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ABSTRACT 

An electrocardiogram (ECG) is a recording of electrical 

impulses generated by the electrical activity of the heart and is 

used as a diagnostic tool to analyze various heart diseases. For 

economical storage and fast transmission over low-bandwidth 

channels, ECG data need to be compressed. For the efficient 

compression of ECG signals, the topology preservation 

feature of self-organizing maps (SOM) is used. It is observed 

that a compression ratio up to 1:20 can be achieved with a 

very low-percentage root-mean-square difference, i.e. below 

1.6, by creating templates of ECG patterns in the form of 

weight vectors of neurons. The templates obtained in this 

manner are then used to reconstruct the ECG signal. This 

analysis shows that the reconstructed signal is perfectly 

matched to the original signal. 
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1. INTRODUCTION 
The electrical potential generated by the heart can be recorded 

by applying electrodes to various locations on the body 

surface and then connecting them to a recording apparatus [1, 

2]. This recorded signal is called an electrocardiogram (ECG) 

and is often used as an important diagnostic tool to ascertain 

the functioning of a heart. There are situations in which ECG 

data are recorded at one location and analysed at a different 

location. Further, there is an increasing need to store the 

recorded ECG signal for future use. Therefore, there is a 

requirement for efficient and economical use of memory or 

the transmitting channel, which can be accomplished by 

compressing the ECG signal. 

In this work, the utility of a self-organising map (SOM) for 

the compression and visualisation of ECG signals is explored. 

An SOM is a special class of artificial neural networks which 

has the ability to extract the most important statistical 

characteristics of the input space [3, 4, 5]. One of the biggest 

advantages of an SOM is that it can find a set of 

prototype/templates which are sufficient to represent the 

entire original input space. Using these characteristics of an 

SOM, it is shown that ECG data can be successfully 

compressed [5, 6]. As a first step, different patterns are 

constructed from the original ECG signal to compress the 

ECG signal. These patterns are then used to train the SOM 

neural network. After completion of the training process, it is 

found that the neurons of the network become tuned in such a 

way that their weight vectors are the representative 

prototype/templates of the patterns used to train the network. 

These prototypes contain the most informative content of the 

ECG signal, and the redundancy present in the signal is 

removed. The reconstructed ECG signal using these templates 

demonstrates that a higher CR and low values of the PRD can 

be obtained by proper selection of the various parameters used 

for training the SOM. 

2. MATERIAL AND METHODS 

2.1 Source of the ECG Signal 
The ECG signal used in this work is two-lead ECG data taken 

from the MIT-BIH Arrhythmia Database [7]. A single patient 

record has been used, which is digitised at 360 samples per 

second per channel with 11-bit resolution over the 10-mV 

range. 

2.2 Data Pre-Processing 
To remove 50 Hz power-line interference noise and noisy 

portion of the signal, the data have been pre-processed by 

passing through stages containing a low-pass filter and high-

pass filter devised by Pan and Tompkins [8, 9]. Thereafter, the 

filtering process, the filtered data are normalised for 

compatibility with further stages of analysis. A linear 

normalisation method is used and each normalised value of 

the filtered ECG signal is obtained as follows: 

   minmaxmin xxxxx originalnormalised 
(1) 

where  originalx
  is the original value of the input data, and 

minx
  and maxx

  are the minimum and maximum values in 

the complete ECG signal, respectively. normalisedx
 will 

contain values in the range from 0 to 1. Thereafter, this 

normalised signal is used to construct input patterns for the 

SOM. 

2.3 Formation of Input Patterns for 

Training 
To extract similarity between input patterns, the input data are 

formed by allowing overlapping between them. This 

overlapping is obtained by a repeating signal in the input data 

with an offset. Various sets of input patterns for training can 

be formed in the following manner: 

1st input pattern: 

 )(),........2(),1(),()1( ztxtxtxtxx                (2) 

2nd input pattern: 

 )(),........1(),()2( zntxntxntxx                (3) 

and so on. Here, n is the size of the offset  which is taken as 

unity to construct the patterns and to avoid loss of 

information. To determine the size of the window, we 
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considered that the duration of the normal QRS is 0.06 to 0.10 

s (60–100 ms). 

2.4 Selection of the Window Size 
The original data taken from MIT-BIH Arrhythmia Database 

have been sampled at 360 Hz, which means each sample takes 

1/360 = 2.77 ms time to occur. Therefore, the number of 

samples needed for a complete QRS region should vary 

between 0.06 x 360 = 21 to 0.10 x 360 = 36, i.e. the window 

size should lie between 21 to 36 to include the complete QRS 

region in an input pattern. In this work, training and analysis 

are performed with window sizes of 8, 16, 32, and 64. 

2.5 Formation of Input Patterns for 

Testing 
In this phase, the value of n is taken to be equal to the window 

size. Depending on the window size Z, the test signal is 

broken into „P‟ input vectors, each consisting of Z elements.  

The input patterns for testing can be formed using 

following mathematical expressions: 

1st input pattern 

 )(),........2(),1(),()1( ztxtxtxtxx      (4) 

2nd Input pattern: 

 )2(),........2(),1(),()2( ztxZtxZtxZtxx       (5) 

and so on.  

The Z-dimensional test data are given to the trained network 

of neurons with the same number of elements in their weight 

vectors. 

3. MAP FORMATION 

3.1 SOM Algorithm 
The network in this work is a two-layered structure in which 

one layer is an input layer having a single dimension, and the 

other layer is the output layer having two dimensions. The 

input layer is activated from the input data, expressed as 

  nT

n Rxxxx  ,...,, 21               (6) 

where n is its dimension equal to the window size. The output 

layer consists of neurons or nodes arranged in a two-

dimensional lattice structure. These weight vectors are 

represented as  

  nT

jjj Rwwww
jn

 ,...,, 21                                (7) 

where j is the coordinate of the neuron in the two-dimensional 

output space. The weight vectors of each neuron are initially 

assigned some random values from range [0, 1]. The steps for 

the formation of an SOM proposed by Kohonen [3, 4, 5] are 

as follows. 

Step 1: Determination of the winning neuron or best 

matching unit (BMU) and its location 

Any input pattern picked up randomly from the input space of 

patterns to the network. Thereafter, the winning neuron or 

BMU is the neuron having minimum Euclidean distance (ED) 

 xd j  is determined by  

    jj wxxd   for j=1,…,L                (8) 

where x is the input vector given by equation (6), and wj  is 

the weight vector of the jth neuron. If  xc  is used to 

represent the index of the BMU, then   jxc  , where j is 

the index corresponding to the BMU. 

Step 2: Determination of the amount of cooperation 
As a part of the SOM learning mechanism, weight adaptation 

is utilised for the weights of the BMU and its neighbouring 

neurons. This property of the SOM is also called cooperation 

among neurons and helps in topological preservation of 

information among the patterns, i.e. nearby neurons tend to 

have a preference for a similar pattern type [4]. The amount of 

cooperation among neighbouring neurons is calculated using 

the distance-dependent function given by 

     











 


t
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exp


                              (9) 

where t is the iteration number,  xcjd ,  given by   jxc    

is the ED in the spatial domain between the  xc  location of 

the BMU and the j location of another neuron, and  t  is 

the effective width of the neighbourhood around the winning 

neuron and is also an iteration-dependent quantity. 

Step 3: Weight updating 

The updated weights of the neurons are determined by 

following equation: 

             twtxtettwtw kxcjjj  ,1 
     

(10) 

The learning rate parameter  n  is an iteration-dependent 

quantity in the map and is made to decay exponentially with 

the iteration. 

 In Step 4, the above steps are iterated until the stopping 

criterion is met. The iteration is stopped when  n  is 

reduced to 0.01. 

3.2 SOM Parameters 
When designing the SOM, the parameters which are of 

paramount importance are (i) the size of the map, (ii) the size 

of the input patterns or weight vector, (iii) the learning rate 

parameter, and (iv) the width of the neighbourhood function. 

 The size of the map is one of the most important parameters, 

as it determines how many neurons represent the input data 

space. Further, the size of the map configures the number of 

neurons for clustering different types of information contained 

in the input patterns. In this work, the different map sizes of 

5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, and 

21x21. 

The dimension of the input data should be chosen in such a 

manner that each template in the map forms visually 

understandable data for that dimension. This dimension is 

equal to the window size. 

The learning rate parameter defines how fast the network 

learns the input data. The capability of learning in the map 

depends on the learning rate parameter [3, 4, 5] given by 
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i

i                               (11) 

As per the definition, the learning rate is a time-dependent 

quantity which also depends on the initial learning rate and 

the value of the time constant 2 . In the present work the 

initial value of the learning rate parameter is taken to be unity 

for the network to learn fast. The time constant 2  is chosen 

experimentally. 

The effective width of the neighbourhood function [3, 4, 5] is 

given as: 

  









1

0 exp



i

i                           (12.1) 

 01 log  k                          (12.2) 

The rate at which the neighbourhood width decays 

exponentially relies on the value of τ1 in equation (12.2), 

where 0 the initial neighbourhood width, and K is is a 

constant. The neighbourhood width depends on its initial 

value, set to be equal to the radius of the map; the value of K 

is chosen experimentally. 

3.3 Methodology to Test the Effectiveness 

of SOM in Compressing the ECG Signal 
After the completion of training process the effectiveness of 

the SOM in compressing the ECG signal is tested using the 

procedure as mentioned below: 

Step 1: Storage of Weights/Templates in a File  

The weights of each neuron of the SOM taken column wise 

are stored sequentially in a file named A. Thus there are N x 

N rows in the file with each row consisting of p elements, 

where p is the length of the weight vector. 

Step 2: Determination of Location of Winning Neuron for 

each Input Pattern: 

Using the pre-processed ECG signal the input patterns are 

constructed with an appropriate window size using the method 

as described in section 2.5. These input patterns are stored in a 

file B in sequential manner. Each of these input patterns are 

taken one by one and applied as input to SOM. Out of N x N 

neurons for each of these input patterns one of the neuron will 

be the winning neuron. The location (r, c) of this winning is 

stored in file C in sequential manner (column wise), where r 

and c are the row and column number of winning neuron. 

Step 3:  Reconstruction of ECG Signal Using the Data in 

File A and C 

The location of winning neuron along with its representative 

template for each input pattern is stored in file C and A 

respectively. Using this information the new ECG signal is 

obtained by using the following algorithm. 

i. Initialise i = 1. 

ii. Read the values of the (i)th  and (i+1)th  element 

from file C and store them into variables  r and c 

respectively. 

iii. Calculate s = [(r * N) – N + c], where N x N is the 

dimension of the map.  

iv. Copy the elements of the sth row from file A and 

store it in the file D column wise. 

v. Set i = i + 2. 

vi. Repeat Steps (ii–v) until the end of file C. 

vii. Exit 

File D will contain the reconstructed ECG signal. 

3.4 Performance Evaluation 
To examine the effect of varying parameters on the 

performance of the algorithm to map the input data and to 

authenticate the reconstruction of the original data from the 

map, PRDs[10] and CR [10] is utilized as performance 

measures. The definition of the PRD is given by following 

equation:    
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where  nx
 
 and  nx



 are the original and reconstructed 

signals, respectively; and N its length. 

 The CR is the ratio of the original file size to the compressed 

file size, given as follows: 

Size File Compressed

 Size File Original
CR                         (14) 

For better reconstruction of the original signal, the values of 

the PRD should be very low and CR should be high. Many 

variations exist regarding the parameters used in the equation 

of the SOM algorithm. In this work, we show experimental 

results for variations in two important parameters of the 

algorithm, the width of the neighbourhood function and the 

learning rate parameter, which directly depend on the values 

of K and 2 , respectively. 

4. EXPERIMENTAL RESULTS AND     

      OBSERVATIONS 
On the basis of the methods described in Section 3, the map is 

trained and tested for different window and map sizes, and the 

signal is then reconstructed to evaluate the performance of the 

proposed method. Before training, the suitable values of the 

map parameters explained in section 3.2 are selected. Their 

effect on map formation and calculation of the PRD will be 

analysed one by one. 

4.0.1 Effect of the Time Constant 2 ,  on the 

Learning Rate Parameter 
As described in Section 3.2, the learning rate parameter is a 

time-dependent quantity which decays exponentially with 

time. To analyse the effect of 2 ,  on η n   , 2  was varied 

between 10,000 to 100,000 with the number of iterations fixed 

at 700,000. The iterative process was automatically 

terminated if the learning rate reached a value of 0.001. It was 

observed that 69,078 and 4, 83,543 number of iterations was 

needed for η to reach to 0.001 for  2 equals to 10000 and 

100000 respectively. 
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It can be observed that a larger CPU time and a greater 

number of iterations are needed for   η  to reach 0.001 as 2  

increases. Therefore, the network learns at a fast rate for a 

lower value of 2 , but the network requires more time to learn 

as τ2 increases. However, we cannot choose a suitable value 

for τ2 from this observation alone; therefore, we have used the 

PRD to determine a suitable value for 2 , as described in next 

section. 

4.0.2 Selection of the Suitable Values of 2  and 

value of constant (K) 

To determine the effects of 2  and K, a 7 × 7 map was 

trained with 50,000 sampled ECG data. The map is tested 

with the same input for a window size of 32. For training the 

SOM, the input pattern was selected randomly from the input 

data space; however, the testing input patterns are fed into the 

SOM in a sequential manner. K was varied in the range of 

8,000 to 13,000, and 2  was varied in the range of 10,000 to 

100,000 to select suitable values of K and 2 . It is observed 

that the lowest PRD of 2.5502 is obtained for K and 2  equal 

to 10,000 and 60,000, respectively. Therefore, these values for 

K and 2  are considered to be the most suitable and were 

used for further analysis and experimentation. 

4.1 Training of the SOM with an ECG 

Signal 
For training the map after choosing the map and window size, 

the weight vector of each neuron was initialised. For 

initialising the weight vector, every element of the vector was 

assigned a randomly generated value in the range of 0 to 1. 

Figure 1 shows the initially obtained weight vectors for each 

neuron for a map size of 7 × 7. As can be seen from this 

figure, each weight-vector pattern does not contain any useful 

information, i.e. the patterns of the weight vectors are not 

structured. 

 

Fig 1: Randomly initialised weight vectors in a 7 × 7 map 

obtained before training having window size of 32 

The SOM is trained with the same set of input patterns as in 

Section 2.3 for fixed values of K = 10,000 and 𝜏2 = 60,000 

until the leaning rate reaches 0.001. Figure 2 shows these 

values plotted using MATLAB. Figure 2 contains 49 

subfigures, where each subfigure corresponds to the weight 

vectors after the completion of training for each neuron in a 

7 × 7 map with 32 window-sized input patterns. Each 

subfigure can be considered to be a representative template of 

some part of the ECG signal. From this figure, it can also be 

observed that the nearby patterns/templates are similar. This 

confirms the visualisation property of the SOM. The weight 

vectors of some neurons represent the QRS region, whereas 

other weight vectors represent the non-QRS portions 

including the isoelectric potential portions of the ECG signal, 

the P T waves 

           
Fig 2: Weight vectors of neurons in a 7 × 7 mapobtained 

after training with input pattern having window s size of 

32
 

4.1.1 Effect of Map Sizes 
To observe the role of the map size and to obtain a suitable 

map size, the SOM was trained for different map sizes of 

9 × 9 and 11 × 11. As the size of the map increases, the 

maximum number of neurons available for learning increase, 

which in turn allows the input data to map to a greater number 

of neurons . Figures 3 and 4 show the obtained maps for map 

sizes of 9 × 9 and 11 × 11 for a 32-point window size, 

respectively. 
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Fig 3: Weight vectors of neurons in a 9 × 9 map 

obtained after training with input pattern having 

window size of 32 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Weight vectors of neurons in a 11 × 11 map obtained after training with input pattern having window size of 32  

From Figures 3 and 4, it can be observed that nearby neurons 

tend to have a similar structure for their weight vectors. An 

increase in the map size improves the distinguishing 

capability of the SOM for information. However, the increase 

in the map size does not always play a positive role, as the 

uniqueness in the templates degrades, while redundancy 

begins after a certain limit. This is due to the fact that input 

patterns with a slight difference do not map to the same 

neuron but to nearby neurons.  

4.1.2 Effect of Window Size 
In an ECG curve, more than 32 data points are required to 

represent a complete QRS complex. Therefore, we need to 

increase the window size to capture a complete waveform (P, 

QRS, or T wave) in the weight vectors of a single neuron. 

With a proper window size, better visualisation can be 

achieved. 
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Fig 5: Weight vectors of neurons in a 9 × 9 map obtained after training with input pattern having window size of 16 

Fig 6: Weight vectors of neurons in a 9 × 9 map obtained after training with input pattern having window size of 64 

Figures 5 and  6 show the weight vectors of neurons for a map 

size of 9 × 9 with window sizes of 16, 64, respectively. From 

Figure 5, we cannot determine any portion of the ECG 

waveform with a window size of 16, whereas a portion of the 

ECG waveform having either a QRS or non-QRS region is 

visible in the subfigures in Figure 6 with a window size of 64. 

Therefore, the window size directly affects the visualisation 

property in terms the classification of the waveform. 

4.2 Calculation of the PRD for Different 

Map and Window Sizes  
4.3.1 Testing on Untrained (Unknown) Data 
For the same trained neurons of the map, unknown ECG data 

containing 600,000 samples (one complete ECG lead) from 

which the trained data were taken were tested for all map and 

window sizes. The number of input patterns P in the tested 

signal for various window sizes of 8, 16, 32, and 64 are 

600,000/8 = 75,000; 600,000/16 = 37,500; 

600,000/32 = 18,750; and 600,000/64 = 9,375, respectively. 

Again, K and τ2 are fixed at 10,000 and 60,000, respectively. 

The values of the PRD for the reconstructed signal obtained 

from these tested signals for different map sizes and window 

sizes are listed in Table 1. From the table 1, it can be seen that 

the lowest PRD of 1.2600 is achieved for a map size of 

21 × 21 and window size of 8, this can be termed as best case 

whereas the highest PRD of 4.5237 is achieved for a map size 

of 5x5 and window size of 64; this can be termed as worst 

case. 
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Table 1 Calculated value of the PRD and CR for different 

map and window sizes for unknown data 

Map 

size 

 

 

Window size 

 8 16 32 64 

5 × 5 

PRD 2.4113 3.0339 3.5548 4.5237 

CR 19.64 40.46 72.25 114.50 

7 × 7 

PRD 1.9197 2.2695 2.6868 3.1600 

CR 19.514

4 
39.4099 66.92 91.95 

9 × 9 

PRD 1.7250 2.1533 2.4249 2.8738 

CR 19.98 98.411 60.69 72.25 

11 × 11 

PRD 

 

1.6623 1.9647 2.3151 2.6534 

CR 17.34 36.125 52.7739 54.675 

    

13 × 13 

PRD 

 

1.5936 1.8372 2.1801 2.5100 

CR 15.84 30.807 44.2992

7 
43.35 

    

15 × 15 

PRD 

 

1.4724 1.7898 2.0519 2.2519 

CR 16.630 27.967 37.9312 34.87 

     

17 × 17 

PRD 

 

1.4379 1.6865 2.9004 2.1154 

CR 15.364 16.49 26.7356 29.3188 

19 × 19 

PRD 

 

1.4095 1.6225 1.8455 2.0779 

CR 14.213

1 
24.8729 31.2835 24.1792 

21 × 21 

PRD 

 

1.2600 1.5616 1.7885 1.9211 

CR 13.983 25.0785 27.7123 20.5728 

An overlapped original and reconstructed signal for worst 

case for lead I is shown in figure 7. As can be seen from this 

figure that the QRS region of reconstructed signal overlaps 

the QRS region of original signal i.e. the QRS region has a 

proper reconstruction whereas in Non-QRS portion of 

reconstructed signal most of curve is flat and P and T wave 

forms are missing. Therefore, we can say that map size of 5x5 

with window size of 64 is not suitable for proper 

reconstruction of ECG signal. 

 

Figure 7: Overlapped Original and reconstructed signals 

for a map size of 5 × 5 and a window size of 64 

[PRD = 4.4937 and CR = 31.2381] 

Figure 8 shows a graph of the original and reconstructed 

signals with 1,000 data points, where the lowest PRD is 

achieved in testing the unknown data, i.e. 628,404 samples for 

a map size of 21 × 21 and a window size of 8. Using the 

weight vector for these map and window sizes, a 

reconstructed signal is obtained. 

 

Fig 8: Original and reconstructed signals for a map size of 

21 × 21 and a window size of 8 [PRD = 1.2600 and 

CR = 13.9838] 
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From Figure 8, the reconstructed signal completely overlaps 

the original signal; therefore, it can be concluded that the 

signal can be compressed and reconstructed by properly 

choosing map and window sizes such that there is hardly any 

difference between the original and reconstructed signals. 

Therefore we can say that as the PRD decreases the quality of 

reconstructed signal improves. Therefore, a map size of 21x21 

with window size of 8 is the most suitable combination for a 

very good reconstructed signal quality amongst all the 

combinations. 

5. CONCLUSION 
In this paper, the topology preservation property of self 

organizing map is used as a data compression and 

visualization tool to compress and visualize ECG signals. In 

this work the input pattern of filtered and normalized ECG 

signal are formed. Various parameters that affect learning are 

varied for a particular map size and the suitable parameters for 

learning are chosen amongst all the combination of various 

parameters where the lowest PRD is achieved. These input 

patterns are afterwards trained and tested on different window 

and map sizes for visualization and compression with fixed 

parameters. After training weight vectors of neurons of SOM 

become representative templates to cluster the various 

portions of ECG signal i.e. QRS and non QRS region (P, T, U 

wave and isoelectric line). It is observed that as the window 

size increases more portion of ECG wave form can be 

captured in the template.  

It is also observed that for small map sizes there are similar 

type of templates present in neighborhood and cannot 

distinguish the information properly. But with very large map 

size uniqueness in templates decreases and number of neuron 

increases so CR decreases. Therefore a proper map size 

should be chosen for better visualization and compression. 

Quality of reconstructed signal is analyzed on PRD and CR. 

Therefore, it is concluded that rather than transmitting the 

whole ECG signal only these weight vectors of neurons 

(templates) can be transmitted to remote location at a lower 

bandwidth with in very less time and that can be easily 

reconstructed for clinical diagnosis for the experts. 
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