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ABSTRACT
Network on Chips are a method of interconnecting Process-
ing Elements, such as processors and communication controllers,
through a high scalability interconnect architecture. Planning and
implementing NoCs is a complex task, and simulating them at
the RTL level is time consuming which has motivated the im-
plementation of a big number of cycle accurate and behav-
ioral simulators. In this paper, we join the effort of NoC sim-
ulation platform implementation and we introduce a high level
NoC simulation platform that is based on Mathworks Simulink
and the SimEvents discrete event simulation engine. We, then,
model a 2D and a 3D mesh NoCs using this method and
we evaluate their performances. The obtained results are, then,
validated using the booksim2 cycle accurate NoC simulator.
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1. INTRODUCTION
Smaller size transistors, and especially with the adoption of the
FinFet technology for sub 22nm VLSI processes, did allow for
the increased number of integrated cores and processors per die.
In order for these latters to communicate without much latency,
the master-slave interconnect method had to be replaced by a more
powerful and extendable interconnect architecture that is the Net-
work on Chip. Nowadays, Multiprocessor System on Chips (MP-
SoCs) rely on NoCs for information exchange between the proces-
sors and peripherals[1] instead of an interconnect such as OPB and
PLB [2]. In a network on chip, the packets are transmitted through
switches and routers using advanced routing algorithms and allo-
cation schemes in contrast with the classical interconnect that act
as master-slave bus. The architectural choices for NoCs have been
the subject of numerous research works, which has yielded differ-
ent architectural decisions based on constraints such as energy con-
sumption, QoS metrics, and application specific needs.
Due to the complexity of the design and validation processes for
NoCs, simulators are usually used during the design process in or-
der to insure the suitability of the interconnect for the goal applica-

tions. Simulators are especially used for early stage design explo-
ration and performance estimation.Simulators can be classified into
three categories, CA (cycle accurate) simulators such as Orion [3],
DARSIM [4] and [5], behavioral simulators such as OMNET++ [6]
and BENoC [7] and high level stochastic simulators based on petri
nets [8, 9]for example.
During the bibliographic review, we extracted the following metrics
that characterize a NoC simulator.

—Flexibility: The simulator should not be locked into a single
NoC architecture or topology. The implementation of alternative
routing and scheduling algorithms should be possible.

—User friendliness: A usually overlooked aspect in most simula-
tors. Modifying the source code of the simulator, which is the
prevalent practice, reduces the flexibility of the simulator, and
makes modifying the NoC structure and parameters extremely
difficult and contrived.

—Complexity: Modifying the structure of the studied NoC should
be easy, and shouldn’t need delving into the inner-working of the
simulator itself. Complexity extends, also, to simulation time.

—Metrics: The usual performance metrics, such as throughput,
loss rate, etc. . . should be extractable. Used defined metrics
should also be supported.

—Performance: Simulation time should be appropriate for the
complexity of the NoC to simulate in order to accelerate the de-
sign cycle and speed-up simulation based decisions.

—Validity: The obtained results should mirror, to a certain degree,
those obtained by the physical system.

In this work, our aim is to provide the aforementioned characteris-
tics in the most user friendly manner which would simplify intro-
ducing modifications to the simulated NoC structure. The simula-
tion methodology described within this paper is based on the (DES)
Discrete Event Simulation. A DES tool reacts to events, than can
be as simple as a rising edge or as complex as the end of a rout-
ing round of a flit and are well suited for sequential digital signal
simulation. The granularity of the simulator is, thus, widely tun-
able, which mean that cycle accurate simulation is possible, but not
always profitable in terms of implementation complexity or simu-
lation cost, especially for DES as in has been shown in the work of
Heid et al. [10], thus our choice of simulating the abstract behavior
of the NoC without delving into clock cycle-accurate simulation.
As a proof of concept, 4 × 4 2D mesh NoC based on five-port
switches and a 4 × 4 × 3 3D mesh NoC implemented using the
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Fig. 1: NoC structure featuring five-port routers and PE blocs comprising
the traffic generators and statistics collection functions.

SimEvents toolbox under MathworksTM Simulink. The routing
functions are implemented using plain Matlab functions, and the
performance metrics that were extracted are the packet loss rate,
throughput, and average latency. A synthetic traffic generator was
implemented that generates periodic, uniform, and MMPP (Markov
Modulated Poisson Process) traffic patterns. The paper is structured
as follows, the second section introduces the DES concept. In the
third section, the implementation details are presented. The fourth
section is consecrated to the simulation setting and the obtained
results.

2. DISCRETE EVENT SIMULATION
In digital logic, systems are discrete by definition. A system state,
which is described by the state of its registers, only change when
certain events occurs. The most basic event in digital circuitry is
the rising or falling edge of a clock. Between events, the system’s
state doesn’t change. This makes digital systems well appropriate
for Discrete Event Simulation [11].
The use of DES have been used in the simulation of multiprocessor
systems in many works. One of the earliest examples is RSIM [12]
that is aimed to simulate to study shared-memory multiprocessor
architectures made of high instruction-level parallelism exploiting
processors. OMNET++ [6] is a relatively recent example of a DES
engine that have been re-purposed for NoC simulation [6, 13].

3. MATHWORKS SIMEVENTS
In this paper, we use the SimEvents toolbox found in the
MathworksTM Simulink library. SimEvents is a discrete event
that exploits the graphical programming and modeling environ-
ment Simulink. The authors chose SimEvents for two main reasons,
the first being the tight integration between SimEvents and Matlab
which provides a plethora of tools for results post processing and
charting. The second reason is that SimEvents is well appropriate
for modeling communicating systems as per its description [14]
and the presence of specialized blocks such as FIFOs and switches.
Furthermore, it is easier to modify a Simulink diagram than mod-

ify the source code of a C, C++ or SystemC based simulator for,
virtually, the same effect. Here are some of the most important key
concepts in SimEvents. An entity is the discrete item of interest for
the SimEvents discrete simulation engine. It is characterized by at-
tributes that can be scalars or vectors, and that can be changed or set
in reaction to one or more events. The generation time of an entity
is controllable, and can be made to obey a stochastic process. En-
tities can be queued and routed. Event are triggered by the change
in the state of a signal, a function call or an event happening to an
entity (advancement from on block to another, etc. . .).

4. 2D NOC ROUTER
As illustrated in Fig. 1 , the implemented NoC is comprised of 16
five-port routers arranged into a mesh topology, the used switching
technique is store and forward.
Each router has a pair of connections for each ports denoted by
DataOut x and DataIn x, where x is the direction of the port
(N for north, S for south,W for west andE for east). The fifth port
is reserved for the NI (Network Interface), to which the synthetic
traffic generator and the statistics collection blocks are connected.
The PE blocks are connected to the input and output ports of the
NI port. Each flit is represented by an entity, generated by a syn-
thetic traffic generator, that must contain the Destination field. A
user can add any additional field that may contain the payload for
example. Each flit is timed from its generation to its arrival, which
allows for the logging of timing based metrics (throughput, mean
delay, etc. . .).
A router is composed of three stages, input queues, routing function
and output crossbar (Fig. 2).

The input queues are modeled using a custom block called Clocked
FIFO, that is a FIFO which output is enabled periodically. The out-
put of the FIFOs are combined and then directed to a Set Attribute
block that sets the fieldME to the routers position within the mesh.
The Attribute Function block reads the ME field and the Desti-
nation field in order to compute the necessary output field that is
outputted as an additional field called RT . The XY routing algo-
rithm [15] was implemented using a plain Matlab function (Alg.
1).
To simulate the routing delay, and prevent the occurrence of an al-
gebraic loop, a Signal Server block, which service time is set to the
said delay. Finally, the output crossbar is simulated by an Output
Switch which output port is decided using the RT field. Due to the
fact that SimEvents blocks can process parallel-time events, it is
possible to output multiple flits simultaneously through the output
switch similarly to a physical crossbar.
The router’s block parameter dialog (Fig. 3) has five parameters
which are the router’s index, its input FIFO size, the routing and
arbitration delay, the clock frequency at which it operates, and the
standard deviation of the clock frequency which represents fabrica-
tion variability and thermal effects.

PEs are represented as the PEi blocks, which are characterized
by an address that is equal to that’s of the router to which it is
connected, in addition to some information about the NoC struc-
ture (list of the possible addresses, etc. . .). A PE block is capable
of generating three types of synthetic traffic, periodic uniform and
MMPP namely. It also acts as a flit sink and gathers the perfor-
mance metrics.
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Fig. 2: SimEvents implementation of the 2D router, with ME being the router’s address.

Fig. 3: Properties dialog of the 2D router.

It is possible to simulate the presence of different jobs with different
traffic patterns withing the PE. This is achieved by combining the
output of a number of traffic generators using the Path Combiner
block.
As for the link statistics, each PE block logs the instant arrival de-
lay, mean arrival delay and loss rate using Matlab variables that are
outputted to the workspace. The name of the variables are tunable
using the PE block parameters window (Fig. 4).

5. 3D NOC ROUTER
3D IC technology is already trending and is under active develop-
ment, and have been proven to improve the performance of NoCs.
In this case, the routers acquire two additional ports (Up and Down)
that are connected using Through-Silicon Vias (TSVs) [16]. An
N ×M × L 3D mesh NoC is equivalent to a N × (M ∗ L) 2D
networks but with some nodes being connected to one or two addi-
tional routers. Intuitively, 3D NoCs should perform better than 2D
NoCs [17].

The structure of the 3D mesh NoC is based on seven bi-directional
port routers that are arranged into a mesh configuration as illus-
trated in Fig. 5.The ports are labeled NI (Network Interface), North,
South, East, West, Up and Down. The NoC is composed of three

Algorithm 1 XY routing algorithm implementation within the Set
Attribute block.

f u n c t i o n out RT = f c n (DST ,ME)

y i = f l o o r (ME/ 4 ) +1;
x i = mod (ME, 4 ) ;

i f ( x i ==0) ,
x i = 4 ;
y i = y i − 1 ;

end

y = f l o o r (DST / 4 ) +1;
x = mod (DST , 4 ) ;

i f ( x ==0) ,
x = 4 ;

y = y − 1 ;
end

i f x ˜= xi ,
i f ( x<x i ) ,

out RT = 2 ;
e l s e

out RT = 3 ;
end

e l s e i f y ˜= yi ,
i f ( y<y i ) ,

out RT = 1 ;
e l s e

out RT = 4 ;
end

e l s e
out RT = 5 ;

end

layers to which we would refer as the Down layer, Middle layer and
Top layer.

The implementation under Simulink is illustrated in Fig. 6. Each
layer of the NoC is implemented independently with only the Down
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Fig. 4: Properties dialog of the traffic generator.
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Fig. 5: 3D NoC structure featuring seven-port routers and PEs.
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Fig. 6: Top level of the 3D NoC implementation.

and Up ports exposed. Each subsystem is configurable (clock fre-
quency, layer index, etc. . .). The two Sink subsystems are used to
detect erroneous routing to non-existing layers.
The routers can be classified into four categories, Corner, Side,
Ring and Middle:

—Corner: three out of seven ports are connected to adjacent
routers.

—Side: four out of seven ports are connected to adjacent routers.
—Ring: five of the seven ports are connected to adjacent routers.
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Fig. 9: Mean loss rate versus injection rate per core with periodic traffic
injection.

—Middle: six of seven ports are connected to adjacent routers.

The routers composing the layers implementation is shown in Fig.
7. The input FIFOs contain the arriving entities representing the
flits. The Route XY Z block sets a field, called RT , that indicates
to which output port the flits are to be routed. The single server in-
troduces the routing and scheduling delays, which are accounted in
clock cycles. The flits are routed to the output ports using the Out-
put Switch that relies on the RT field to determine the destination
port.
In order to simulate the presence of PEs and collect the statistics, a
synthetic traffic generator/traffic sink (STGTS). If the output of the
traffic generator is blocked, the flit time-outs and is is accounted as
a lost flit. Three traffic patterns are supported by the traffic genera-
tor:

—Periodic: Generates flits periodically. It takes one parameter, the
intergeneration period.

—Uniform: Generates flits using with the intergeneration time a
uniformly distributed random variable. It takes, as parameters,
the minimum and maximum intergeneration period.

—MMPP: Markov Modulated Poisson Process. The rate of the
modulating source (λ1) and the modulated source (λ2) are the
only needed parameters.

The SimEvents implementation of the STGTS is presented in Fig.
8. If the need arises to combine different traffic patterns to simulate
the presence of different jobs with different traffic patterns within
a single PE, it is possible to combine multiple traffic generators
using the Path Combiner Block.

6. SIMULATION RESULTS

6.1 Simulation Results of 2D NoC Router
We implemented a 4 × 4 mesh NoC in order to validate the plat-
form. The implementation methodology is based on the flexibility
of Simulink, so that placing the routers, ad the links is enough for
the topology implementation. Each router is configured with an ad-
dress that represents its location within the network, without ref-
erence to the rest of the nodes. To each router is connected a PE
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that acts as both a traffic generator and a traffic sink. For the sim-
ulation scenario, the traffic type is set to uniform, the considered
clock frequency and jitter are 500MHz and 1% respectively, and
the arbitration and routing delay are set to 10 cycles.
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Fig. 10: Loss rate versus injection rate for PE01, PE02, PE05 and PE06

The loss rate, or the rate of packets lost due to input buffer occu-
pancy, of the simulated NoC is illustrated in Fig. 9.

For the corner, side and ring nodes, the loss rate is illustrated in
Fig. 10. The global loss rate per core can be subdivided into three
regions. For low injection rates, there is no losses. Beyond 53% in-
jection rate, the loss rate becomes non-null an progresses in a linear
manner with a slope equals to 0.75 approximately. Starting from
86% injection rate, the third region begins with a steeper slope (3
approximately). The results are close to those generated by book-
sim2 [5].

The main advantage of the proposed simulation framework is its
flexibility and the possibility of gathering any type of relevant
statistics from any node of the network. In Fig. 11, the local mean
throughput traversing the corner, side and ring nodes is illustrated
in function of time, with the results confirming that the edge and
corner nodes are less stressed than the ring nodes. The loss rate
varies according to the PEs position within the network as shown
if Fig 10. The loss rate in function of the node position (Fig. 12)
shows a similar trend for both 100% and 86% injection rates.

In order to demonstrate the statistics gathering capabilities of the
simulator, the instant throughput of PE01, PE02, PE05 and PE06

are illustrated in Fig. ??. We notice that the traffic across all these
nodes is bursty, in contrast with the periodic injection traffic pat-
tern.
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Fig. 13: Instant throughput as observed by PE01 , PE02 , PE05 and
PE06

6.2 Simulation Results of 3D NoC Router
In a similar manner, we implemented a 4 × 4 × 3 NoC containing
48 routers and PEs arranged in three layers containing 16 routers
and PE each. The simulation parameters are identical to those used
for the 2D mesh in the previous section. 6.1
The obtained mean flit delay, as shown in Fig. 14, with a delay
starting to peak at nearly 50% injection rate.
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Fig. 14: Mean flit delay in clock cycles for the whole NoC.

As for the individual nodes, Fig. 15 shows that the Corner and Side
nodes have close performances compared to the Middle nodes. This
can be explained by the routing algorithm and the structure of the
NoC. The XY Z routing algorithm prioritizes the movement with-
ing the layer which could be reduced to an XY routing algorithm.
Due to the remoteness of the Corner and the Side nodes, the Middle
nodes get more traffic but the flits that are destined to them have to
traverse less routers in order to reach them. The Z part of the rout-
ing isn’t relevant in this case, as it only depends on the distance
between the source layer and the destination layer.
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7. CONCLUSION
In this paper we presented a simulation framework based on Math-
works SimEvents, the Discrete Event Simulation Engine. The
framework is both flexible and easy to used. Two proof of con-
cept NoC implementations, 2D 4× 4 mesh and 3D 4× 4× 3 mesh
namely, were tested using the framework, and the simulation results
for the 2D mesh have been validated using the Booksim2 NoC sim-
ulator. Parametric simulation is automated and covers a number of
NoC parameters such as input FIFO depth, clock frequency, clock
frequency variations due to thermal and manufacturing variability,
routing algorithm, etc. . . The simulator is capable of measuring
usual NoC performance metrics which are flit loss per injection
rate, mean flit delay per injection rate and throughput per injection
rate at a global and router level. Instant throughout and packet la-
tency can, also, be measured providing additional information on
the NoC behavior depending on its parameters.
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