is placed in the
same hash bucket. Duploc is able to detect a significant amount of
identical code duplicates, but it is not able to identify renaming,
deletion and insertion. Duploc does not perform lexical analysis or
parsing. The advantage of the character-based technique that Du-
ploc uses is its high adaptability to diverse programming languages.

Ducasse et al. [26] add one more step to Duploc, a third
step of filters. This step extracts interesting patterns in duplicated
code such as gap size, which is the length of a non-repeated sub-
sequence between a clone pair. For example, if the line sequences
‘abcghdjgi’ and ‘abcfklngi’ are compared, the gap is of length 4
because the lengths of the two non-duplicated subsequences ghdj
and fkln are 4. False positives are averted by removing noise and by
filtering. The filter step uses two criteria [26]. 1) Minimum length:
It is the smallest length of a sequence to be important. 2) Maximum
gap size: It is the largest gap size for sequences to be obtained by
copy-pasting from one another. The algorithm implements filtering
in a linear amount of single matches. Ducasse’s tool uses lexical
analysis to remove comments and whitespaces in code and finds
clones using a dynamic pattern matching (DPM) algorithm. The
tool’s output is the number lines of code clone pairs. It partitions
lines using a hash function for strings for faster performance. The
computational complexity is O(n2), where n is the input size.

Koschke et al. [14] prove that Duploc detects only copy-
pasted fragments that are exactly identical. It cannot detect Type-3
clone or deal with modifications and insertions in copy-pasted
code, called tolerance to modifications. Duploc cannot detect
copy-pasted bugs [14] because detecting bugs requires semantic
information and Duploc detects just syntactic clones.

5.2.1.3 NICAD by Roy and James. Roy and James [11] de-
velop a text-based code clone detection technique called Accurate
Detection of Near-miss Intentional Clones (NICAD). The NICAD
tool [13, 18] uses two clone detection techniques: text-based and
abstract syntax tree-based, to detect Type-1, Type-2 and Type-3
cloned code. The structures of the two approaches complement
each other, overcoming the limitations of each technique alone.
NICAD has three phases. 1) A parser extracts functions and
performs pretty-printing that breaks different fragments of a
statement into lines. 2) The second phase normalizes fragments
of a statement to ignore editing differences using transformation
rules. 3) The third phase checks potential clones for renaming,
filtering or abstraction using dynamic clustering for simple text
comparison of potential clones. The longest common subsequence
(LCS) algorithm is used to compare two potential clones at a time.
Therefore, each potential clone must be compared with all of the
others, which makes the comparison expensive.

NICAD detects near-misses by using flexible pretty-printing.
Using agile parsing [50] and the Turing eXtender Language (TXL)
transformation rules [51] during parsing and pretty-printing, it can
easily normalize code. By adding normalization to pretty-printing,

it can detect near-miss clones with 100% similarity. After the
potential clones are extracted, the LCS algorithm compares them.
The NICAD tool uses percentage of unique strings (PUS) for
evaluation. Equation (1) computes the percentage of unique strings
for each possible clone.

If PUS = 0%, the potential clones are exact clones; other-
wise, if PUS is more than 0% and below a certain threshold, the
potential clones are near-miss clones.

PUS =
Number of UniqueStrings× 100

TotalNumber of Strings
(1)

NICAD finds exact matches only when the PUS threshold is 0%. If
the PUS threshold is greater than 0%, clone 1 is matched to clone
2 if and only if the size, in terms of number of lines, of the second
potential clone is between size (clone 1) - size (clone 2) * PUST /
100 and size (clone 1) + size (clone 2) * PUST / 100.

NICAD can detect exact and near-miss clones at the block
level of granularity. NICAD has high precision and recall [16]. It
can detect even some exact function clones that are not detected
by the exact matching function used by a tree-based technique
[13, 18]. NICAD exploits the benefits of a tree-based technique
by using simple text lines instead of subtree comparison to obtain
good space complexity and time.

5.2.1.4 SDD by Seunghak and Jeong. Seunghak and Jeong
[12] use a text-based code clone detection technique implemented
in a tool called the Similar Data Detection (SDD), that can be used
as an Eclipse plug-in. Eclipse is an integrated development environ-
ment (IDE) [59]. The Eclipse IDE allows the developer to extend
the IDE functionality via plug-ins. SDD detects repeated code in
large software systems with high performance. It also detects exact
and similar code clones by using an inverted index [57] and an in-
dex data structure using a n neighbor distance algorithm [58]. The
mean nearest neighbor distance is:

NearestNeighborDistance =

N∑
i

[Min(dij)]

N
(2)

where N is the number of points and Min(dij) is the distance be-
tween each point and its nearest neighbor. SDD is very powerful
for detection of similar fragments of code in large systems because
use of inverted index decreases SDD complexity.

5.2.2 Summary of Textual Approaches. In this section, several
textual approaches for clone detection are discussed . Dup [8] uses
a suffix-tree algorithm to find all similar subsequences using hash
values of lines, characters or tokens. The complexity of computa-
tion is O(n) where n is the input length of the sequence. Duploc
[15] uses a dynamic pattern matching algorithm to find a longest
common subsequence between two sequences. NICAD [11] uses
the Longest Common Subsequence algorithm to compare two
lines of potential clones and produces the longest sequence. The
LCS algorithm compares only two sequences at a time. Therefore,
the number of comparisons is high because each sequence must
be compared with all of the other sequences. SDD [12] uses the
n-neighbor distance algorithm to find near-miss clones. It may lead
to detection of false positives.

7

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Text-based techniques have limitations as follows [10, 8, 17].
1) Identifier renaming cannot be handled in a line-by-line method.
2) Code fragments with line breaks are not detected as clones.
3) Adding or removing brackets can create a problem when
comparing two fragments of the code where one fragment has
brackets and the second fragment does not have brackets. 4) The
source code cannot be transformed in text-based approaches. Some
normalization can be used to improve recall without sacrificing
high precision [4].

5.2.3 Lexical Approaches. Lexical approaches are also called
token-based clone detection techniques. In such techniques, all
source code lines are divided into a sequence of tokens during the
lexical analysis phase of a compiler. All tokens of source code are
converted back into token sequence lines. Then the token sequence
lines are matched. In this section, several state-of-the-art token-
based techniques as shown in Table 6 discussed. These include
CCFinder [4] by Kamiya et al., CP-Miner [8, 13] by Zhenmin et
al., Boreas [9] by Yong and Yao, FRISC [9] by Murakami et al.,
and CDSW [9] by Murakami et al.. These techniques as examples
are chosen because they are among the best such techniques and
can detect various types of clones with higher recall and precision
than a text-based technique.

5.2.3.1 CCFinder by Kamiya et al. Kamiya et al. [4] develop
a suffix tree-matching algorithm called CCFinder. CCFinder has
four phases. 1) A lexical analyzer removes all whitespaces between
tokens from the token sequence. 2) Next, the token sequence is sent
to the transformation phase that uses transformation rules. It also
performs parameter replacement where each identifier is replaced
with a special token. 3) The Match Detection phase detects
equivalent pairs as clones and also identifies classes of clones
using suffix tree matching. 4) The Formatting phase converts the
locations of clone pairs to line numbers in the original source files.

CCFinder applies several metrics to detect interesting clones.
These metrics are given below. 1) The length of a code fragment
that can be used by the number of tokens or the number of lines
of the code fragment. 2) Population size of a clone class: It is the
number of elements in a clone class. 3) Combination of the number
of tokens and the number of elements in a clone class for estimating
which code portion could be refactored. 4) Coverage of code clone:
It is either the percentage of lines or files that include any clones. It
also optimizes the sizes of programs to reduce the complexity of the
token matching algorithm. It produces high recall whereas its pre-
cision is lower than that of some other techniques [10]. CCFinder
accepts source files written in one programming language at a time.

The line-by-line method used by the Duploc tool [15], dis-
cussed earlier, cannot recognize or detect clones with line break
relocation, the layout of the code is changed. CCFinder performs
a more suitable transformation than the line-by-line method [4].
CCFinder can also handle name changes, which the line-by-line
approach cannot handle. However, CCFinder or a token-based
technique takes more CPU time and more memory than line-
by-line comparison [8, 35, 17, 5]. CCFinder uses a suffix tree
algorithm, and so it cannot handle statement insertions and
deletions in code clones [7].

5.2.3.2 CP-Miner by Li et al. Li et al. [8, 35] use a token-
based technique to detect code clones and clones related to bugs
in large software systems. Their system, CP-Miner, searches for
copy-pasted code blocks using frequent subsequence mining [24].
CP-Miner implements two functions.

(i) Detecting copy-pasted code fragments. CP-Miner converts
the problem into a frequent subsequence mining problem by
parsing source code to build a database containing a collection
of sequences. It then implements an enhanced version of the
CloSpan algorithm [24] which, is used to help satisfy gap
constraints in frequent subsequences. Each similar statement
is mapped to the same token. Similarly, each function name
is mapped onto the same token. All tokens of a statement
are hashed using the hashpjw hash function [25]. After
parsing the source code, CP-Miner produces a database with
each sequence representing a fragment of code. A frequent
sub-sequence algorithm and ClonSpan are applied to this
database to find frequent sub-sequences. CP-Miner composes
larger copy-pasted segments both of real copy-paste and false
positives in groups. It then checks neighboring code segments
of each duplicate to see if they are a copy-pasted group as
well. If so, the two groups are merged. The larger group is
checked again against the false positives.

(ii) Finding copy-paste related bugs. Frequently, programmers
forget to rename identifiers after copy-pasting. Unchanged
identifiers are detected by a compiler and reported as “errors”.
These errors become unobserved bugs that can be very hard to
detect by a detector. Therefore, CP-Miner uses an Unchange-
dRatio threshold to detect bugs.

UnRenamed IDRate =
NumUnchanged ID

TotalUnchanged ID
(3)

where UnRenamed IDRate is the percentage of unchanged
identifiers, NumUnchanged ID is the number of unchanged
identifiers and TotalUnchanged ID is the total number of
identifiers in a given copy-pasted fragment. The value of
UnRenamed IDRate can be any value in the range 0 and
1. If UnRenamed ID Rate is 0, it means all occurrences of
identifiers have been changed, and if UnRenamed IDRate is 1,
it means all occurrences of the identifier remain unchanged.

CP-Miner can only detect forgot-to-change bugs. This
means if the programmer has forgotten to modify or insert
some extraneous statements to the new copy-pasted segment,
CP-Miner would not detect the bug because the changed code
fragments are now too different from the others [8, 35]. This
approach can detect similar sequences of tokenized statements
and avert redundant comparisons, and as a result, it detects
code clones efficiently, even in millions of code lines.

CP-Miner overcomes some limitations of CCFinder and de-
tects more copy-pasted segments than CCFinder does. However,
CCFinder does not detect code clones that are related to bugs as
CP-Miner does because CP-Miner uses an unchanged ratio thresh-
old. CCFinder does not completely filter false positives and it de-
tects many tiny cloned code blocks which seem to be predomi-
nantly false positives. Because CP-Miner handles statement inser-
tions and modifications, CP-Miner can detect 17-52% more code
clones than CCFinder. Unfortunately, the frequent subsequence
mining algorithm that CCFinder uses has two limitations because
it divides a long sequence into sub-sequences. First, some frequent
subsequences of two or more statement blocks may be lost. Sec-
ond, it is hard to choose the size of short sequences because if the
size is too short, the information may be lost; if the size is too long,
the mining algorithm may be very slow [8, 35].

8

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 5. Summary of Textual Approaches.
Author/Tool Transformation Code Representa-

tion
Comparison
Method

Complexity Granularity Types of
Clone

Language
Indepen-
dence

Output
Type

Dup [8] Remove whitespace
and comments

Parameterized string
matches

Suffix-tree based
on token match-
ing

O(n+m) where n is
number of input lines
and m is number of
matches

Token of lines Type-1, Type-
2

Needs lexer Text

Duploc [15] Removes comments
and all white space

Sequence of lines Dynamic Pattern
Matching

O(n2) where is n is
number of input lines

Line Type-1, Type-
2

Needs lexer Text

NICAD [11] Pretty-printing Methods (Segment se-
quences)

Longest Com-
mon Subse-
quence (LCS)

O(n2) worst case
time and space

Text Type-1, Type-
2, Type-3

Needs parser Text

SDD [12] No transformation inverted index and in-
dex

N-neighbor dis-
tance

O(n) Chunks of source
code

Type-1, Type-
2, Type-3

No lexer/-
parser needs

Visualization
similar of
code

Fig. 4. CP-Miner Process Steps.

5.2.3.3 Boreas by Yang and Yao. Yang and Yao [9] use a
token-based approach called Boreas to detect clones. Boreas uses
a novel counting method to obtain characteristic matrices that
identify program segments effectively. Boreas matches variables
instead of matching sequences or structures. It uses three terms 1)
The Count Environment, 2) The Count Vector, and 3) The Count
Matrix. Theses are discussed below.

The computation of the Count Environment (CE) is divided
into three stages. The first stage is Naı̈ve Counting, which counts
the number variables used and defined in the environments. The
second stage is In-statement counting, which counts the number
of regular variables as well as the variables used as if -predicates
and array subscripts, and variables that are defined by expressions
with constants. The third stage is Inter-statement Counting, which
counts variables used inside a first-level loop, second level loop or
third level loop. 2) Count Vector (CV), which is produced using
m (m-dimensional Count Vector) CEs. The i-th dimension in the
CV is the number of the variable in the i-th CE. CV is also called
a characteristic vector. 3) Counting Matrix (CM), which contains
all n (n-variables) CVs in code fragments and is an n × m Count
Matrix. Boreas uses the cosine of the two vectors angle to compare
similarity:

Sim(v1,v2) = cos(α) =

∑n

i
v1i×v2i√∑n

i
v2
1i
×
√∑n

i
v2
2i

(4)

where Sim is the cosine similarity between two vectors v1 and v2
and α is the angle between them. The similarity between two frag-
ments is measured by an improved proportional similarity func-
tion. This function compares the CVs of keywords and punctua-
tions marks. PropSimilarity is proportional similarity between C1

and C2, which are two occurrences counts:

PropSimilarity =
1

(C1 + 1)
+

C2

(C1 + 1).
(5)

The function prevents incorrect zero similarity. Boreas is not able
to detect code clones of Type-3. Agrawal et al. [18] extend Boreas
to detect clones by using a token-based approach to match clones
with one variable or a keyword and easily detect Type-1 and Type-2
clones; they use a textual approach to detect Type-3 clones. Since
Agrawal et al.’s approach combines two approaches, it is a hybrid
approach.

5.2.3.4 FRISC by Murakami et al. Murakami et al. [65]
develop a token-based technique called FRISC which transforms
every repeated instruction into a special form and uses a suffix
array algorithm to detect clones. FRISC has five steps. 1) Perform-
ing lexical analysis and normalization, which transforms source
files into token sequences and replaces every identifier by a special
token. 2) Generating statement hash, which generates a hash value
for every statement between “;”, “{”, and “}” with every token
included in a statement. 3) Folding repeated instructions, which
identifies every repeated subsequence and divides into the first
repeated element and its subsequent repeated elements. Then, the
repeated subsequences are removed and their numbers of tokens are
added to their first repeated subsequence of elements. 4) Detecting
identical hash subsequences, which detects identical subsequences
from the folded hash sequences. If the sum of the numbers of
tokens is smaller than the minimum token length, they are not
considered clones. 5) Mapping identical subsequences to the origi-
nal source code, which converts clone pairs to original source code.

FRISC supports Java and C. The authors performed experi-
ments with eight target software systems, and found that the
precision with folded repeated instructions is higher than the
precision without by 29.8%, but the recall decreases by 2.9%.

9

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

FRISC has higher recall and precision than CCFinder but the
precision is lower than CloneDr [13] and CLAN [21].

5.2.3.5 CDSW by Murakami et al. Murakami et al. [66]
develop another token-based technique, which detects Type-3
clones (gapped clones) using the Smith-Waterman algorithm [68],
called CDSW. It eliminates the limitations of AST-based and
PDG-based techniques which, require much time to transform
source code into ASTs or PDGs and compare among them. CDSW
has five steps. 1) Performing lexical analysis and normalization,
which is the same as the first step of FRISC. 2) Calculating
hash values for every statement, which is the same as FRISC. 3)
Identifying similar hash sequences, which identifies similar hash
sequences using the Smith-Waterman Algorithm. 4) Identifying
gapped tokens using Longest Common Subsequences (LCS) to
identify every sequence gap. 5) Mapping identical subsequences to
the source code, which converts clone pairs to the original source
code. It is also performs the same fifth step as FRISC.

Since Bellon’s references, which are built by manually con-
firming a set of candidates to be clones or clone pairs that are
judged as correct [64], do not contain gapped fragments, Murakami
et al. enhance the clone references by adding information about
gapped lines. Murakami et al. calculate recall, precision, and
f-measure using Bellon’s [64] and their own clone references
resulting in improved recall, precision, and f-measure. recall
increased by 4.1%, precision increased by 3.7%, and f-measure
increased by 3.8% in the best case. recall increased by 0.49%,
precision increased by 0.42% and f-measure increased by 0.43%
in the worst case [66]. The results are different because CDSW
replaces all variables and identifiers with special tokens that ignore
their types. Because CDSW does not normalize all variables and
identifiers, it cannot detect clones that have different variable
names [66].

5.2.4 Summary of Lexical Approaches. The suffix-tree based
token matching algorithm used by CCFinder finds all similar
subsequences in a transformed token sequence. CCFinder cannot
detect statement insertions and deletions in copy-pasted code. It
does not completely eliminate false positives. The frequent sub-
sequence mining technique used by CP-Miner discovers frequent
subsequences in a sequence database. A frequent subsequence
mining technique avoids unnecessary comparisons, which makes
CP-Miner efficient. CP-Miner detects 17%-52% more code clones
than CCFinder. A limitation of a frequent subsequence mining
algorithm is that a sequence database is needed. Boreas works
fast by using two functions: cosine similarity and proportional
similarity. FRISC detects more false positives than the other tools
but misses some clone references [65]. CDSW’s accuracy is based
on the match, mismatch and gap parameters. If these parameters
are changed, the results are different.

Token-based techniques have limitations as follows. 1) Token-
based techniques depend on the order of program lines. If the
statement order is modified in duplicated code, the duplicated code
will not be detected. 2) These techniques cannot detect code clones
with swapped lines or even added or removed tokens because the
clone detection is focused on tokens. 3) Token-based techniques
are more expensive in time and space complexity than text-based
techniques because a source line contains several tokens.

5.2.5 Syntactical Approaches. Syntactical approaches are cate-
gorized into two kinds of techniques. The two categories are tree-
based techniques and metric-based techniques. A list of syntactical

techniques found in the literature is shown in Table 7. In this sec-
tion, several common tree-based and metric-based techniques are
discussed. For the purpose of this study, we choose CloneDR [13]
by Baxter al., Wahler [34], Koschke [14], Jiang [28], Mayrand et al.
[20], Kontogiannis et al. [37], Kodhai, et al. [19], Abdul-El-Hafiz
[48] and Kanika et al. [29].

5.2.5.1 Tree-based Clone Detection Techniques. In these
techniques, the source code is parsed into an abstract syntax tree
(AST) using a parser and the sub-trees are compared to find cloned
code using tree-matching algorithms.
CloneDr by Baxter et al Baxter et al. [13] use a tree-based code
clone detection technique implemented in a tool called CloneDr. It
can detect exact clones, near miss clones and refactored code using
an AST. After the source code is parsed into an AST, it finds clones
by applying three main algorithms. The first algorithm detects sub-
tree clones, the second algorithm detects variable-size sequences of
sub-tree clones such as sequences of declarations or statements, and
the third algorithm finds more complex near-miss clones by gener-
alizing other clone combinations. The method splits sub-trees using
a hash function and then compares sub-trees in the same bucket.
The first algorithm finds sub-tree clones and compares each sub-
tree with other sub-trees. Near-miss clones that cannot be detected
by comparing sub-trees can be found using similarity computation:

Similarity =
2?SN

(2?SN + LEFT +RIGHT)
(6)

where SN is the number of shared nodes, LEFT is the number of
nodes in sub-tree1 and RIGHT is the number of nodes in sub-tree2.
The second algorithm finds clone sequences in ASTs. It compares
each pair of sub-trees and looks for maximum length sequences.
The third algorithm finds complex near-miss clones. It abstracts
each pair of clones after all clones are detected.

CloneDr cannot detect semantic clones. Text-based techniques
do not deal with modifications such as renaming of identifiers
since there is no lexical information. Tree-based techniques may
produce false positives since two fragments of the sub-tree may
not be duplicated. Because a tree-based method hashes subtrees, it
cannot detect duplicated code which has modifications.
Wahler et al Wahler et al. [34] detect clones which are represented
as an abstract syntax tree (AST) in XML by applying frequent item-
set mining. Frequent itemset mining is a data mining technique that
looks for sequences of actions or events that occur frequently. An
instance is called a transaction, each of which has a number of fea-
tures called items. This tool uses frequent itemsets to identify fea-
tures in large amounts of data using the Apriori algorithm [52].
For each itemset, they compute its support count, which is the fre-
quency of occurrence of an itemset or the number of transactions
in which it appears:

σ(I) =
|{T εD | I ⊆ T}|

|D|
≥ σ (7)

where T is a transaction, I is an itemset, which is a subset of the
transaction T, and D is a database. If an itemset’s frequency is
more than a certain given support count σ, it is called a frequent
itemset.

There are two steps to find frequent itemsets. The first step
is the join step. The first step finds Lk, which are frequent itemsets

10

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 6. Summary of Lexical Approaches.
Author/Tool Transformation Code Representa-

tion
Comparison
Method

Complexity Granularity Types of
Clone

Language
Indepen-
dence

Output
Type

CCFinder [4] Remove whites-
pace, comments, and
perform parameter
replacement

Normalized Se-
quences and parame-
terized tokens

Suffix-tree based
on token match-
ing

O(n) where n is size
of source file

Token Type-1, Type-
2

Needs lexer
and trans-
formation
rules

Clone
pairs/ Clone
classes

CP-Miner
[7]

Map each statemen-
t/identifier to a num-
ber with similar state-
ments/identifiers

Basic blocks Frequent subse-
quence mining
technique

O(n2) where n is
number of code lines

Sequence of to-
kens

Type-1, Type-
2

Needs parser Clone pairs

Boreas [9] Filter useless charac-
ters and extracs tokens

Variables match-
ing based on other
characteristics

Cosine Similarity
Function

N/A Vector Type-1, Type-
2, Type-3

Needs parser Clustering

FRISC [65] Remove whitespaces,
comments, mapping
from transformed
sequence into orig-
inal, and replace
parameters

Hash sequence of to-
kens

Suffix array N/A Token se-
quences

Type-1, Type-
2, Type-3

Needs lexer Clone
pairs/ Clone
classes

CDSW [66] Remove whitespace,
comments; map from
transformed sequence
into original, and pa-
rameter replace

Hash values for every
statement

Smith-Waterman
Alignment

O(nm) where n is
length of first token
sequences and m is
length of second to-
ken sequences

Token Se-
quences

Type-1, Type-
2, Type-3

Needs lexer Clone pairs

of size k. A set of candidate k-itemsets is generated by combining
Lk−1 with itself. The second step is the prune step, which finds
frequent k-itemsets fromCk. This process is repeated until no more
frequent k-itemsets are found. In this approach, the statements of
a program become items in the database D. Clones are a sequence
of source code statements that occur more than once. Therefore,
the support count is σ = 2

|D| . Let there be statements b1...bk in
a program. The join step combines two frequent (k-1)-itemsets of
the form I1 = b1...bk, I2 = b2...bk−1.
Koschke et al Koschke et al. [14] also detect code clones using an
abstract syntax tree (AST). Their method finds syntactic clones by
pre-order traversal, applies suffix tree detection to find full subtree
copies, and decomposes the resulting Type-1 and Type-2 token se-
quences. This approach does not allow structural parameters. It can
find Type-1 and Type-2 clones in linear time and space. AST-based
detection can be used to find syntactic clones with more effort than
Token-based suffix trees and with low precision. AST-based de-
tection also scales worse than Token-based detection. Token-based
suffix tree clone detectors can be adapted to a new language in a
short time whereas using AST needs a full abstract syntax tree and
sub-tree comparison method. Using abstract syntax suffix trees [14]
detects clones in less time.
Deckard by Jiang et al Jiang et al. [28] also use the tree-based tech-
nique and compute certain characteristic vectors to capture struc-
tural information about ASTs in Euclidean space. Locality Sen-
sitive Hashing (LSH) [61] is a technique for clustering similar
items using the Euclidean distance metric. The Jiang et al. tool
is called Deckard. Deckard’s phases include the following. 1) A
parser uses a formal syntactic grammar and transforms source files
into parse trees. 2) The parse trees are used to produce a set of
vectors that capture structure information about the trees. 3) The
vectors are clustered using the Locality Sensitive Hashing algo-
rithm (LSH) that helps find a query vector’s near-neighbors. Finally,
post-processing is used to generate clone reports. Deckard detects
re-ordered statements and non-contiguous clones.
Deckard is language independent with lower speed than the Boreas
tool [28], discussed in Subsection 5.2.3, because of less set-up time
and less comparison time [11, 8]. Deckard also requires construct-
ing ASTs, which requires more time.

Hotta et al Hotta et al. [67] compare and evaluate methods for de-
tection of coarse-grained and fine-grained unit-level clones. They
use a coarse-grained detector that detects block-level clones from
given source files. Their approach has four steps. 1) Lexical and
syntactic analysis to detect all blocks from the given source files
such as classes, methods and block statements. 2) Normalization of
every block detected in the previous step. This step detects Type-1
and Type-2 clones. 3) Hashing every block using the hashCode()
function java.lang.String. 4) Grouping blocks based on their hash
values. If two normalized blocks have the same hash value, they
are considered equal to each other as in Figure 5. The detection
approach has high accuracy, but Hotta et al.’s method, which is
coarse-grained does not have high recall compared to fine-grained
detectors, does not tackle gapped code clones, and detects fewer
clones. Their approach is much faster than a fine-grained approach,
since the authors use hash values of texts of blocks. However, using
a coarse-grained approach alone is not enough because it does not
have more detailed information about the clones. A fine-grained
approach must be used as a second stage after a coarse-grained ap-
proach.

5.2.5.2 Metric-based clone detection techniques. In
metric-based clone detection techniques, a number of metrics are
computed for each fragment of code to find similar fragments
by comparing metric vectors instead of comparing code or ASTs
directly. Seven software metrics have been used by different
authors [22, 23, 24].

(1) Number of declaration statements,
(2) Number of loop statements,
(3) Number of executable statements,
(4) Number of conditional statements,
(5) Number of return statements,
(6) Number of function calls, and
(7) Number of parameters.

All of these metrics are computed and their values are stored in a
database [19]. Pairs of similar methods are also detected by com-
parison of the metric values, which are stored in the same database.

11

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Fig. 5. Example of Coarse-grained Clone Detection. [67]

Mayrand et al Mayrand et al. [20] compute metrics from names,
layouts, expressions and control flows of functions. If two func-
tions’ metrics are similar, the two functions are considered to
be clones. Their work identifies similar functions but not similar
fragments of code. In reality, similar fragments of codes occur
more frequently than similar functions.

First, source code is parsed to an abstract syntax tree (AST).
Next, the AST is translated into an Intermediate Representation
Language (IRL) to detect each function. This tool reports as clone
pair two function blocks with similar metrics values. Patenaude et
al. [35] extend Mayrand’s tool to find Java clones using a similar
metric-based algorithm.
Kontogiannis et al Kontogiannis et al. [36] propose a way to mea-
sure similarity between two pieces of source code using an abstract
patterns matching tool. Markov models are used to calculate dis-
similarity between an abstract description and a code fragment.
Later, they propose two additional methods for detecting clones
[37]. The first method performs numerical comparison of the met-
ric values that categorize a code fragment to begin-end blocks. The
second approach uses dynamic programming to compute and re-
port begin-end blocks using minimum edit distance. This approach
only reports similarity measures and the user must go through block
pairs and decide whether or not they are actual clones.
Kodhai et al Kodhai et al. [19] combine a metric-based approach
with a text-based approach to detect functional clones in C source
code. The process of clone detection has five phases. 1) The In-
put and Pre-processing step parses files to remove pre-processor
statements, comments, and whitespaces. The source code is rebuilt
to a standard form for easy detection of similarity of the cloned
fragments. 2) Template conversion is used in the textual compari-

son of potential clones. It renames data types, variables, and func-
tion names. 3) Method identification identifies each method and
extracts them. 4) Metric Computation. 5) Type-1 and Type-2 clone
detection. The text-based approach finds clones with high accuracy
and reliability, but the metric-based approach can reduce the high
complexity of the text-based approach by using computed metrics
values. The limitation of this method is that it just detects Type-1
and Type-2 clones, with high time complexity.
Abdul-El-Hafiz et al Abdul-El-Hafiz et al. [48] use a metric based
data mining approach. They use a fractal clustering algorithm. This
technique uses four steps. 1) Pre-processing the input source file.
2) Extracting all fragments for analysis and related metrics. 3) Par-
titioning the set of fragments into a small number of clusters of
three types using fractal clustering. Primary clusters cover Type-1
and Type-2 clones, Intermediate clusters cover Type-3 clones, and
a singleton cluster is not a clone. 4) Post-processing, the extracted
clone classes from the primary cluster. This technique uses eight
metrics to detect each type of function.
MCD Finder by Kanika et al Kanika et al. [29] use a metric-based
approach to develop the MCD Finder for Java. Their tool performs
a metric calculation on the Java byte code instead of directly on
the source code. This approach consists of three phases. 1) The
Java source code is compiled to make it adaptable to requirement
of the tool. 2) The computation phase computes metrics that help
detect potential clones. This approach uses 9 metrics [29] for each
function.

(1) Number of calls from a function,
(2) Number of statements in a function,
(3) Number of parameters passed to a function,
(4) Number of conditional statements in a function,

12

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

(5) Number of non-local variables inside a function,
(6) Total number of variables inside a function,
(7) Number of public variables inside a function,
(8) Number of private variables inside a function, and
(9) Number of protected variables inside a function.

The calculated metrics are stored in a database and mapped onto
Excel sheets. 3) The measurement phase performs a comparison
on the similarity of the metric values.

5.2.6 Summary of Syntactical Approaches. In Table 7, a sum-
mary of syntactical techniques considering several properties are
provided. The first kind of syntactical approach is the tree-based
technique. One such system, CloneDr, finds sub-tree clones with
limitations as follows. 1) It has difficulty performing near-miss
clone detection, but comparing trees for similarity solves it to some
extent. 2) Scaling up becomes hard when the software system is
large and the number of comparisons becomes very large. Splitting
the comparison sub-trees with hash values solves this problem.
The parser also parses a full tree. Wahler et al.’s approach detects
Type-1 and Type-2 clones only. The clones are detected with a very
low recall. Deckard detects significantly more clones and is much
more scalable than Wahler et al.’s technique because Deckard uses
characteristic vectors and efficient vector clustering techniques.
Koschke et al. show that suffix-tree clone detection scales very
well since a suffix tree finds clones in large systems and reduces
the number of subtree comparisons.

The second kind of the syntactical approach is the metric-based
technique. Mayrand et al.’s approach does not detect duplicated
code at different granularities. Kontogiannis et al.’s approach
works only at block level, it cannot detect clone fragments that are
smaller than a block, and it does not effectively deal with renamed
variables or work with non-contiguous clones code. Kodhai et al.’s
approach only detects Type-1 and Type-2 clones. The limitation of
Abdul-El-Hafiz et al.’s technique is that Type-4 clones cannot be
detected. The MCD Finder is efficient in detecting semantic clones
because byte code is platform independent whereas CCFinder
cannot detect semantic clones. However, even MCD Finder tool
cannot detect all clones.

Syntactical techniques have limitations as follows. 1) Tree-
based techniques do not handle identifiers and literal values for
detecting clone in ASTs. 2) Tree-based techniques ignore identifier
information. Therefore, they cannot detect reordered statement
clones. 3) Metric-based techniques need a parser or PDG generator
to obtain metrics values. 4) Two code fragments with the same
metric values may not be similar code fragments based on metrics
alone.

5.2.7 Semantic Approaches. A semantic approach, which detects
two fragments of code that perform the same computation but have
differently structured code, uses static program analysis to obtain
more accurate information similarity than syntactic similarity. Se-
mantic approaches are categorized into two kinds of techniques.
The two kinds are Graph-based techniques and Hybrid techniques.
Several semantic techniques from the literature are shown in Table
8. In this section, we discuss Komondoor and Horwitz [22], Du-
plix [31] by Krinke, GPLAG [32] by Liu et al., Higo and Kusumoto
[49], Hummel et al. [39], Funaro et al. [17], and Agrawal et al.
[18].

5.2.7.1 Graph-based Clone Detection Techniques. A
graph-based clone detection technique uses a graph to represent

the data and control flow of a program. One can build a program
Dependency Graph (PDG) as defined in Definition 1 in Section
2. Because a PDG includes both control flow and data flow
information as given in Definitions 5 and 6, respectively, one can
detect semantic clones using PDG [30]. Clones can be detected as
isomorphic subgraphs [22]. In PDG edges represent the data and
control dependencies between vertices which repeat lines of code,
in PDGs.

Definition 5. (Control Dependency Edge). There is a con-
trol dependency edge from a vertex to a second program vertex in
a Program Dependency Graph if the truth of the condition controls
whether the second vertex will be executed [32].

Definition 6. (Data Dependency Edge). There is a data de-
pendency edge from program vertex var1 to var2 if there is some
variable such that:
- var1 may be assigned a value, either directly or indirectly through
pointers.
- var2 may use the value of the variable, either directly or indirectly
through pointers.
- There is an execution path in the program from the code corre-
sponding to var1 to the code corresponding to var2 along which
there is no assignment to variable [32].
Komondoor and Horwitz Komondoor and Horwitz [22] use pro-
gram slicing [38] to find isomorphic PDG subgraphs and code
clones. As mentioned earlier, nodes in a PDG represent statements
and predicates, and edges represent data and control dependences
as shown in Example 1 and Figure 3. The slicing clone detection
algorithm performs three steps. 1) Find pairs of clones by partition-
ing all PDG nodes into equivalence classes, where any two nodes
in the same class are matching nodes [22]. 2) Remove subsumed
clones. A clone pair subsumes another clone pair if and only if each
element of the clone pair is a subset of another element from an-
other clone pair. So, subsumed clone pairs need to be removed. 3)
Combine pairs of clones into larger groups using transitive closure.
Duplix by Krinke finds maximal similar PDG subgraphs with high
precision and recall. Krinke’s approach is similar to the Komon-
door and Horwitz approach [22] although [22] starts from every
pair of matching nodes and uses sub-graphs that are not maximal
and are just subtrees unlike the ones in [31]. The PDG used by
Krinke is similar to AST and the traditional PDG. Thus, the PDG
contains vertices and edges that represent components of expres-
sions. It also contains immediate (control) dependency edges. The
value dependency edges represent the data flow between expres-
sion components. Another edge, the reference dependency edge,
represents the assignments of values to variables.
GPLAG by Liu et al Liu et al. [32] develop an approach to de-
tect software plagiarism by mining PDGs. Their tool is called
GPLAG. Previous plagiarism detection tools were only partially
sufficient for academic use in finding plagiarized programs in pro-
gramming classes. These tools were based on program token meth-
ods such as JPlag [33] and are unable to detect disguised plagia-
rized code well. Plagiarism disguises may include the following
[32]. 1) Format alteration such as inserting and removing blanks
or comments. 2) Variable renaming where variables names may
be changed without affecting program correctness. 3. Statement
reordering, when some statements may be reordered without af-
fecting the results. 4) Control replacement such as a for loop
can be substituted by a while loop and vice versa. In addition,
an for (int i=0; i<10; i++) {a=b-c;} block can be replaced by
while (i<10) {a=b-c; i++; }. 5) Code Insertion, where additional

13

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 7. Summary of Syntactical Approaches.
Author/Tool Transformation Code Representa-

tion
Comparison
Method

Complexity Granularity Types of
Clone

Language
Indepen-
dence

Output
Type

CloneDr [13] Parse to AST AST Tree matching
technique

O(n) where n is number of
AST nodes

AST node Type-1, Type-
2

Needs parser Clone
pairs

Wahler [34] Parse to AST AST Frequent itemset N/A Line Type-1, Type-
2

Needs parser AST nodes

Koschke [14] Parse to AST AST Simple string suffix
tree algorithm

O(n) where n is number of
input nodes

Tokens Type-1, Type-
2, Type-3

Needs parser Text

Jiang et al. [28] Parse to parse tree then
to a set of vectors.

Vectors Locality-sensitive
hashing Tree-
Matching algo-
rithm (LSH)

O(|T1||T2|d1d2), where
|T i| is the size of T i and
di is the minimum of the
depth of T i and the number
of leaves of T i

Vectors Type-1, Type-
2, Type-3

Needs a
Parser

Text

Hotta et al. [67] Parse source code to
extract blocks using
JDT

Hashed blocks Group blocks based
on hash values

N/A Blocks Type-1, Type-
2

Needs parser Clone
pairs,
Clone
classes

Mayrand et al.
[20]

Parse to AST then
(IRL)

Metrics 21 function metrics Polynomial complexity Metrics
for each
function

Type-1, Type-
2, Type-3

Needs Dartix
tool

Clone
pairs,
Clone
classes

Kontogiannis et
al. [37]

Transform to feature
vectors

Feature vectors Use numerical
comparisons of
metric values and
dynamic program-
ming (DP) using
minimum edit
distance

O(n2) for Naı̈ve approach
and O(nm) for DP-model

Metrics of
a begin-end
block

Type-1, Type-
2, Type-3

Needs a
parser and
an additional
tool

Clone
pairs

Kodhai, et al. [19] Remove whitespaces,
comments; map-
ping and pre-process
statements

Metrics The string match-
ing/textual compar-
ison

N/A Functional Type-1, Type-
2

Needs a
parser

Clone
pairs and
clusters

Abdul-El-Hafiz,
et al. [48]

Preprocess and extract
Metrics

Metrics Data mining
clustering algo-
rithm and fractal
clustering

O(M2log(M)) where M is
the size of data set

Functional Type-1, Type-
2, can be Type-
3

A language
independent

Clone
Classes

Kanika et al. [29] Calculate metrics of
Java programs

Metrics Use 3-phase com-
parison algorithm:
Adaptation, Com-
putation and Mea-
surement Phases

N/A Metrics of
Java byte
code

Type-1, Type-
2, Type-3

Needs com-
piler

Output
mapped
into Excel
sheets

code may be inserted to disguise plagiarism without affecting the
results.
Scorpio by Higo and Kusumoto [49] propose a PDG-based incre-
mental two-way slicing approach to detect clones, called Scorpio.
Scorpio has two processes: 1) Analysis processing: The inputs are
the source files to the analysis module and the output is a database.
PDGs are generated from the algorithms of source files. Then, all
the edges of the PDGs are extracted and stored in a database. 2) De-
tection processing: The inputs are source files and the database, and
the output is a set of clone pairs. First, a user provides file names
and the edges are retrieved for the given files from the database.
Finally, the clone pairs are detected by the detection model. This
approach detects non-contiguous clones while other existing incre-
mental detection approaches cannot detect non-contiguous clones.
The approach also has faster speed compared to other existing PDG
based clone detection approaches.

5.2.7.2 Hybrid Clone Detection Techniques. A hybrid clone
detection technique uses a combination of two or more techniques.
A hybrid approach can overcome problems encountered by indi-
vidual tools or techniques.
ConQAT Hummel et al. [39] use a hybrid and incremental index
based technique to detect clones and implement a tool called Con-
QAT. Code clones are detected in three phases. 1) Preprocessing,
which divides the source code into tokens, normalizes the tokens to
remove comments or renamed variables. All normalized tokens are

collected into statements. 2) Detection, which looks for identical
sub-strings. 3) Post-processing, which creates code cloning infor-
mation looking up all clones for a single file using a clone index.
Statements are hashed using MD5 hashing [62]. Two entries with
the same hash sequence are a clone pair. The approach extracts all
clones for a single file from the index and reports maximal clones.
Funaro et al Funaro et al. [17] propose a hybrid technique that com-
bines a syntactic approach using an abstract syntax tree to identify
potential clones with a textual approach to avoid false positives.
The algorithm has four phases: 1) Building a forest of ASTs. 2) Se-
rializing the forest and encoding into a string representation with
an inverse mapping function. 3) Seeking serialized clones. 4) Re-
constructing clones.
Agrawal et al Agrawal et al. [18] present a hybrid technique that
combines token-based and textual approaches to find code cloning
to extend Boreas [9], which cannot detect Type-3 code clones. The
token approach can easily detect Type-1 and Type-2 code clones.
The textual approach can detect Type-3 code clones that are hard
to detect with the token approach. The technique has three phases.
1) The pre-processing phase removes comments, whitespaces and
blank lines. Declarations of variables in a single line are combined
to make it easy for the tool to find the number of variables declared
in the program. 2) The transformation phase breaks the source code
into tokens and detects Type-1 and Type-2 code clones. 3) The
match detection phase finds code clones using a matrix represen-
tation and then replaces each token with an index value. Then a

14

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

textual approach looks for the same string values line-by-line. In
this phase, Type-3 code clones are detected. 4) The filtering phase
removes false positives.

5.2.8 Summary of Semantic Approaches. In Table 8, a summary
of semantic techniques are provided. The first kind of semantic
approaches includes PDG-based techniques. The approach by
Komondoor and Horwitz needs a tool to generate the PDG
subgraph. But, the major benefit of Komondoor and Horwitz tool
is that it can detect gapped clones. Komondoor and Horwitz and
Duplix detect semantically robust code clones using PDG for pro-
cedure extraction, which is a program transformation that can be
used to make programs easier to understand and maintain. Duplix
cannot be applied to large systems and is very slow. Tools that do
not use PDG can be effectively confused by statement reordering,
replacing, and code insertion. Since PDG is robust to the disguises
that confuse other tools, GPLAG is more effective and efficient
than these tools. GPLAG has a limitation that the computational
complexity increases exponentially with the size of the software
code. Scorpio by Higo and Kusumoto detects non-contiguous
clones while other incremental detection approaches cannot do
so. It also has faster speed than other PDG based clone detection
approaches.

The second kind of syntactical approaches is represented by
hybrid techniques. Hummel et al. use an approach similar to
ConQAT, but it is different because Hummel et al. use graph-based
data-flow models. These two approaches can be combined to speed
up clone retrieval. Funaro et al. detect Type-3 clones. They also
use a textual approach on the source code to remove uninteresting
code. Agrawal et al. can detect clones for code written in C only.
Semantic techniques have limitations as follows. 1) PDG-based
techniques are not scalable to large systems. 2) PDG-based
techniques need a PDG generator. 3) Graph matching is expensive
in PDG-based techniques.

6. EVALUATION OF CLONE DETECTION
TECHNIQUES

In order to choose the right technique for a specific task, several
evaluation metrics can be used. A good technique should show both
high recall and precision. In Table 9 and 10, we provide comparing
evaluations of tools and summary of evaluation approaches respec-
tively. Some evaluation metrics are discussed below.

6.1 Precision and Recall
Precision and recall are the two most common metrics used to mea-
sure the quality of a clone finding program. Precision refers to the
fraction of candidate clones returned by the detection algorithm that
are actual clones, whereas recall refers to the fraction of relevant
candidate clones returned by the detection algorithm. High preci-
sion means that the candidate clones are mostly actual code clones.
Low precision means that many candidate clones are not real code
clones. High recall means most clones in the software have been
found. Low recall means most clones in the software have not been
found. Precision and recall are calculated as shown in Figure 7 and
Equations (8) and (9) respectively:

Precision =
CC

AC
× 100 (8)

Fig. 6. Precision and Recall. [26]

Recall =
CC

PC
× 100 (9)

where CC is the number of all correct clones, AC is the number of
all found clones, and PC is the number of clones that exist in the
code. A perfect clone detection algorithm has recall and precision
values that are both 100%.

6.1.1 Precision.. A good tool detects fewer false positives, which
means high precision. Line-based techniques detect clones of Type-
1 with high precision. There are no returned false positives and
the precision is 100%. In contrast, token-based approaches return
many false positives because of transformation and/or normaliza-
tion. Tree-based techniques detect code clones with high precision
because of structural information. Metric-based techniques find du-
plicated code with medium precision due to the fact that two code
fragments may not be the same but have similar metric values. Fi-
nally, PDG-based techniques detect duplicated code with high pre-
cision because of both structural and semantic information.

6.1.2 Recall.. A good technique should detect most or all of the
duplicated code in a system. Line-based techniques find only ex-
act copy or Type-1 clones. Therefore, they have low recall. Token-
based techniques can find most clones of Type-1, Type-2 and Type-
3. So, they have high recall. A tree-based technique does not detect
any type of clones, but with the help of other techniques clones
can be detected. Metric-based techniques have low recall whereas
PDG-based techniques cannot detect all of clones.

6.2 Portability
A portable tool is good for multiple languages and dialects. Line-
based techniques have high portability but need a lexical analyzer.
Token-based techniques need lexical transformation rules. There-
fore, they have medium portability. Metric-based techniques need
a parser or a PDG generator to generate metric values. They have
low portability. Finally, PDG-based techniques have low portability
because they need a PDG-generator.

6.3 Scalability
A technique should be able to detect clones in large software sys-
tems in a reasonable time using a reasonable amount of memory.
Scalability of text-based and tree-based techniques depends on the
comparison algorithms. Token-based techniques are highly scal-
able when they use a suffix-tree algorithm. Metrics-based tech-
niques are also highly scalable because only metric values of begin-
end blocks are compared. PDG-based techniques have low scala-
bility because subgraphs matches are expensive.

15

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 8. Summary of Semantic Approaches.
Author/Tool Transformation Code Repre-

sentation
Comparison
Method

Complexity Granularity Types of
Clone

Language In-
dependence

Output
Type

Komondoor and
Horwitz [22]

PDGs using
CodeSurfer

PDGs Isomorphic PDG
subgraph matching
using backward
slicing

N/A PDG node Type-3,
Type-4

Needs tool
for converting
source code to
PDGs

Clone
pairs and
Clone
Classes

Duplix [31] To PDGs PDGs K-length patch algo-
rithm

Non-polynomial com-
plexity

PDG Sub-
graphs

Type-1,
Type-4

Needs tool
for converting
source code to
PDGs

Clone
Classes

GPLAG [32] PDGs using
CodeSurfer

PDGs Isomorphic PDG
subgraph matching
algorithm

NP-Complete PDG Node Type-1,
Type-2,
Type-3

Needs tool
for converting
source code to
PDGs

Plagiarized
pair of
programs

Higo and
Kusumoto [49]

To PDGs PDGs Code Clone Detec-
tion Module

N/A Edges Type-3 Needs tool
for converting
source code to
PDGs

Clone
Pairs Files

ConQAT [39] Splits source code
into tokens and
removes comments
and variable names.
Then normalized
tokens are grouped
into statements

Tokens Suffix-tree-based al-
gorithm then using
Index-based clone
detection algorithm

O(|f |logN) where f is
the number of statements
and N is the number of
stored tuples

Substrings Type-1,
Type-2

Language
independent

Text
clones

Funaro et al. [17] Parsed to AST, then
Serialized AST

AST Textual comparison N/A Specific
parts of AST

Type-1,
Type-2,
Type-3

Needs parser String
clones

Agrawal et al.
[18]

To tokens Tokens Line-by-line textual
comparison

N/A Indexed
tokens

Type-1,
Type-2,
Type-3

Needs lexer Text
clones

Table 9. Comparing Evaluations of Tools. It is difficult to compare results of clone detection tools in a fair manner. The
results given in this table from various sources are pieced together.

Author/Tool Recall Precision F-measure Reference
Dup 1 56% - 81.5% 3.1% - 9.3% 5.95% - 16.04% [8]
Duploc 1 4.5% - 81.5% 3.5% - 12.8% 5.91% - 22.13% [15]
NICAD 1 13.1% - 76.3% 1.6% - 52.8% 3.13% - 50.07% [11]
SDD 2 ≈ 24% ≈ 22% ≈ 22.96% [12]
CCFinder 1 44.5% - 100% 0.8% - 6.6% 1.58% - 12.33% [4]
CP-Miner 3 ≈ 48% ≈ 41% ≈ 44.22% [7]
Boreas 4 ≈ 95% ≈ 5% ≈ 9.5% [9]
FRISC 1 ≈ 79%− 98% ≈ 10%− 50% ≈ 17.75%− 66.22% [65]
CDSW 1 9.27% - 70.63% 4.43% - 49.97% 8.09% - 28.70% [66]
Baxter, et al. 1 14.9% - 48.1% 6% - 40.3% 8.68% - 32.55% [13]
Wahler et al.1 N/A N/A N/A [34]
Koschke et al. 5 ≈ 33% N/A N/A [14]
Jiang et al. 1 3.4% - 85.4% 2.2% - 6.6% 4.29% - 8.91% [28]
Hotta et al. 6 23.3% - 50.1% 9.9% - 22.8% 14% - 23.21% [67]
Mayrand et al. N/A N/A N/A [20]
Kontogiannis et al. N/A N/A N/A [37]
Kodhai, et al. 7 ≈ 99% ≈ 100% ≈ 99.50% [19]
Abdul-El-Hafiz et al.8 N/A (Difficult to assess) ≈ 52%− 100% N/A [48]
Kanika et al. N/A N/A N/A [29]
Duplix 1 17.3% - 45.8% 2.9% - 10.5% 5.35% - 17.08% [31]
GPLAG N/A N/A N/A [32]
Higo and Kusumoto 9 ≈ 97%− 100% ≈ 96%−97%(Type−3) ≈ 96.50%− 98.48% [49]
ConQAT N/A N/A N/A [39]
Funaro et al. N/A N/A N/A [17]
Agrawal et al. N/A N/A N/A [18]

(1): The displayed detectors results are obtained from Murkami et al. [66], who use netbeans, ant, jtcore, swing, weltab,cook,snns, and
postgresql datasets. (2): The results given are obtained from Shafieian and Zou [75], who use EIRC, Spule, and Apache Ant datasets. (3):
The results given here are obtained from Dang and Wani [76], who use EIRC dataset. (4): The given results are quoted from Yuan and Guo
[9], who use Java SE Development Kit 7 and Linux kernel 2.6.38.6 datasets. (5): The results given are obtained from Falke and Koschke
[14], who use bison 1.32, wget 1.5.3, SNNS 4.2, and postgreSQL 7.2 datasets. (6): The results are obtained from Hotta et al. [67], who use
netbeans, ant, jtcore and swing datasets. (7): The given results are obtained from Kodhai et al. [19], who use Weltab dataset. (8): The results
are obtained from Abdul-El-Hafiz et al. [48], who use Weltab and SNNS datasets. (9): The results are obtained from Higo and Kusumoto
[49], who use Ant dataset.

16

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

6.4 Clone Relation
Clones reported as clone classes are more useful than clone pairs.
Finding clone classes reduces the number of comparisons such as
in the case of the NICAD tool [13]. They are more useful for main-
tenance than clone pairs.

6.5 Comparison Units
There are various levels of comparison units such as source lines,
tokens, subtrees and subgraphs. Text-based techniques compare the
source code line-by-line, but their results may not be meaning-
ful syntactically. Token-based techniques use tokens of the source
code. However, token-based techniques can be less efficient in time
and space than text-based techniques because a source line may
contain several tokens. Tree-based techniques use tree nodes for
comparison units and search for similar trees with expensive com-
parison, resulting in low recall. Metric-based techniques use metric
values for each code fragment but it could be that the metric values
for cloned code are not the same. PDG-based techniques use PDG
nodes and search for isomorphic subgraphs but graph matching is
costly.

6.6 Complexity
Computational complexity is a major concern in code clone detec-
tion techniques. A good clone detection technique should be able
to detect clones in large systems. The complexity of each technique
depends on the comparison algorithm, comparison unit and the type
of transformation used.

6.7 Transformation or Normalization
Transformation and normalization remove uninteresting clones and
remove comments. Thus, these steps help filter noise and detect
near-miss clones. A good tool should filter noise and detect near-
miss clones.

7. RELATED AREAS
Code clone detection techniques can help in areas such as clone
refactoring or removal, clone avoidance, plagiarism detection, bug
detection, code compacting, copyright infringement detection and
clone detection in models.

7.1 CLONE REFACTORING OR REMOVAL
Code clones can be refactored after they are detected. Code clone
refactoring is a technique that restructures existing cloned code
without changing its external behavior or functionality. Code clone
refactoring improves design, flexibility and simplicity without
changing a program’s external behavior. Refactoring or removal is
used to improve maintainability and comprehensibility of software
[40]. However, Kim et al. [10] show that clone refactoring is not
always a solution to improve software quality because of two
issues. First, clones are frequently short-lived. Refactoring is not
good if there are branches from a block within short distances.
Second, long-lived clones that have been modified with other
elements in the same class are hard to be removed or refactored.
In addition, a bug that can be fixed easily because the source
code is easy to understand improves malleability leading to code
extensibility.

Fig. 7. Simple Example of Extract Method.

Goto et al. [70] present an approach based on coupling or cohesion
metrics to rank extract methods for merging. They use AST
differencing to detect syntactic differences between two similar
methods using slice-based cohesion metrics. This method helps
developers or programmers in refactoring similar methods into
cohesive methods.

Meng et al. [71] design and implement a new tool called
RASE. RASE is an automated refactoring tool that consists of
four different types of clone refactoring approaches: use of extract
methods, use of parameterized types, use of form templates, and
adding parameters. RASE performs automated refactoring by
taking two or more methods to perform systematic edits to produce
the target code with clones removed.

Fontana et al.[73] conclude that removing duplicated code
leads to an improvement of the system in most cases. They analyse
the impact of code refactoring on eight metrics, which five metrics
on package level and three metrics on class level.

At Package level [73]

(1) LOC: Line of code at Package level,
(2) NOM: Number of methods at Package level,
(3) CC: Cyclomatic complexity at Package level,
(4) CF: Coupling factor at Package level and,
(5) DMS: Distance from the main sequence at Package level.

At Class level [73]
[i)]WMC: Weighted method complexity, LCOM: Lack cohe-
sion in methods and, RFC: Response for a Class.

They calculate the metrics value and observe that the quality met-
rics are improved in class level. Therefore, refactoring code im-
proves the quality of specific classes.

7.2 Types of code refactoring
There are a number of different types of code refactoring ap-
proaches that can be performed.

(1)(2)(3)(1) Extract Class. When two classes are identical or have simi-
lar subclasses, they can be refactored by creating a new class,
moving the relevant fields and methods from the old class into
the new class.

17

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

Table 10. Summary of Evaluation Approaches.
Approach Precision Recall Scalability Portability
Text-based High Low Depends on comparison

algorithm
High

Token-based Low High High Medium
Tree-based High Low Depends on comparison

algorithm
Low

Metric-based Medium Medium High Low
PDG-based High Medium Low Low

Fig. 8. Simple Example of Pull Up Method.

Fig. 9. Simple Example of Add parameter in Method.

(2) Extract Method. The easiest way of refactoring a clone is to use
the extract method of refactoring. The extract method extracts
a fragment of source code and redefines it as a new method. In
this type, code clones can be removed as shown in Figure 7.

(3) Rename Methods. Renaming a method does not reveal the
method’s purpose or change the name of the method.

(4) Push Down Method. Moving a method from a superclass into
a sub-class.

(5) Pull Up Method. Moving a method from a subclass into a
super-class. This type can remove the code clones as shown
in Figure 8.

(6) Add Parameter. When a new method or function needs more
information from its caller, the code can be refactored as shown
in Figure 9.

(7) Replace Constructor With Factory. This can be used when
there is an object that is created with a type code and later
it needs sub-classes. Constructors can only return an instance
of the object. So, it is necessary to replace the constructor with
a factory method as shown in Figure 11.

Fig. 10. Example of Replace Constructor With Factory.

Juillerat et al. [42] propose a new algorithm for removing code
clone using Extract refactoring for Java. Kodhai et al. [40] use Re-
name, Add Parameter, and Replace Constructor With Factory meth-
ods after detecting functions or methods in C or Java applications to
remove or refactor code clones. Choi et al. [41] propose a method
to combine clone metric values to extract clone sets from CCFinder
output for refactoring. They use the metric graph of Gemini [63] for
analyzing the output of CCFinder.

7.3 CLONE AVOIDANCE
Two approaches are discussed to deal with cloning, how to detect
clones and how to remove clones. The third approach is avoidance,
which tries to disallow the creation of code clones in the software
right from the beginning. Legue et al. [43] use a code clone detec-
tion tool in two ways in software development. The first way uses
code clone detection as preventive control where any added code
fragment is checked to see if it is a duplicated version of any ex-
isting code fragment before adding it to the system. The second
way, problem mining, searches for the modified code fragment in
the system for all similar code fragments.

7.4 Plagiarism Detection
Code clone detection approaches can be used in plagiarism detec-
tion of software code. Dup [8] is a technique that is used for finding
near matches of long sections of software code. JPlag [33] is an-
other tool that finds similarities among programs written in C, C++,
Java, and Scheme. JPlag compares bytes of text and program struc-
ture. Yuan et al. [44] propose a count-based clone detection tech-
nique called CMCD. CMCD has been used to detect plagiarisms in
homeworks of students.

7.5 Bug Detection
Code clone detection techniques can also help in bug detection. CP-
Miner [8, 35] has been used to detect bugs. Higo et al. [45] propose
an approach to efficiently detect bugs that are caused by copy-paste
programming. Their algorithm uses existing detection tools such as
CCFinderX [69].

18

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

7.6 Code Compacting
Code size can be reduced by using code clone detection techniques
and replacing common code using code refactoring techniques [5].

7.7 Copyright Infringement
Clone detection tools can easily be adapted to detect copyright in-
fringement [8].

7.8 Clone Detection in Models
Model-based development can also use clone detection techniques
to detect duplicated parts of models [46]. Deissenboeck et al. [47]
propose an approach for an automatic clone detection using large
models in graph theory.

8. OPEN PROBLEMS IN CODE CLONE
DETECTION

There is no clone detection technique which is perfect in terms of
precision, recall, scalability, portability and robustness. Therefore,
it is necessary to come up with new clone detection approaches that
can do better by overcoming some of the limitations of existing
techniques. There is hardly any tool that can detect Type-3 and
Type-4 clones. Type-4 clones requires to solve an undecidable
problem [64]. Clone detection technique can be improved by
combining several different types of methods or reimplementing
systems using a different programming language. This presents
new challenges for software maintenance, refactoring and clone
management.

It is hard to determine which is the best tool for detection
because every tool has its strengths and weaknesses. Since text-
based and token-based techniques have high recall and AST-based
techniques have high precision, these techniques may be merged
in a tool to get high recall and precision results. A PDG-based
technique detects only Type-3 clones; this technique may be
extended to detect Type-1 and Type-2 clones besides Type-3 clones.

Type-1 and Type-2 clones are easier to detected than Type-3
clones. Sequence alignment algorithms with gaps may potentially
be used to detect Type-3 clones. To detect plagiarism in program
code, text similarity measures and local alignment for high
scalability may be used.

9. CONCLUSION
Software clones occur due to reasons such as code reuse by copy-
ing pre-existing fragments, and repeated computations using dupli-
cated functions with slight changes in the used variables, data struc-
tures or control structures. After introducing code clones, common
types of clones, phases of clone detection, we have discussed at
length code clone detection techniques, covering a number of tech-
niques in detail. Recent code clone detectors and tools that have not
been discussed in previous survey papers are covered. This survey
stands apart from other prior surveys in that it organizes the discus-
sion in terms of a classification scheme, categorizes clone detection
techniques, under classes and subclasses, provides a level of detail
not found in other surveys to facilitate a newcomer to the field to
get started and get into the field full-speed, provides extensive com-
parison of the methods so that one can choose right method needed
for one’s needs as well as develop new methods that may overcome
drawbacks of existing methods.

10. REFERENCES

[1] Ratten, Dhavleesh,Rajesh Bhatia, and Maninder Singh. Soft-
ware clone detection: A systematic review. Information and
Software Technology 55.7 (2013): 1165-1199.

[2] Yang, Jiachen, et al. Classification model for code clones
based on machine learning. Empirical Software Engineering
(2014): 1-31.

[3] Walenstein, Andrew, and Arun Lakhotia. The software simi-
larity problem in malware analysis. Internat. Begegnungs-und
Forschungszentrum fr Informatik, 2007.

[4] Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro Inoue.
CCFinder: a multilinguistic token-based code clone detec-
tion system for large scale source code. Software Engineering,
IEEE Transactions on 28.7 (2002): 654-670.

[5] Chen, Wen-Ke, Bengu Li, and Rajiv Gupta. Code compaction
of matching single-entry multiple-exit regions. Static Analy-
sis. Springer Berlin Heidelberg, 2003. 401-417.

[6] Bruntink, Magiel, et al. On the use of clone detection for
identifying crosscutting concern code. Software Engineering,
IEEE Transactions on 31.10 (2005): 804-818.

[7] Li, Zhenmin, et al. CP-Miner: Finding copy-paste and re-
lated bugs in large-scale software code. Software Engineer-
ing, IEEE Transactions on 32.3 (2006): 176-192.

[8] Baker, Brenda S. On finding duplication and near-duplication
in large software systems. refeverse Engineering, 1995., Pro-
ceedings of 2nd Working Conference on. IEEE, 1995.

[9] Yuan, Yang, and Yao Guo. Boreas: an accurate and scalable
token-based approach to code clone detection. Proceedings of
the 27th IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2012.

[10] Kim, Miryung, et al. An empirical study of code clone ge-
nealogies. ACM SIGSOFT Software Engineering Notes. Vol.
30. No. 5. ACM, 2005.

[11] Roy, Chanchal Kumar, and James R. Cordy. NICAD: Accu-
rate detection of near-miss intentional clones using flexible
pretty-printing and code normalizationProgram Comprehen-
sion, 2008. ICPC 2008. The 16th IEEE International Confer-
ence on. IEEE, 2008.

[12] Lee, Seunghak, and Iryoung Jeong. SDD: high performance
code clone detection system for large scale source code. Com-
panion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and appli-
cations. ACM, 2005.

[13] Baxter, Ira D., et al. Clone detection using abstract syntax
trees. Software Maintenance, 1998. Proceedings., Interna-
tional Conference on. IEEE, 1998.

[14] Koschke,Rainer,Raimar Falke, and Pierre Frenzel. Clone de-
tection using abstract syntax suffix trees. Reverse Engineer-
ing, 2006. WCRE’06. 13th Working Conference on. IEEE,
2006.

[15] S. Ducasse, M. Rieger and S. Demeyer, A Language Inde-
pendent Approach for Detecting Duplicated Code, Proc. Int’,l
Conf. Software Maintenance, pp. 109-118, 1999.

[16] Roy, C. K., and Cordy, J. R., A mutation / injection-based au-
tomatic framework for evaluating code clone detection tools
, in Proc. The IEEE International Conference on Software
Testing, Verification, and Validation Workshops , 2009, pp.
157-166.

19

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

[17] Funaro, Marco, et al. A hybrid approach (syntactic and tex-
tual) to clone detection. Proceedings of the 4th International
Workshop on Software Clones. ACM, 2010.

[18] Agrawal, Akshat, and Sumit Kumar Yadav. A hybrid-token
and textual based approach to find similar code segments.
2013 Fourth International Conference on Computing, Com-
munications and Networking Technologies (ICCCNT). IEEE,
2013.

[19] E. Kodhai, S. Kanmani, A. Kamatchi,R. Radhika, and B. Vi-
jaya saranya, Detection of type-1 and type-2 code clones us-
ing textual analysis and metrics, Proc. Int. Conf. on Recent
Trends in Information, Telecommunication and Computing,
2010, pp. 241-243.

[20] J. Mayrand, C. Leblanc and E. Merlo, Experiment on the auto-
matic detection of function clones in a software system using
metrics, Proc. Int. Conf. on Software Maintenance, 1996, pp.
244-253.

[21] E. Merlo, detection of plagiarism in university projects us-
ing metrics-based spectral similarity, Proc. Dagstuhl Seminar
06301: Duplication,Redundancy, and Similarity in Software,
2006.

[22] R. Komondoor and S. Horwitz. Using Slicing to Identify Du-
plication in Source Code. In SAS, pp. 40-56, 2001.

[23] Gabel, Mark, Lingxiao Jiang, and Zhendong Su. Scal-
able detection of semantic clones. Software Engineering,
2008. ICSE’08. ACM/IEEE 30th International Conference
on. IEEE, 2008.

[24] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed se-
quential patterns in large datasets, 2003.

[25] A.V. Aho,R. Sethi, and J. Ullman, Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[26] Ducasse, Stphane, Oscar Nierstrasz, and Matthias Rieger. On
the effectiveness of clone detection by string matching. Jour-
nal of Software Maintenance and Evolution: Research and
Practice 18.1 (2006): 37-58.

[27] Roy, Chanchal K., James R. Cordy, and Rainer Koschke.
Comparison and evaluation of code clone detection tech-
niques and tools: A qualitative approach. Science of Computer
Programming 74.7 (2009): 470-495.

[28] Jiang, Lingxiao, et al. Deckard: Scalable and accurate tree-
based detection of code clones. Proceedings of the 29th in-
ternational conference on Software Engineering. IEEE Com-
puter Society, 2007.

[29] Raheja, Kanika, and Rajkumar Tekchandani. An emerging ap-
proach towards code clone detection: metric based approach
on byte code. International Journal of Advanced Research in
Computer Science and Software Engineering 3.5 (2013).

[30] Sharma, Yogita. Hybrid technique for object oriented soft-
ware clone detection. Diss. THAPAR UNIVERSITY, 2011.

[31] Krinke, Jens. Identifying similar code with program de-
pendence graphs. Reverse Engineering, 2001. Proceedings.
Eighth Working Conference on. IEEE, 2001.

[32] Liu, Chao, et al. GPLAG: detection of software plagiarism
by program dependence graph analysis. Proceedings of the
12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2006.

[33] Prechelt, Lutz, Guido Malpohl, and Michael Philippsen. Find-
ing plagiarisms among a set of programs with JPlag. J. UCS
8.11 (2002): 1016.

[34] Wahler, Vera, et al. Clone Detection in Source Code by Fre-
quent Itemset Techniques. SCAM. Vol. 4. 2004.

[35] Patenaude, J-F., et al. Extending software quality assess-
ment techniques to java systems. Program Comprehen-
sion, 1999. Proceedings. Seventh International Workshop on.
IEEE, 1999.

[36] Kontogiannis, K., M. Galler, and R. DeMori. Detecting code
similarity using patterns. Working Notes of the Third Work-
shop on AI and Software Engineering: Breaking the Toy Mold
(AISE). 1995.

[37] Kontogiannis, Kostas A., et al. Pattern matching for clone and
concept detection. Reverse engineering. Springer US, 1996.
77-108.

[38] Weiser, Mark. Program slicing. Proceedings of the 5th in-
ternational conference on Software engineering. IEEE Press,
1981.

[39] Hummel, Benjamin, et al. Index-based code clone detec-
tion: incremental, distributed, scalable. Software Maintenance
(ICSM), 2010 IEEE International Conference on. IEEE,
2010.

[40] Kodhai, Vijayakumar, Balabaskaran, Stalin, and Kanagaraj, et
al. Method Level Detection and Removal of Code Clones in C
and Java Programs using Refactoring. In IJJCET, pp. 93-95,
2010.

[41] Choi, Eunjong, et al. Extracting code clones for refactoring
using combinations of clone metrics. Proceedings of the 5th
International Workshop on Software Clones. ACM, 2011.

[42] Juillerat, Nicolas, and Bat Hirsbrunner. An algorithm for de-
tecting and removing clones in java code. Proceedings of the
3rd Workshop on Software Evolution through Transforma-
tions: Embracing the Change, SeTra. Vol. 2006. 2006.

[43] Lague, Bruno, et al. Assessing the benefits of incorporating
function clone detection in a development process. Software
Maintenance, 1997. Proceedings., International Conference
on. IEEE, 1997.

[44] Yuan, Yang, and Yao Guo. CMCD: Count matrix based code
clone detection. Software Engineering Conference (APSEC),
2011 18th Asia Pacific. IEEE, 2011.

[45] Higo, Yoshiki, K-I. Sawa, and Shinji Kusumoto. Problematic
code clones identification using multiple detection results.
Software Engineering Conference, 2009. APSEC’09. Asia-
Pacific. IEEE, 2009.

[46] Deissenboeck, Florian, et al. Model clone detection in prac-
tice. Proceedings of the 4th International Workshop on Soft-
ware Clones. ACM, 2010.

[47] Deissenboeck, Florian, et al. Clone detection in automotive
model-based development. Proceedings of the 30th interna-
tional conference on Software engineering. ACM, 2008.

[48] Abd-El-Hafiz, Salwa K. A metrics-based data mining ap-
proach for software clone detection. Computer Software and
Applications Conference (COMPSAC), 2012 IEEE 36th An-
nual. IEEE, 2012.

[49] Higo, Yoshiki, et al. Incremental code clone detection: A
PDG-based approach. Reverse Engineering (WCRE), 2011
18th Working Conference on. IEEE, 2011.

[50] Dean, Thomas R., et al. Agile parsing in TXL. Automated
Software Engineering 10.4 (2003): 311-336.

[51] Cordy, James R. The TXL source transformation language.
Science of Computer Programming 61.3 (2006): 190-210.

20

International Journal of Computer Applications (0975 - 8887)
Volume 137 - No.10, March 2016

[52] Han, Jiawei. Data Mining: Concepts and Techniques. (2006).
[53] Burd, Elizabeth, and John Bailey. Evaluating clone detection

tools for use during preventative maintenance. Source Code
Analysis and Manipulation, 2002. Proceedings. Second IEEE
International Workshop on. IEEE, 2002.

[54] Rysselberghe, Filip Van, and Serge Demeyer. Evaluating
clone detection techniques from a refactoring perspective.
Proceedings of the 19th IEEE international conference on Au-
tomated software engineering. IEEE Computer Society, 2004.

[55] Mayrand, Jean, Claude Leblanc, and Ettore M. Merlo. Ex-
periment on the automatic detection of function clones in a
software system using metrics. Software Maintenance 1996,
Proceedings., International Conference on. IEEE, 1996.

[56] Schleimer, Saul, Daniel S. Wilkerson, and Alex Aiken. Win-
nowing: local algorithms for document fingerprinting. Pro-
ceedings of the 2003 ACM SIGMOD international conference
on Management of data. ACM, 2003.

[57] Cutting, Doug, and Jan Pedersen. Optimization for dynamic
inverted index maintenance. Proceedings of the 13th annual
international ACM SIGIR conference on Research and devel-
opment in information retrieval. ACM, 1989.

[58] Arya, Sunil, et al. An optimal algorithm for approximate near-
est neighbor searching. Proceedings of the fifth annual ACM-
SIAM symposium on Discrete algorithms. Society for Indus-
trial and Applied Mathematics, 1994.

[59] http://pages.cs.wisc.edu/ cs302/labs/EclipseTutorial/
[60] Baker, Brenda S. Parameterized pattern matching: Algorithms

and applications. Journal of Computer and System Sciences
52.1 (1996): 28-42.

[61] Datar, Mayur, et al. Locality-sensitive hashing scheme based
on p-stable distributions. Proceedings of the twentieth annual
symposium on Computational geometry. ACM, 2004.

[62] Rivest,Ronald. The MD5 message-digest algorithm. (1992).
[63] Higo, Yoshiki, et al. On software maintenance process im-

provement based on code clone analysis. Product Focused
Software Process Improvement. Springer Berlin Heidelberg,
2002. 185-197.

[64] Bellon, Stefan, et al. Comparison and evaluation of clone de-
tection tools. Software Engineering, IEEE Transactions on
33.9 (2007): 577-591.

[65] Murakami, Hiroaki, et al. Folding repeated instructions for
improving token-based code clone detection. Source Code
Analysis and Manipulation (SCAM), 2012 IEEE 12th Inter-
national Working Conference on. IEEE, 2012.

[66] Murakami, Hiroaki, et al. Gapped code clone detection with
lightweight source code analysis. Program Comprehension
(ICPC), 2013 IEEE 21st International Conference on. IEEE,
2013.

[67] Hotta, Keisuke, et al. How Accurate Is Coarse-grained Clone
Detection?: Comparision with Fine-grained Detectors. Elec-
tronic Communications of the EASST 63 (2014).

[68] Smith, Temple F., and Michael S. Waterman. Identification of
common molecular subsequences. Journal of molecular biol-
ogy 147.1 (1981): 195-197.

[69] CCFinderX, http://www.ccfinder.net/.
[70] Akira Goto, Norihiro Yoshida, Masakazu Ioka, Eunjong Choi,

and Katsuro Inoue. How to extract differences from similar
programs? A cohesion metric approach. In Proceedings of the
7th International Workshop on Software Clones, 2013.

[71] Meng, N., Hua, L., Kim, M., McKinley, K. S. Does Auto-
mated Refactoring Obviate Systematic Editing?. UPDATE, 6,
7.

[72] Koschke, Rainer. Survey of research on software clones.
Internat. Begegnungs-und Forschungszentrum fr Informatik,
2007.

[73] Arcelli Fontana, Francesca, et al. Software clone detection
and refactoring. ISRN Software Engineering (2013).

[74] Roy, Chanchal Kumar, and James R. Cordy. A survey on soft-
ware clone detection research. Technical Report 541, Queen’s
University at Kingston, 2007.

[75] Shafieian, Saeed, and Ying Zou. Comparison of Clone De-
tection Techniques. Technical report, Queen?s University,
Kingston, Canada, 2012.

[76] Dang, S. and Wani, S.A., Performance Evaluation of Clone
Detection Tools.

21

	Introduction
	Background
	Basic Definitions
	Types of Clones

	Previous Surveys
	CLONE DETECTION PHASES
	Code Preprocessing
	Transformation
	Match Detection
	Formatting
	Filtering
	Aggregation

	Clone Detection Techniques
	Characteristics of Detection Techniques
	Categories of Detection Techniques
	Textual Approaches
	Summary of Textual Approaches
	Lexical Approaches
	Summary of Lexical Approaches
	Syntactical Approaches
	Summary of Syntactical Approaches
	Semantic Approaches
	Summary of Semantic Approaches

	 Evaluation of Clone Detection Techniques
	Precision and Recall
	Precision.
	Recall.

	Portability
	Scalability
	Clone Relation
	Comparison Units
	Complexity
	Transformation or Normalization

	RELATED AREAS
	CLONE REFACTORING OR REMOVAL
	Types of code refactoring
	CLONE AVOIDANCE
	Plagiarism Detection
	Bug Detection
	Code Compacting
	Copyright Infringement
	Clone Detection in Models

	OPEN PROBLEMS IN CODE CLONE DETECTION
	CONCLUSION
	References

