
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

17

Release Policy, Change-Point Concept, and Effort

Control through Discrete-Time Imperfect Software

Reliability Modelling

Omar Shatnawi
Computer Science Department

Al al-Bayt University
Mafraq 25113, Jordan

P.K. Kapur
Center for Interdisciplinary
Research, Amity University

Nodia 201313, India

Mohd Taib Shatnawi
Al-Huson University College
Al-Balqa’ Applied University

Irbid 21110, Jordan

ABSTRACT

Nonhomogeneous Poisson process based software reliability

models play an important role in developing software systems

and enhancing the performance of computer software. As

software reliability grows on the basis of the execution of

computer test runs. Nonhomogeneous Poisson process type of

discrete-time software reliability models, or difference

equations, is more realistic and often provides better fit than

their continuous-time counterparts. Since discrete-time model

conserves the properties of the continuous-time model, the

estimation of its parameter would be simpler and more

accurate. In this paper, we explore the importance of testing

resource and imperfect debugging phenomenon consideration

in software reliability growth modeling. The resultant model

is very useful for the reliability analysis as the measure of

reliability is computed considering the distribution of testing-

effort, influence of the testing efficiency and the changes of

the testing process. Using the resultant model, testing-effort

control, change-point concept and optimal release policy have

also been investigated. Therefore, this paper thus provides a

new insight into development of discrete-time modelling in

software reliability engineering, that could be of immense

help to the software project manager in monitoring and

controlling the testing process closely and effectively

allocating the resources in order to reduce the testing cost and

to meet the given reliability requirements.

General Terms

Software Reliability Engineering.

Keywords

Software reliability, software testing, imperfect debugging,

nonhomogeneous Poisson process, change-point, effort

control, software release policy.

1. INTRODUCTION
Today, computer systems are indispensable in our daily lives,

and their importance and need have increased immensely.

Successful operation of any computer system depends largely

on its software components. Thus, it is very important to

ensure the quality or reliability of the underlying software in

the sense that it performs its functions, i.e., designed and built

for. Software development process is often called software

development life cycle, because it describes the life of a

software product from its inception to its implementation.

Every software development process includes system

requirements, as it is input and a delivered product as its

output. Many life cycle models have been proposed, based on

the tasks involved in developing and maintaining software,

but they all consists of the following stages: requirement and

specification, design and coding, testing, and operation and

maintenance. Faults can be introduced during any of these

stages and hence it is not possible to produce fault-free

software due to human imperfection. A fault occurs when a

human makes a mistake, called an error, in performing

activities related to the software. A fault can reside in any

development or maintenance system. Faults manifest

themselves in terms of failures, when the software is

executed. A failure is a departure from the system’s required

behavior. Software failure is estimated to cost American

industries USD 60 billion every year [1]. It can be discovered

before or after system delivery, during testing, or during

operation and maintenance. Testing and debugging phase in

the software development process aims at detecting and

removing faults, and hence making the software more reliable.

It is this phase, which is amenable to mathematical modeling

[2]. Several methods exist for studying the cost and schedule

of software; however, reliability is the only measure of

software quality. Software reliability is the probability that a

software product will function failure-free for a specified

period of time in a specified environment [3].

Mathematical modelling based on stochastic and statistics

theories are useful to describe the software fault debugging

phenomenon and to evaluate the reliability quantitatively [4].

Software reliability growth analysis based on statistical

correlations of real faults detection data collected during

testing, is, one of the approaches to conducting statistical

reliability assessment. Because of the complexity of the

factors influencing the debugging process, the quantities

associated with reliability are random variables, and hence

reliability models are based on the stochastic process.

Nonhomogeneous Poisson process forms one of the main

classes of the existing software reliability models, due to its

mathematical tractability and wide applicability. They are

useful in describing fault removal process, providing trends

such as reliability growth and fault content. Software

reliability models consider the debugging process as a

counting process characterized by the value function of a

nonhomogeneous Poisson process.

Software reliability models based on nonhomogeneous

Poisson process are generally classified into two groups. The

first group contains models, which use the execution time or

calendar time. Such models are called continuous-time

models. The second group contains models, which use the test

cases as a unit of fault removal period. Such models called

discrete-time models, since the unit of software fault detection

period is countable. A test case can be a single computer test

run executed in an hour, day, week or even month. Therefore,

the test case includes the computer test run and length of time

spent to visually inspect the software source code. Whereas, a

computer test run is a set of software input variables arranged

in a certain manner to test the functional performance of a

particular part of the software system. Therefore, discrete-

time models are more realistic and often provide better fit than

their continuous-time counterparts [2-9].

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

18

The achieved software reliability during testing phase is

highly related to the amount of development resources, that is,

testing-effort, spent during debugging process. A testing-

effort function describes the distribution or consumption

pattern of testing resources during the testing period. Hence it

is very important to track the software reliability growth with

respect to the testing-effort expenditure [10-20].

When the testing is in its late stage and the product release

date is approaching, an assessment is done to review the

progress of testing and requirement for the additional efforts

is worked out to meet the pre-specified reliability targets.

However, through software reliability models one can

describe how to increase the fault removal by accelerating the

testing-effort intensity [2, 3, 21-32]. In the testing-effort

control problem we estimate the requirement for additional

efforts for the aspiration level to achieve.

A number of discrete-time nonhomogeneous Poisson process

based software reliability models in the software reliability

engineering literature, assume diverse testing and debugging

environments. However, most of them are based upon

constant or monotonically increasing fault removal rate. In

practice, as the testing grows, so does the skill and efficiency

of the testers. With the introduction of new testing strategies

and new test cases, there comes a change in fault removal

rate. The time point where the change in removal curve

appears is termed as change-point [23]. The concept of change

point is relatively recent in the software reliability modeling.

A number of reasons are associated for modeling under

change-point concept such as changes in the testing and

debugging environment, testing strategy, software complexity

and size, fault density, skill, and motivation and constitution

of the testing and debugging team. Modeling using the

change-point concept provides answers to the number of

questions related to the changing scenarios during testing

phase [2].

Reliability, scheduled delivery and cost are the three main

quality attributes for almost all software. The primary

objective of the software developer’s to attain them at their

best values, then only they can obtain long-term profits and

make a brand image in the market for longer survival.

Software users demand faster deliveries, cheaper software and

quality product, whereas software developers aim at

minimizing their development cost, maximizing the profit

margins and meeting the competitive requirements. The

resulting situation calls for tradeoffs between conflicting

objectives of software users’ requirements with the

developers. As a course of best alternative the developer

management must determine optimally when to stop testing

and release the software system to the user focusing on the

users’ requirements, simultaneously satisfying their own

objectives. Such a problem is known as software release time

decision problem in the literature of software reliability

engineering [2]. Most of the software release time decision

problems formulated considering cost, reliability or failure

intensity and number of faults removed require the exact

computation of cost function coefficients, amount of available

resources, reliability or failure intensity aspiration levels, etc.

The values of these quantities besides some static factors

depend on a number of factors, which are non-deterministic in

nature. However, in the actual software development, the

manager must spend and control the testing resources with a

view to minimizing the total software cost and satisfying

reliability requirements rather than only minimizing the cost

[4]. By the application of software release time problem

managers are able to predict the delivery date of the software

with a predetermined level of quality measure to be attained

by that time.

The remainder of this paper is organized as follows. Section 2

presents how beginning with very simple assumptions,

nonhomogeneous Poisson process type of discrete-time

software reliability models, are gradually made more realistic

with the incorporation of imperfect debugging and testing

effort expenditures. The resultant model adopts the number of

test cases as a unit of fault removal period, which is countable

and more appropriate measure than machine time or calendar

time used in continuous-time software reliability models.

Section 3 provides the testing effort trade-off with respect to

aspiration level for the debugging process. Section 4

incorporates the change point in fault removal growth

phenomenon. Optimal software release policies for software

reliability growth phenomenon under imperfect debugging are

investigated in Section 5.

2. SOFTWARE RELIABILITY

MODELLING
Software reliability modeling is an important and fast

developing field of research. Its importance is due to the

increased dependency on computer software systems in our

daily life and to the fact that the software system cannot be

made error free. The most important software development

problem is building software to customer demands are that it
be more reliable, built faster, and built cheaper. The scientific

disciple software reliability engineering concerns at

scheduling and systematizing the software development

process and have a control over the various stages of software

development using its tools, methods and process to engineer

quality software. Major roles of software reliability

engineering lies in assuring, controlling and measuring the

software reliability, the key attribute of software quality

during the testing and operational phases of software

development life cycle and locating the time point of an

appropriate balance between the cost of testing and fixing

bugs during operational use. The tools of software reliability

engineering known as software reliability models are used

successfully to evaluate software quantitatively, develop test

cases, schedule status, resource optimization, to count the

number of faults remaining in the software and estimate and

predict the software reliability during testing and operational

environment [2].

2.1 Nonhomogeneous Poisson Process

Models
Nonhomogeneous Poisson processes are an important class of

software reliability models. A discrete counting process
 𝑁𝑛 𝑛≥0 is said to be nonhomogeneous Poisson process with

mean value function 𝑚𝑛 , i.e., expected cumulative number of

faults detected by 𝑛 test cases, if it satisfies the following

conditions:

 There are no failures experienced or fault detected at

𝑛 = 0, i.e., 𝑁𝑛=0 = 0.

 The counting process has independent increments, i.e.,

for any collection of the numbers of test cases

𝑛1,𝑛2,… ,𝑛𝑘 where (0 < 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘), the 𝑘

random variables (𝑁𝑛1
,𝑁𝑛2

−𝑁𝑛1
,… ,𝑁𝑛𝑘 − 𝑁𝑛𝑘−1

) are

statistically independent.

 For any of numbers of test cases 𝑛𝑖 and 𝑛𝑗 where

(0 ≤ 𝑛𝑖 ≤ 𝑛𝑗), we have

 ℙ𝕣 𝑁𝑛 𝑖 − 𝑁𝑛𝑗 = 𝑥 =
 𝜆𝑛

𝑥

𝑥 !
𝑒−𝜆𝑛 , 𝑥 = 0,1,2… (1)

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

19

Therefore, if we define the expected value number of faults

𝑁𝑛 whose mean value function is known as 𝑚𝑛 , then an

software reliability model based on nonhomogeneous Poisson

process can be formulated as a Poisson process

 ℙ𝕣 𝑁𝑛 = 𝑥 =
 𝑚𝑛

𝑥

𝑥 !
∙ 𝑒− 𝑚𝑛 , 𝑥 = 0,1,2… (2)

The intensity function 𝜆𝑛 (or the mean value function 𝑚𝑛) is

the basic building block of all the nonhomogeneous Poisson

process models existing in the software reliability engineering

literature.

2.2 Model Development
Earlier software reliability modelling approaches were

developed based on calendar time or execution time as the

unit of fault-detection/removal period and either assume that

the consumption rate of testing resources is constant, or do not

explicitly consider the testing effort and its effectiveness.

Later, many models were proposed describing the relationship

among the testing time (calendar time), testing-effort

expenditure and the number of software faults detected.

However, very limited approaches were proposed in discrete

time owning to the complexity of exact form solution of the

mean value function [25-29].

One of the pioneering attempts was the discrete software

reliability growth model with testing effort due to Kapur et al.

[30]. The model describes the relationship among the

executed number of test runs, testing-effort expenditure and

the number of software faults detected in an ideal debugging

environment.

Under the basic assumption that the expected cumulative

number of faults detected between the 𝑛𝑡ℎ and the 𝑛 + 1 𝑡ℎ

test cases is proportional to the number of faults remaining

after the execution of the 𝑛𝑡ℎ test run, satisfies the following

difference equation

 𝜆𝑛 =
𝑚𝑛+1−𝑚𝑛

𝛿
= 𝑏 𝑎 −𝑚𝑛 (3)

here 𝑎 is a fault content and 𝑏 constant fault removal per

remaining fault per test case.

To solve this difference equation we employ the method of

probability generating function.

Multiply both sides by 𝑧𝑛 and summing over 𝑛 from 0 to ,

we get:

 𝑧𝑛𝑚𝑛+1
∞
𝑛=0 − 𝑧𝑛𝑚𝑛

∞
𝑛=0 =

𝑎𝛿𝑏 𝑧𝑛∞
𝑛=0 − 𝛿𝑏 𝑧𝑛𝑚𝑛

∞
𝑛=0

1

𝑧
 𝑧𝑛+1𝑚𝑛+1
∞
𝑛=0 − 𝑧𝑛𝑚 𝑛

∞
𝑛=0 = 𝑎𝛿𝑏 𝑧𝑛∞

𝑛=0 −

𝛿𝑏 𝑧𝑛𝑚𝑛
∞
𝑛=0

 𝑧𝑛+1𝑚𝑛
∞
𝑛=0 − 𝑧𝑛+1𝑚𝑛

∞
𝑛=0 = 𝑎𝛿𝑏 𝑧𝑛+1∞

𝑛=0 −
𝛿𝑏 𝑧𝑛+1𝑚𝑛

∞
𝑛=0

 𝑧𝑛+1𝑚𝑛+1
∞
𝑛=0 = 𝑎𝛿𝑏 𝑧𝑛+1 + (1 − 𝛿𝑏) 𝑧𝑛+1𝑚𝑛

∞
𝑛=0

∞
𝑛=0

 𝑧1𝑚1 + 𝑧2𝑚2 + 𝑧3𝑚3 + ⋯ = 𝑎𝛿𝑏 𝑧1 + 𝑧2 + 𝑧3 + ⋯ +
 1 − 𝛿𝑏 𝑧1𝑚0 + 𝑧2𝑚1 + 𝑧3𝑚2 + ⋯ (4)

Comparing the coefficients of like powers of 𝑧 on both sides

and under the boundary condition 𝑚𝑛=0 = 0, we get

𝑚1 = 𝑎𝛿𝑏 + 1 − 𝛿𝑏 𝑚0 = 𝑎𝛿𝑏 + 0 = 𝑎 1 − 1 − 𝛿𝑏 1

𝑚2 = 𝑎𝛿𝑏 + 1 − 𝛿𝑏 𝑚1 = 𝑎𝛿𝑏 + 1 − 𝛿𝑏 𝑎 1 −
 1 − 𝛿𝑏 1 = 𝑎 1 − 1 − 𝛿𝑏 2

𝑚3 = 𝑎𝛿𝑏 + 1 − 𝛿𝑏 𝑚2 = 𝑎𝛿𝑏 + 1 − 𝛿𝑏 𝑎 1 −
 1 − 𝛿𝑏 2 = 𝑎 1 − 1 − 𝛿𝑏 3 (5)

By mathematical induction the closed form solution is given

by:

𝑚𝑛 = 𝑎 1 − 1 − 𝛿𝑏 𝑛 (6)

and hence, the failure intensity can be obtained as follows

 𝜆𝑛 = 𝑎𝑏 1 − 𝛿𝑏 𝑛 (7)

However, the assumption of perfect debugging makes

software models mathematically simple, but on the other

hand, far from reality. In fact, Imperfect debugging of faults

were discovered in almost every company [33]. Therefore,

in actual software development environment, the

debugging team may not be able to remove the fault perfectly

and the detected fault may get replaced by another fault or

may remain. While the first phenomenon is known as fault

generation, the second is called imperfect fault debugging. In

case of fault generation the fault content increases as the

testing progresses and debugging results in introduction of

new faults while removing old ones But in case of imperfect

fault debugging the fault content is not changed, but just

because of incomplete understanding of the software, the

detected fault is not removed completely [31, 32, 34]. Later,

they modified the model to incorporate the first phenomenon

of the imperfect debugging [8]. However, the fact that both

types of imperfect debugging may occurs simultaneously

cannot be ignored. Therefore, we further extend the model to
integrate the effect of both phenomena of imperfect

debugging.

Assuming that fault removal rate per additional fault removed

𝑏 0 < 𝑏 < 1 is reduced by the probability of perfect

debugging 𝑝 0 < 𝑝 ≤ 1 and a constant proportion of

removed faults are generated 𝛼 0 ≤ 𝛼 < 1 while removal,

the difference equation describing the imperfect debugging

phenomenon can be modelled as

 𝜆𝑛 =
𝑚𝑛+1−𝑚𝑛

𝛿
= 𝑏𝑝 𝑎 − 1 − 𝛼 𝑚𝑛 (8)

Solving the above difference equation, following using the

probability generating function method, one can get the

approximate solution

 𝑚𝑛 =
𝑎 1−𝛽𝑛

 1−𝛼
 (9)

here 𝛽𝑛 = 1 − 𝛿𝑝𝑏 1 − 𝛼
𝑛

and hence, the failure intensity can be obtained as follows

 𝜆𝑛 = 𝑎𝑝𝑏𝛽𝑛 (10)

The equivalent continuous-time model corresponding to the

Equation (9) is given by

 𝑚𝑡 =
𝑎 1−𝛽𝑡

 1−𝛼
 (11)

here 𝛽𝑡 = exp −𝑏𝑝 1 − 𝛼 𝑡

which can be derived as a limiting case of discrete-time model

substituting 𝑡 = 𝑛𝛿, lim𝑥→0 1 + 𝑥 1 𝑥 = 𝑒𝑥𝑝, and taking

limit 𝛿 → 0.

2.3 Testing Effort Expenditure Model
Let 𝑊𝑛 denotes the debugging effort expenditure in test cases
 0, 𝑛𝑖 , 𝛽 denotes the consumption rate of the debugging

effort expenditure, and 𝛼 denotes the amount of debugging

effort to be eventually consumed. Under the basic assumption

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

20

that the expected cumulative debugging effort expenditures

between the 𝑛𝑡ℎ and the 𝑛 + 1 𝑡ℎ test cases to be

proportional to the remaining amount of testing effort

expenditure, satisfies the following difference equation

 𝑤𝑛+1 =
𝑊𝑛+1−𝑊𝑛

𝛿
= 𝛽𝑛+1 𝛼 −𝑊𝑛 (12)

when 𝛽𝑛+1 = 𝛽, we have a discrete exponential curve

𝑊𝑛 = 𝛼 1 − 1 − 𝛿𝛽 𝑛 (13)

and hence, the current testing effort expenditure after the

execution of the 𝑛𝑡ℎ test case,, can be obtained as follows

 𝑤𝑛 = 𝛼𝛽 1 − 𝛿𝛽 𝑛 (14)

when 𝛽𝑛+1 =
𝛽

𝛼
𝑊𝑛+1, we have a discrete logistic curve

𝑊𝑛 =
𝛼

1+𝑚 1−𝛿𝛽 𝑛
 (15)

here 𝑚 is defined as 𝑊𝑛=0 =
𝛼

1+𝑚

and hence, the current testing effort expenditure after the

execution of the 𝑛𝑡ℎ test case, can be obtained as follows

 𝑤𝑛 =
𝛼𝑚𝛽 1−𝛿𝛽 𝑛

 1+𝑚 1−𝛿𝛽 𝑛 2
 (16)

when 𝛽𝑛+1 = 𝛽(𝑛 + 1), we have a discrete exponential curve

 𝑊𝑛 = 𝛼 1 − 1 − 𝑖𝛿𝛽 𝑛
𝑖=0 (17)

and hence, the current testing effort expenditure after the

execution of the 𝑛𝑡ℎ test case,, can be obtained as follows

 𝑤𝑛 = 𝛼𝛿𝛽𝑛 1 − 𝑖𝛿𝛽 𝑛−1
𝑖=0 (18)

2.4 Model Formulation
To incorporate the testing effort expenditures into software

reliability modelling, we assuming that the mean number of

faults detected between the 𝑛𝑡ℎ and the 𝑛 + 1 𝑡ℎ test cases

by the current testing-effort is proportional to the mean

number of faults not detected, this model can be expressed by

the following difference equation

𝑚𝑛+1−𝑚𝑛

𝛿
= 𝑤𝑛𝑏𝑝 𝑎 − 1 − 𝛼 𝑚𝑛 (19)

Solving the above difference Equation (19), following using

the probability generating function method, and after tedious

algebraic manipulations, one can get the approximate solution

 𝑚𝑛 =
𝑎 1−𝛽𝑤 𝑛

 1−𝛼
 (20)

here 𝛽𝑤𝑛
= 1 − 𝛿𝑝𝑏 1 − 𝛼 𝑤𝑖

𝑛
𝑖=0

and hence, the failure intensity can be obtained as follows

 𝜆𝑛 = 𝑎𝛿𝑏𝑝𝑤𝑛𝛽𝑤𝑛−1
 (21)

here 𝛽𝑤𝑛−1
= 1 − 𝛿𝑝𝑏 1 − 𝛼 𝑤𝑖

𝑛−1
𝑖=0

This modelling approach clearly illustrates the benefit of

formulating discrete-time imperfect debugging models with

respect to the amount testing effort expenditures per executed

test run. Therefore, the above resultant model 𝑚𝑛 , can depict

more accurate utilization of test resources as well as reliability

prediction at the time of software release.

The equivalent continuous-time model corresponding to the

Equation (20) is given by

 𝑚𝑡 =
𝑎 1−𝛽𝑤 𝑡

 1−𝛼
 (22)

here 𝛽𝑤𝑡
= exp −𝑏𝑝 1 − 𝛼 𝑤𝑡

which can be derived as a limiting case of discrete-time model

substituting 𝑡 = 𝑛𝛿, lim𝑥→0 1 + 𝑥 1 𝑥 = 𝑒𝑥𝑝, and taking

limit 𝛿 → 0.

2.5 Parameter Estimation
Parameters estimation is of primary concern in software

reliability measurement. Software reliability data can be

collected in the form of testing effort 𝑊𝑗 𝑊1 < 𝑊2 < 𝑊3 <

⋯ < 𝑊𝑘 consumed in test cases 0,𝑛𝑖] , where 𝑖 = 1,2,… , 𝑘

in which 𝑚𝑗 0 < 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑘 faults are detected.

Then the parameters 𝛼,𝛽,𝑚 in the discrete testing-effort

function are estimated by the method of least squares as

follows

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑊𝑖 −𝑊

2𝑘
𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑊 𝑘 = 𝑊𝑘
 (23)

where 𝑊 𝑗 = 𝑊𝑗 implies that the estimated value of the testing

effort is equal to the actual value.

Using these estimated parameter values, we estimate the

parameters in the imperfect software reliability model by the

method of maximum likelihood estimation. It is one of the

most popular and useful statistical method for fitting a

mathematical model to some data. The Likelihood function 𝐿
for the unknown parameters with the mean value function

𝑚𝑛 takes on the form

𝐿 𝑎, 𝑏, 𝑝,𝛼 𝑊𝑖 , 𝑥𝑖 =

 𝑚𝑛 𝑖

−𝑚𝑛 𝑖−1
𝑥𝑖−𝑥𝑖−1

 𝑥𝑖−𝑥𝑖−1 !

𝑘
𝑖=1 𝑒𝑥𝑝 − 𝑚𝑛 𝑖 −𝑚𝑛 𝑖−1 (24)

Taking natural logarithm, we get

ln 𝐿 = 𝑥𝑖 − 𝑥𝑖−1
𝑘
𝑖=1 ln 𝑚𝑛 𝑖 −𝑚𝑛 𝑖−1 − 𝑚𝑛 𝑖 −

𝑚𝑛 𝑖−1 ln 𝑥𝑖 − 𝑥𝑖−1
𝑘
𝑖=1 (25)

The MLE of the unknown parameters can be obtained by

maximizing the likelihood function subject to the parameters

constraints. Based on the estimation, we can estimate the

current behavior of the testing process, predict the future

behavior of the testing process, and make decisions regarding

resource allocation and release time.

3. TESTING-EFFORT CONTROL AND

MANAGEMENT
The management of a software development project has time

schedules for testing and release of software. During testing,

often the management is not satisfied with the progress of the

debugging and the growth of the reliability curve. Then there

arises need for employing additional testing-effort in terms of

new techniques, testing tools, more manpower so as to

remove more faults than what could be possibly achieved with

the current level of debugging efforts in a pre-specified time

interval. Therefore, we suggest a debugging effort trade-off

with respect to aspiration level for the debugging process.

This analysis gives an insight into the current level of progress

in debugging and later on helps in the estimation of extra

efforts/cost required to achieve the aspiration level [2, 21-23].

Assume that the software has been testing up to the execution

of the 𝑛1 test run, and is to be released after the execution of

the 𝑛2 test run, where 𝑛2 > 𝑛1. The collected software

reliability data in test cases 0, 𝑛𝑖 , can be employed to

estimate the parameter of the selected software reliability

model. According to the estimated results, the number of

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

21

faults that expected to be detected after the execution of the

𝑛2 test run

 𝑚𝑛2
=

𝑎 1− 1−𝛿𝑑𝑤𝑖
𝑛2
𝑖=0

 1−𝛼
 (26)

where 𝑑 = 𝑏𝑝 1 − 𝛼

here the number of faults that are expected to be detected in

test cases 𝑛1, 𝑛2 is the difference 𝑚𝑛2
−𝑚𝑛1

 .

The number of test cases required can be calculated, by taking

the natural logarithm of the above expression, we have

 𝑙𝑛 1 −
𝑚𝑛2 1−𝛼

𝑎
 = 𝑙𝑛 1 − 𝛿𝑑𝑤𝑖

𝑛2

𝑖=0 (27)

here the value of 𝑛2 can be found iteratively.

However, the management may not be satisfied with the

results obtained at the time of release. One major reason for

this dissatisfaction could be that the reliability level achieved

is not matching the management’s aspiration from the

debugging process. In order to consider the level of reliability

that we may achieve from debugging using the specified

amount of testing resources, we define it in terms the

desirable number of faults to be detected 𝑚𝑁 . If 𝑚𝑁 > 𝑚𝑛2
,

then the fault detection rate has to be increased. Accordingly

we calculate the effort that is needed to detect 𝑚𝑁 −𝑚𝑛2

faults in 𝑛1, 𝑛2 , as follows

 𝑚𝑁 −𝑚𝑛2
=

𝑎− 1−𝛼 𝑚𝑛1
1−𝛼

 1 − 1 − 𝛿𝑑𝑤𝑘
𝑛2−𝑛1
𝑘=1 (28)

The amount of additional resources needed, can be obtained

after some algebraic simplifications, as

 𝑤𝑘
𝑛2−𝑛1
𝑘=1 =

−1

𝛿𝑑
𝑙𝑛 1 −

 𝑚𝑁−𝑚𝑛1
 1−𝛼

𝑎− 1−𝛼 𝑚𝑛1

 (29)

4. CHANGE POINT CONCEPT
As the testing progresses, the testing team gains experience

and with the employment of new tools and techniques, the

fault detection rate gets changed. This change can also be

caused by shift in testing strategy, defect density, introduction

of new test cases, and induction of skilled personnel in team

or simply by the increase in efficiency of present team. The

point of time where the change in fault detection rate is

observed can be termed as change-point [23]. Very few

attempts have been made to incorporate the change-point in

fault removal growth phenomenon. The work in this area

started with Zhao [35] who introduced the change-point

analysis in Hardware and Software reliability. Some

pioneering work has been done in the area by Shyur [36];

Chang [37]; Wang [38].

Most of the research efforts are made in continuous time. Of

late, Kapur et al. [2] incorporated the change-point concept in

discrete-time [39]. In this section an attempt has been made to

discuss the discrete time imperfect debugging model

incorporating change-point concept, based on the following

assumptions:

 the fault detection rate,

𝑏 =
𝑏1, 𝑤ℎ𝑒𝑛 0 ≤ 𝑛 ≤ 𝜏
𝑏2, 𝑤ℎ𝑒𝑛 0 ≤ 𝑛 > 𝜏

 (30)

here 𝑏1and 𝑏2 are the fault detection rates before and after the

change-point, and 𝜏 represents the test case number from

whose execution onward change in the fault detection rate is

observed.

 the probability of fault removal on a fault detection,

𝑝 =
𝑝1, 𝑤ℎ𝑒𝑛 0 ≤ 𝑛 ≤ 𝜏
𝑝2, 𝑤ℎ𝑒𝑛 0 ≤ 𝑛 > 𝜏

 (31)

here 𝑝1and 𝑝2 are the probability of perfect debugging before

and after the change-point

 the fault introduction rate,

𝛼 =
𝛼1, 𝑤ℎ𝑒𝑛 0 ≤ 𝑛 ≤ 𝜏
𝛼2, 𝑤ℎ𝑒𝑛 0 ≤ 𝑛 > 𝜏

 (32)

here 𝑝1and 𝑝2 are the fault introduction rate before and after

the change-point

The solution for 𝑚𝑛 under the initial condition 𝑚𝑛=0 = 0, and

𝑛 = 𝜏, 𝑚𝑛 = 𝑚𝜏 is

𝑚𝑛 =

𝑎 1−𝛽𝟏
𝑛

 1−𝛼1
,

𝑎 1−𝛽𝟏
𝜏𝛽𝟐

𝑛−𝜏 +𝑚𝜏 𝛼1−𝛼2

 1−𝛼2
,

𝑤ℎ𝑒𝑛 0 ≤ 𝑛 ≤ 𝜏

𝑤ℎ𝑒𝑛 𝑛 > 𝜏 (33)

here 𝛽𝒊 = 1 − 𝛿𝑝𝑖𝑏𝑖 1 − 𝛼𝑖 , 𝑖 = 1,2

and hence,

𝜆𝑛 =
𝑎𝑝1𝑏1𝛽1

𝑛 ,

𝑎𝑝2𝑏2𝛽1
𝑛𝛽2

𝑛−𝜏 ,

𝑤ℎ𝑒𝑛 0 ≤ 𝑛 ≤ 𝜏

𝑤ℎ𝑒𝑛 𝑛 > 𝜏 (34)

The study of reliability models with change-point reveals that

a great improvement in the accuracy of evaluation of software

reliability is achieved with the use of change-point models as

it considers the more realistic situations of the testing process.

The presented model describes the difference of testing

environments before and after the change-point employing

different fault detection rates, probability of perfect

debugging, and fault introduction rate while the perfect

debugging model had ignored such differences completely.

The equivalent continuous-time model corresponding to the

Equation (33) is given by

𝑚𝑡 =

𝑎 1−𝛽𝑡

 1−𝛼1
,

𝑎 1−𝛽𝜏𝛽𝑡−𝜏 +𝑚𝜏 𝛼1−𝛼2

 1−𝛼2
,

𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 𝜏

𝑤ℎ𝑒𝑛 𝑡 > 𝜏 (35)

here 𝛽𝑡 = exp −𝑏1𝑝1 1 − 𝛼1 𝑡 ,𝛽𝜏 = exp −𝑏1𝑝1 1 −

𝛼1 𝜏 , and 𝛽𝑡−𝜏 = exp −𝑏2𝑝2 1 − 𝛼2 𝑡 − 𝜏

which can be derived as a limiting case of discrete-time model

substituting 𝑡 = 𝑛𝛿, lim𝑥→0 1 + 𝑥 1 𝑥 = 𝑒𝑥𝑝, and taking

limit 𝛿 → 0.

5. RELEASE POLICY
The software reliability models developed to estimate and

predict software reliability can be used to formulate an

optimization model for software release time decision.

Different policies were formulated based on nonhomogeneous

Poisson process models considering different aspects of the

software release time. The pioneering attempt was due to

Okumoto and Goel [40]. They have investigated

unconstrained problem with either cost minimization or

reliability maximization objective. Later, Yamada and Osaki

[41] discussed release time problems with cost minimization

objective under reliability aspiration constraint and reliability

maximization objective under cost constraint. Xie and Yang

[42] investigated the optimal release time policy based on

imperfect fault debugging software reliability model [43, 44].

They claimed that the cost of testing is a function of perfect

debugging probability, since the testing cost parameter

depends on the testing team composition and testing strategy

used [2]. Further, Kapur et al. [29] modified the model,

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

22

integrating the effect of both imperfect fault debugging and

fault generation with a separate cost of repairing a fault due to

perfect and imperfect fault debugging during testing and

operational phases. Most of the research efforts are made in

continuous time. Of late, Kapur et al. [21, 28] analyzed the

release time problem in discrete time. Recently, Kapur et al.

[45] proposed an optimization problem of determining the

optimal time of software release based on goals set by the

management in terms of cost, reliability and failure intensity

etc. subject to the system constraints.

5.1 Cost Criterion
Kapur et al. [28] formulated the discrete-time version of the

Okumoto and Goel [40] cost function for the total expected

cost incurred during software life-cycle, when the software

released after 𝑁 test cases is given as

𝐶𝑁 = 𝐶0 + 𝐶1 ∙ 𝑚𝑁 + 𝐶2 𝑚𝑁𝑙𝑐
−𝑚𝑁 + 𝐶3 ∙ 𝑁 (36)

Here 𝐶0 is the set-up cost for software testing, 𝐶1 𝐶2 is the

cost of fixing a fault before (after) release of the software, 𝐶3

is the cost per test case per unit effort expenditure, 𝑁𝑙𝑐 is the

software life cycle length and 𝑊𝑁 is the cumulative effort

expenditure at the 𝑁𝑡ℎ test case.

It is a well-established fact that the increase in fault content of

software due to fault generation has a direct effect on the

software cost similar to the effect due to imperfect debugging.

Therefore, the cost of testing 𝐶3𝑝 ,𝛼
, should possess the

following two properties [2]:

 𝐶3𝑝 ,𝛼
 is a monotonous increasing function of 𝑝 and 1 − 𝛼

 when 𝑝 → 1 and 𝛼 → 1, 𝐶3𝑝 ,𝛼
→ ∞

The second property implies that perfect debugging is

impossible in practice or the cost of achieving it is extremely

high. A simple function that meets the above two properties

above is given by

 𝐶3𝑝 ,𝛼
= 𝐶3

1−𝑝 1−𝛼
 (37)

Obviously, all these assumptions and considerations make the

software cost model more realistic.

In the release policies discussed so far, the testing cost is

increasing with 𝑁. If 𝑁 becomes infinitely large, so does the

testing costs. In reality, no software developer will spend

infinite resources on testing the software. In this section, we

discuss a release policy for a discrete-time version of the

continuous-time model [29] with a finite limit on testing effort

expenditures as follows

𝑚𝑖𝑛𝑖𝑚𝑧𝑒 𝐶𝑁𝑝 ,𝛼
= 𝐶0 + 𝐶1𝑝 + 𝐶1

∗ 1 − 𝑝 𝑚𝑁 +

 𝐶2𝑝 + 𝐶2
∗ 1 − 𝑝 𝑚𝑁𝑙𝑐

−𝑚𝑁 +
𝐶3

1−𝑝 1−𝛼
𝑊𝑁 (38)

Comparing the cost when the software is released after

execution of the 𝑁 + 1 and 𝑁 test runs and equating it to

zero, yields

𝐶 𝑁+1 𝑝 ,𝛼
− 𝐶𝑁𝑝 ,𝛼

= 𝐶1𝑝 + 𝐶1
∗ 1 − 𝑝 𝑚𝑁+1 −𝑚𝑁 −

 𝐶2𝑝 + 𝐶2
∗ 1 − 𝑝 𝑚𝑁+1 −𝑚𝑁 +

𝐶3

1−𝑝 1−𝛼
 𝑊𝑁+1 −

𝑊𝑁 = 0

Or, (39)

𝐶 𝑁+1 𝑝 ,𝛼
− 𝐶𝑁𝑝 ,𝛼

= 𝐶1𝑝 + 𝐶1
∗ 1 − 𝑝 𝜆𝑁

− 𝐶2𝑝 + 𝐶2
∗ 1 − 𝑝 𝜆𝑁 + 𝐶3𝑝 ,𝛼

𝑤𝑁 = 0

and hence,

 𝜆𝑁 =
𝐶3𝑝 ,𝛼

 𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗ 1−𝑝 1−𝛼
𝑤𝑁 (40)

The functional form of the discrete fault detection intensity at

the 𝑵𝒕𝒉 test case is given as

 𝜆𝑁 = 𝑚𝑁+1 −𝑚𝑁 = 𝑎𝛿𝑏𝑝𝑤𝑁 1 − 𝛿𝑑𝑤𝑖
𝑁−1
𝑖=0 (41)

𝜆𝑁=0 = 𝑎𝑏, 𝜆𝑁=∞ = 1, 0 < 𝜆𝑁 < 1, and 𝜆𝑁 is a deceasing

function in time.

Theorem I: Assuming 𝐶2 > 𝐶1 > 0,𝐶2
∗ > 𝐶1

∗ > 0, 𝐶3𝑝 ,𝛼
> 0,

and 𝑁 ≥ 0.

1. If 𝑎𝑏 >
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
, then 𝐶𝑁+1𝑝 ,𝛼

− 𝐶𝑁𝑝 ,𝛼
< 0

for 0 < 𝑁 < 𝑁0, and hence, there exists a finite and

unique 𝑁 = 𝑁0 > 0 minimizing 𝐶𝑁𝑝 ,𝛼
.

2. If 𝑎𝑏 ≤
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
, then 𝐶𝑁+1𝑝 ,𝛼

− 𝐶𝑁𝑝 ,𝛼
> 0

for 𝑁 > 0, and hence, 𝐶𝑁𝑝 ,𝛼
 is minimum for 𝑁 = 0.

5.2 Reliability Criterion
Determining release time with only cost minimization

objective becomes purely a developer-oriented policy for

software release. Such a decision may not truly prove to be

optimization of release time. Release time decision is related

to the marketing activities of the software development. In the

era of customer oriented marketing, deciding release time by

minimizing the cost of testing and debugging incurred during

testing and operational phases may completely ignore the

customer requirement of developing software with high

reliability. In view of this, the policy of reliability

maximization [40] at the release time can give a reasonably

affirmative solution. Such a policy for any of the

nonhomogeneous Poisson process type of discrete-time

software reliability model can be formulated as

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑥 𝑁 = 𝑒𝑚𝑁−𝑚𝑁+𝑥 (42)

This policy may require to test the software for an infinite

time as reliability is defined as the probability that a software

failure does not occur between the 𝑁𝑡ℎ and the 𝑁 + 1 𝑡ℎ test

cases, given that the last failure occurrence time 𝑁 ≥ 0(𝑥 ≥
0) is an increasing function with 𝑁. But this is not the

solution we are looking for as software cannot be tested for

infinite time. After a certain time of testing the time required

to detect an additional fault increases exponentially which in

turn also increases the cost of testing. Consider the case of any

firm; no one neither possesses unlimited amount of resources

to dispose on testing nor can they continue testing for infinite

time. For such a policy we can specify a target level of

reliability 𝑅 , and release our software at the time point where

that level is achieved, irrespective of the cost incurred.

It can be easily verified that 𝑅𝑥 𝑁 is increasing in 𝑁 with

𝑅𝑥 0 = 𝑒−𝑚𝑥 , and 𝑅𝑥 ∞ = 1

Thus, if 𝑅𝑥 0 < 𝑅 , there exists 𝑁 = 𝑁1 > 0 , such that

𝑅𝑥 𝑁1
 = 𝑅 . Hence the optimal release time policy based on

achieving a desired level of reliability 𝑅0 can be determined

by the following theorem.

Theorem II: Assuming 𝑁𝑙𝑐 > 𝑁

1. If 𝑅𝑥 0 < 𝑅 , then 𝑁1 ≤ 𝑁 < 𝑁𝑙𝑐

2. If 𝑅𝑥 0 ≥ 𝑅 , then 0 ≤ 𝑁 < 𝑁𝑙𝑐 .

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

23

5.3 Cost-Reliability Criterion
Both of the former policies considered only one of the aspects

of release time; considering any one of them ignores the other.

Reliability being a key measure of quality should be

considered keeping in mind the customer’s requirement; on

the other hand, resources are always limited so that they must

be spent judiciously. It is important to have a tradeoff between

software cost and reliability. Yamada and Osaki [41]

formulated constrained release time problems which minimize

the expected software development cost subject to reliability

not less than a predefined reliability level 𝑅 or maximize

reliability subject to cost not exceeding a predefined budget 𝐵 .

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑁𝑝 ,𝛼

𝑆𝑢𝑏𝑗𝑐𝑒𝑡 𝑡𝑜 𝑅𝑥 𝑁 ≥ 𝑅

 𝐶𝑁𝑝 ,𝛼
≤ 𝐵 ,𝑁 > 0

Or, (43)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑥 𝑁

𝑆𝑢𝑏𝑗𝑐𝑒𝑡 𝑡𝑜 𝐶𝑁𝑝 ,𝛼
≤ 𝐵

 𝑅𝑥 𝑁 ≥ 𝑅 ,𝑁 > 0

The optimal release time for the above optimization problems

can be obtained combining the results of Theorems I and II

for the imperfect software reliability model with testing effort

according to the Theorems III and IV, respectively.

Theorem III: Assuming 𝑁𝑙𝑐 > 𝑁0 and 𝑁𝑙𝑐 > 𝑁1, then release

time is determined based on the following observation, where

𝑁0, 𝑁1 are as defined in theorems I and II,

1. If 𝑎𝑏 >
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝑅𝑥 0 ≥ 𝑅 , then 𝑁 = 𝑁0.

2. If 𝑎𝑏 >
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝑅𝑥 0 < 𝑅 , then 𝑁 =

𝑀𝑎𝑥 𝑁0 ,𝑁1 .

3. If 𝑎𝑏 ≤
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝑅𝑥 0 ≥ 𝑅 , then 𝑁 = 0.

4. If 𝑎𝑏 ≤
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝑅𝑥 0 < 𝑅 , then 𝑁 = 𝑁1.

Theorem IV: Assuming, 𝑁0 < 𝑁𝑙𝑐 < 𝑁1, 𝑁𝑙𝑐 > 𝑁𝐴 and

𝑁𝑙𝑐 > 𝑁𝐵

1. If 𝑎𝑏 ≤
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝐶𝑁0 𝑝 ,𝛼

> 𝐶𝑁𝐵 𝑝 ,𝛼
, or

2. If 𝑎𝑏 ≤
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝐶𝑁0 𝑝 ,𝛼

< 𝐶𝑁𝐵 𝑝 ,𝛼
, then

the budget constraint is met for all 𝑁 0 ≤ 𝑁 < 𝑁𝐴 ,
where 𝐶𝑁𝐴 𝑝 ,𝛼

< 𝐶𝑁𝐵 𝑝 ,𝛼
, then 𝑁 = 𝑁𝐴.

3. If 𝑎𝑏 >
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝐶𝑁0 𝑝 ,𝛼

> 𝐶𝑁𝐵 𝑝 ,𝛼
, then

more budget is required in order to release the software to

meet the above objective.

4. If 𝑎𝑏 >
𝐶3𝑝 ,𝛼

𝑝 𝐶𝟐−𝐶1 + 1−𝑝 𝐶2
∗−𝐶1

∗
 and 𝐶𝑁0 𝑝 ,𝛼

< 𝐶𝑁𝐵 𝑝 ,𝛼
, then

the budget constraint is met for all 𝑁 0 ≤ 𝑁 ≤ 𝑁𝐴 ,
where 𝐶𝑁𝐵 𝑝 ,𝛼 𝑁𝐵<𝑁0

 = 𝐶𝑁𝐵 𝑝 ,𝛼
 and 𝐶𝑁𝐴 𝑝 ,𝛼 𝑁𝐴>𝑁0

 =

𝐶𝑁𝐵 𝑝 ,𝛼
 and then 𝑁 = 𝑁𝐴.

For computing the release time of any software project using

any of the above policies first of all the practitioners require

the software failure data. Using the collected data we first

determine the unknown parameters of the model taken into

consideration. Now after obtaining the parameters of the cost

and/or reliability function and bounds on the budget or

reliability based on the above theorems, we can determine the

release time [2].

As mentioned earlier reliability, scheduled delivery and cost

are the three main quality attributes for almost all software.

By determining the releases time of the software optimally

taking into consideration the various constraints and aspects

of the software enables to best achieve these objectives.

6. CONCLUSION
Research activities in software reliability engineering have

been conducted and a number of nonhomogeneous Poisson

process type of discrete-time software reliability models have

been proposed to assess the software reliability during testing

phase. Thus, as the testing and debugging process plays a very

important role in determining the remaining fault-content,

number of changes and estimate the time of each change,

software release time, and allocation of testing resources,

software reliability models must consider the effect of testing

efficiency. In software reliability engineering literature, the

efficiency of testing and debugging is incorporated as an

imperfect debugging software reliability models. To be

effectively practical, two types of imperfect debugging

phenomena are addressed. Incorporating the imperfect fault

debugging phenomenon in software reliability modelling is

very important to the reliability measurement as it is related to

the efficiency of the testing and debugging teams.

The objective of our endeavor is to describe the development

and formulation of discrete-time modelling considering

different aspects of the testing environment that affect the

debugging process and to provide answers to the number of

questions related to the changing scenarios during testing

phase. Thus, this study gives a thorough overview of the

current state of reliability evaluation and provides several

bright ideas about how to improve it.

7. ACKNOWLEDGMENTS
The authors are thankful to the anonymous referee for very

useful comments which resulted in substantial improvement

of the manuscript.

8. REFERENCES
[1] Tassey, G. 2002. The economic impacts of inadequate

infrastructure for software testing. Technical Report RTI

Project Number 7007.011, National Institute of

Standards and Technology, Gaithersburg, MD, USA.

[2] Kapur, P.K., Pham, H., Gupta, A. and Jha, P.C. 2011.

Software Reliability Assessment with OR Applications.

Springer-Verlag, London.

[3] Musa, J.D., Iannino, A. and Okumoto, K. 1978. Software

Reliability. McGraw-Hill, New York.

[4] Yamada, S. 2014. Software Reliability Modeling:

Fundamentals and Applications, Springer, Japan.

[5] Yamada, S. and Osaki S. 1985. Discrete software

reliability growth models. Applied Stochastic Models

and Data Analysis, vol. 1, no. 1, pp. 65–77.

[6] Shatnawi, O. 2009. Discrete time NHPP models for

software reliability growth phenomenon. International

Arab Journal of Information Technology, vol. 6, no. 2,

pp. 124–131.

[7] Shatnawi, O. 2009. Discrete time modelling in software

reliability engineering: A unified approach. International

Journal of Computer Systems Science and Engineering,

vol 24, no. 6, pp. 391–398.

[8] Kapur, P.K., Aggarwal, A.G., Shatnawi, O. and Kumar,

R. 2010. On the development of unified scheme for

discrete software reliability growth modeling.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

24

International Journal of Reliability, Quality and Safety

Engineering, vol. 17, no. 3, pp. 245–260.

[9] Shatnawi, O. An integrated framework for developing

discrete-time modelling in software reliability

engineering. Quality and Reliability Engineering

International, 2016, in press.

[10] Putnam, L.H. 1978. A general empirical solution to the

macro software sizing and estimating problem. IEEE

Transactions on Software Engineering, vol. 4, no. 4, pp.

345–361.

[11] Yamada, S., Ohtera, H. and Narihisa, H. 1986. Software

reliability growth models with testing effort. IEEE

Transactions on Reliability, vol. 35, no. 1, pp. 19–23.

[12] Yamada, S., Hishitani, J. and Osaki, S. 1991. Test-effort

dependent software reliability measurement.

International Journal of Systems Science, vol. 22, no. 1,

pp. 73–83.

[13] Yamada, S., Hishitani, J. and Osaki, S. 1993. Software

reliability growth model with Weibull testing effort: a

model and application. IEEE Transactions on Reliability,

vol. 42, no. 1, pp. 100–106.

[14] Bokhari, M.U. and Ahmad, N. 2006. Analysis of

software reliability growth models: the case of log-

logistic test-effort function. In: Proceedings 7th IASTED

International Conference on Modeling and Simulation,

Montreal, QC, Canada, pp. 540–545.

[15] Kapur P.K., Goswami, D.N. and Gupta, A. 2004. A

software reliability growth model with testing effort

dependent learning function for distributed systems.

International Journal Reliability, Quality and Safety

Engineering, vol. 11, no. 4, pp. 365–377.

[16] Kuo, S.Y, Huang, C.Y. and Lyu, M.R. 2001. Framework

for modeling software reliability, using various testing-

efforts and fault-detection rates. IEEE Transactions on

Reliability, vol. 50, no. 3, pp. 310–320.

[17] Huang, C.Y. 2005. Performance analysis of software

reliability growth models with testing effort and change-

point. Journal of Systems and Software, vol. 76, no. 2,

pp. 181–194.

[18] Huang, C.Y. 2005. Cost reliability optimal release policy

for software reliability models incorporating

improvements in testing efficiency. Journal of Systems

and Software, vol. 77, no. 2, pp. 139–155.

[19] Huang, C.Y. and Lyu, M.R. 2005. Optimal release time

for software systems considering cost, testing-effort and

test efficiency. IEEE Transactions on Reliability, vol. 54,

no. 4, pp. 583–591.

[20] Shatnawi, O. 2013. Testing-effort dependent software

reliability model for distributed systems. International

Journal of Distributed Systems and Technologies, vol. 4,

no. 2, pp. 1-14.

[21] Kapur, P.K., Shatnawi, O., Jha, P.C. and Bardhan, A.K.

2004. Software testing-effort control and release time

problem. In: Proceedings of the International Conference

of the Association of Asia-Pacific OR Societies within

IFORS, New Delhi, pp. 247-256.

[22] Kapur, P.K. and Bardhan, A.K. 2002. Testing effort

control through software reliability modelling.

International Journal of Modelling and Simulation, vol.

22, no. 1, pp. 90–96.

[23] Kapur, P.K., Gupta, A., Shatnawi, O. and Yadavalli,

V.S.S. 2006. Testing-effort control problem using

flexible software reliability growth model with change-

point. International Journal of Performability

Engineering, vol. 2, no. 3, pp. 245–262.

[24] Rommelfanger, H.J. 2004. The advantages of fuzzy

optimization models in practical use. Fuzzy Optimization

and Decision Making, vol. 3, no. 4, pp. 295–309

[25] Lyu, M.R. 1996. Handbook of Software Reliability

Engineering. McGraw-Hill, New York.

[26] Xie, M. 1991. Software Reliability Modelling. World

Scientific, Singapore.

[27] Pham, H. 2000. Software Reliability. Springer-Verlag,

New York.

[28] Kapur, P.K., Garg, B. and Kumar, S. 1999. Contributions

to Hardware and Software Reliability. World Scientific,

Singapore.

[29] Kapur, P.K., Gupta, D., Gupta, A. and Jha, P.C. 2008.

Effect of introduction of fault and imperfect debugging

on release time. Journal of Ratio Mathematica, vol. 18,

pp. 62–90.

[30] Kapur, P.K., Xie, M., Garg, R.B. and Jha, A.K. 1994. A

discrete software reliability growth model with testing

effort. In: Proceedings 1st International Conference on

Software Testing, Reliability and Quality Assurance, 21–

22 December 1994, New Delhi, pp 16–20.

[31] Kapur, P.K., Shatnawi, O. and Yadavalli, V.S.S. 2006. A

discrete NHPP model for software reliability growth with

imperfect fault debugging and fault generation.

International Journal of Performability Engineering, vol.

2, no. 4, pp. 351–368.

[32] Shatnawi, O. 2014. Measuring commercial software

operational reliability: an interdisciplinary modelling

approach. Eksploatacja i Niezawodność - Maintenance

and Reliability, vol. 16, no. 4, pp. 585–594.

[33] Jones C. Applied Software Measurement. 3rd ed.

McGraw-Hill, 2008.

[34] Kapur, P.K, Pham, H., Anand, S. and Yadav K. 2011. A

unified approach for developing software reliability

growth models in the presence of imperfect debugging

and error generation. IEEE Transactions on Reliability,

vol. 60, no. 1, pp. 331–340.

[35] Zhao, M. 1993. Change-point problems in software and

hardware reliability, Communications in Statistics-

Theory and Methods, vol. 22, no. 3, pp. 757–768.

[36] Shyur, H.J. 2003. A stochastic software reliability model

with imperfect-debugging and change-point, Journal of

Systems and Software, vol. 66, no. 2, pp. 135-141.

[37] Chang, Y.P. 2001. Estimation of parameters for

nonhomogeneous Poisson process software reliability

with change-point model, Communications in Statistics-

Simulation and Computation, vol. 30, no. 3, pp. 623-635.

[38] Wang, Z. and Wang J. 2005. Parameter estimation of

some NHPP software reliability models with change-

point, Communications in Statistics- Simulation and

Computation, vol. 34, no. 1, pp. 121-134.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.11, March 2016

25

[39] Goswami, D.N., Khatri, S.K. and Kapur, R. 2007.

Discrete software reliability growth modeling for errors

of different severity incorporating change-point concept.

International Journal of Automation and Computing, vol.

4, vol. 4, pp. 395–405.

[40] Okumoto, K. and Goel, A.L. 1980. Optimum release

time for software systems based on reliability and cost

criteria. Journal of Systems and Software, vol. 1, pp.

315–318.

[41] Yamada, S. and Osaki, S .1987. Optimal software release

policies with simultaneous cost and reliability

requirements. European Journal of Operational Research,

vol 31, no. 1, pp. 46–51.

[42] Xie, M. and Yang, B. 2003. A study of the effect of

imperfect debugging on software development cost.

IEEE Transactions on Software Engineering, vol. 29, no.

5, pp. 471–473.

[43] Ohba, M. and Chou, X.M. 1989. Does imperfect

debugging effect software reliability growth. In:

Proceedings 11th international conference of software

engineering, pp. 237–244.

[44] Kapur, P.K. and Garg, R.B. 1990. Optimal software

release policies for software reliability growth models

under imperfect debugging. Operations Research /

Recherché Operationanelle, vol. 24, no. 3, pp. 295–305.

[45] Kapur, P.K., Khatri, S.K., Tickoo, A. and Shatnawi, O.

2014. Release time determination depending on number

of test runs using multi attribute utility theory.

International Journal of Systems Assurance Engineering

and Management, vol. 5, no. 2, pp. 186–194.

IJCATM : www.ijcaonline.org

