Square Difference 3-Equitable Labeling of Some Graphs

S. Murugesan
Department of Mathematics C. B. M. College, Kovaipudur, Coimbatore - 641 042, Tamil Nadu, INDIA.

J. Shiama
Department of Mathematics,
C. M. S. College of Engineering and Technology, Coimbatore- 641 037, Tamil Nadu, INDIA.

Abstract

A square difference 3 -equitable labeling of a graph G with vertex set V is a bijection f from V to $\{1,2, \ldots,|V|\}$ such that if each edge $u v$ is assigned the label -1 if $\left|[f(u)]^{2}-[f(v)]^{2}\right| \equiv$ $-1(\bmod 4)$, the label 0 if $\left|[f(u)]^{2}-[f(v)]^{2}\right| \equiv 0(\bmod 4)$ and the label 1 if $\left|[f(u)]^{2}-[f(v)]^{2}\right| \equiv 1(\bmod 4)$, then the number of edges labeled with i and the number of edges labeled with j differ by atmost 1 for $-1 \leq i, j \leq 1$. If a graph has a square difference 3 -equitable labeling, then it is called square difference 3 -equitable graph. In this paper, we investigate the square difference 3 -equitable labeling behaviour of middle graph of paths, fan graphs, $\left(P_{2 n}, S_{1}\right), m K_{3}$, triangular snake graphs and friendship graphs.

AMS subject classification: 05C78
Key words: Square difference 3 -equitable labeling, square difference 3-equitable graphs

1. INTRODUCTION

Definition 1. Let $G=(V, E)$ be a graph. A mapping f : $V(G) \rightarrow\{-1,0,1\}$ is called ternary vertex labeling of G and $f(v)$ is called the label of the vertex v of G under f.

For an edge $e=u v$, the induced edge labeling is given by f^{*} : $E(G) \rightarrow\{-1,0,1\}$. Let $v_{f}(-1), v_{f}(0), v_{f}(1)$ be the number of vertices of G having labels $-1,0,1$ respectively under f and $e_{f}(-1), e_{f}(0), e_{f}(1)$ be the number of edges having labels $-1,0$, 1 respectively under f^{*}

Definition 2. A ternary vertex labeling of a graph G is called a 3-equitable labeling if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\mid e_{f}(i)-$ $e_{f}(j) \mid \leq 1$ for all $-1 \leq i, j \leq 1$. A graph G is 3-equitable if it admits 3-equitable labeling.

DEFinition 3. A square difference 3-equitable labeling of a graph G with vertex set $V(G)$ is a bijection $f: V(G) \rightarrow$ $\{1,2,3, \ldots,|V|\}$ such that the induced edge labeling $f^{*}: E(G) \rightarrow$
$\{-1,0,1\}$ is defined by
$f^{*}(e=u v)=\left\{\begin{aligned}-1 & \text { if }\left|[f(u)]^{2}-[f(v)]^{2}\right| \equiv-1(\bmod 4) \\ 0 & \text { if }\left|[f(u)]^{2}-[f(v)]^{2}\right| \equiv 0(\bmod 4) \\ 1 & \text { if }\left|[f(u)]^{2}-[f(v)]^{2}\right| \equiv 1(\bmod 4)\end{aligned}\right.$
and $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$. A graph which admits square difference 3 -equitable labeling is called square difference 3-equitable graph.

EXAMPLE 1. Consider the following graph G.

Fig 1. A square difference 3-equitable graph
We see that $e_{f}(-1)=e_{f}(0)=2$ and $e_{f}(1)=1$.
Thus $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and hence G is square difference 3 -equitable.

Definition 4. The middle graph of G, denoted by $M(G)$, is $V(G) \bigcup E(G)$ such that two vertices x, y in the vertex set of $M(G)$ are adjacent in $M(G)$ in case one of the following holds.
(i) x, y are in $E(G)$ and x, y are adjacent in G.
(ii) x is in $V(G), y$ is in $E(G)$ and x, y are incident in G.

2. MAIN RESULTS

Theorem 1. The middle graph $M\left(P_{n}\right)$ of path P_{n} admits square difference 3-equitable labeling.

Proof. Let $V\left(M\left(P_{n}\right)\right)=\left\{u_{i}, v_{j} \mid 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ and
$E\left(M\left(P_{n}\right)\right)=\left\{v_{j} v_{j+1}, u_{i} v_{i}, v_{i} u_{i+1} \mid 1 \leq i \leq n-1,1 \leq j \leq n-2\right\}$. Define

$$
\begin{aligned}
f\left(u_{i}\right) & =2 i-1,1 \leq i \leq n \\
\text { and } f\left(v_{j}\right) & =2 j, 1 \leq j \leq n-1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
f^{*}\left(v_{j} v_{j+1}\right) & =0,1 \leq j \leq n-2 \\
f^{*}\left(u_{i} v_{i}\right) & =-1,1 \leq i \leq n-1 \\
\text { and } f^{*}\left(v_{i} u_{i+1}\right) & =1,1 \leq i \leq n-1 .
\end{aligned}
$$

Hence $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and therefore $M\left(P_{n}\right)$ is a square difference 3-equitable graph.

Example 2. The square difference 3-equitable labeling of $M\left(P_{4}\right)$ is shown below.

Fig 2. Square difference 3-equitable labeling of $M\left(P_{4}\right)$

THEOREM 2. The fan graph $F_{2, n}$ admits square difference 3equitable labeling.

Proof. Let the apex vertices of the fan graph $F_{2, n}$ be u_{1}, u_{2} and let the other vertices along the diagonal be $u_{3}, u_{4}, \ldots, u_{n+2}$. Then $\left|V\left(F_{2, n}\right)\right|=n+2$ and $\left|E\left(F_{2, n}\right)\right|=3 n-1$.
Define $f: V\left(F_{2, n}\right) \rightarrow\{1,2, \ldots, n+2\}$ by

$$
f\left(u_{i}\right)=i, \quad 1 \leq i \leq n+2 .
$$

Case(i): n is even
For $1 \leq i \leq \frac{n}{2}$,

$$
\begin{aligned}
f^{*}\left(u_{1} u_{2 i+1}\right) & =0 \\
f^{*}\left(u_{2} u_{2 i+2}\right) & =0 \\
f^{*}\left(u_{2} u_{2 i+1}\right) & =1 \\
f^{*}\left(u_{1} u_{2 i+2}\right) & =-1 \\
f^{*}\left(u_{2 i+1} u_{2 i+2}\right) & =-1
\end{aligned}
$$

and $1 \leq i \leq \frac{n-2}{2}$,

$$
f^{*}\left(u_{2 i+2} u_{2 i+3}\right)=1 .
$$

Thus $e_{f}(-1)=e_{f}(0)=n$ and $e_{f}(1)=n-1$.
Case(ii): n is odd
For $1 \leq i \leq \frac{n-1}{2}$,

$$
\begin{aligned}
f^{*}\left(u_{2} u_{2 i+1}\right) & =0 \\
f^{*}\left(u_{2 i+2} u_{2 i+3}\right) & =1 \\
f^{*}\left(u_{1} u_{2 i+2}\right) & =-1 \\
f^{*}\left(u_{2 i+1} u_{2 i+2}\right) & =-1
\end{aligned}
$$

and $1 \leq i \leq \frac{n+1}{2}$,

$$
\begin{gathered}
f^{*}\left(u_{1} u_{2 i+1}\right)=0 \\
f^{*}\left(u_{2} u_{2 i+1}\right)=1 .
\end{gathered}
$$

Thus $e_{f}(0)=e_{f}(1)=n$ and $e_{f}(-1)=n-1$.
Hence $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and therefore $F_{2, n}$ is a square difference 3 -equitable graph.

Example 3. The square difference 3-equitable labeling of the fan graph $F_{2,5}$ is shown below.

Fig 3. Square difference 3-equitable labeling of $F_{2,5}$

THEOREM 3. $\left(P_{2 n}, S_{1}\right)$ is a square difference 3-equitable graph.

Proof. Let $P_{2 n}: u_{1} u_{2} \ldots u_{2 n}$ be the path.
Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be the vertices adjacent to $u_{1}, u_{2}, \ldots, u_{2 n}$ and $w_{1}, w_{2}, \ldots, w_{2 n}$ be the vertices adjacent to $v_{1}, v_{2}, \ldots, v_{2 n}$.
Let G be the graph $\left(P_{2 n}, S_{1}\right)$.
Define $f: V(G) \rightarrow\{1,2, \ldots, 6 n\}$ by

$$
\begin{aligned}
f\left(u_{i}\right) & =i, \\
f\left(v_{i}\right) & =4 n-i+1 \\
\text { and } f\left(w_{i}\right) & =6 n-i+1 \text { for } 1 \leq i \leq 2 n .
\end{aligned}
$$

Then for $1 \leq i \leq n$,

$$
\begin{aligned}
f^{*}\left(u_{2 i-1} u_{2 i}\right) & =-1 \\
f^{*}\left(u_{2 i-1} v_{2 i-1}\right) & =-1 \\
f^{*}\left(u_{2 i} v_{2 i}\right) & =1,
\end{aligned}
$$

for $1 \leq i \leq n-1$,

$$
f^{*}\left(u_{2 i} u_{2 i+1}\right)=1
$$

and for $1 \leq i \leq 2 n$,

$$
f^{*}\left(v_{i} w_{i}\right)=0 .
$$

Thus $e_{f}(-1)=e_{f}(0)=2 n$ and $e_{f}(1)=2 n-1$.
Hence $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and therefore $\left(P_{2 n}, S_{1}\right)$ is a square difference 3-equitable graph.

Example 4. The square difference 3-equitable labeling of $\left(P_{6}, S_{1}\right)$ is shown below.

Fig 4. Square difference 3-equitable labeling of $\left(P_{6}, S_{1}\right)$

THEOREM 4. $m K_{3}$ is a square difference 3-equitable graph.
Proof. Let $G_{1}, G_{2}, \ldots, G_{m}$ be m copies of K_{3}. Let u_{1}, u_{2}, u_{3} be vertices of $G_{1}, u_{4}, u_{5}, u_{6}$ be vertices of G_{2}, \ldots, and $u_{3 m-2}, u_{3 m-1}, u_{3 m}$ be vertices of G_{m}.
Define $f: V\left(m K_{3}\right) \rightarrow\{1,2, \ldots, 3 m\}$ by

$$
f\left(u_{i}\right)=i, 1 \leq i \leq 3 m
$$

Case(i): m is even
For $i=1,2, \ldots, \frac{m}{2}$,

$$
\begin{aligned}
f^{*}\left(u_{6 i-5} u_{6 i-4}\right) & =-1 \\
f^{*}\left(u_{6 i-1} u_{6 i}\right) & =-1 \\
f^{*}\left(u_{6 i-4} u_{6 i-3}\right) & =1 \\
f^{*}\left(u_{6 i-2} u_{6 i-1}\right) & =1
\end{aligned}
$$

and for $i=1,2, \ldots, m$,

$$
f^{*}\left(u_{3 i-2} u_{3 i}\right)=0
$$

Case(ii): m is odd
For $i=1,2, \ldots, \frac{m+1}{2}$,

$$
\begin{array}{r}
f^{*}\left(u_{6 i-5} u_{6 i-4}\right)=-1 \\
f^{*}\left(u_{6 i-4} u_{6 i-3}\right)=1
\end{array}
$$

for $i=1,2, \ldots, \frac{m-1}{2}$,

$$
\begin{gathered}
f^{*}\left(u_{6 i-1} u_{6 i}\right)=-1 \\
f^{*}\left(u_{6 i-2} u_{6 i-1}\right)=1
\end{gathered}
$$

and for $i=1,2, \ldots, m$,

$$
f^{*}\left(u_{3 i-2} u_{3 i}\right)=0
$$

Thus in both cases, $e_{f}(-1)=e_{f}(0)=e_{f}(1)=m$.
Hence $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and therefore $m K_{3}$ is a square difference 3-equitable graph.

EXAMPLE 5. The square difference 3-equitable labeling of $7 K_{3}$ is shown below.

Fig 5. Square difference 3-equitable labeling of $7 K_{3}$
THEOREM 5. The triangular snake graph is a square difference 3-equitable graph.

Proof. Let G be the triangular snake graph.
Let $V(G)=\left\{u_{i}, v_{j} \mid 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$
and
$E(G)=\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} u_{i+1} \mid 1 \leq i \leq n-1\right\}$.
Define

$$
\begin{aligned}
f\left(u_{i}\right) & =2 i-1,1 \leq i \leq n \\
\text { and } f\left(v_{j}\right) & =2 j, 1 \leq j \leq n-1
\end{aligned}
$$

Then for $1 \leq i \leq n-1$,

$$
\begin{aligned}
f^{*}\left(u_{i} v_{i}\right) & =-1 \\
f^{*}\left(u_{i} u_{i+1}\right) & =0 \\
f^{*}\left(v_{i} u_{i+1}\right) & =1
\end{aligned}
$$

Hence $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and therefore G is a square difference 3-equitable graph.

EXAMPLE 6. The square difference 3-equitable labeling of a triangular snake graph is shown below.

Fig 6. A triangular snake graph and its labeling
THEOREM 6. The friendship graph F_{n} admits square difference 3-equitable labeling.

Proof. Let $u_{1}, u_{2}, u_{3}, \ldots, u_{2 n}, u_{2 n+1}$ be the vertices of the fan F_{n} with u_{1} as the central vertex.

Then $\left|V\left(F_{n}\right)\right|=2 n+1$ and $\left|E\left(F_{n}\right)\right|=3 n$.
Define $f: V\left(F_{n}\right) \rightarrow\{1,2, \ldots, 2 n+1\}$ by

$$
f\left(u_{i}\right)=i, \quad 1 \leq i \leq 2 n+1
$$

Then for $i=1,2, \ldots, n$,

$$
\begin{aligned}
f^{*}\left(u_{1} u_{2 i}\right) & =-1 \\
f^{*}\left(u_{1} u_{2 i+1}\right) & =0 \\
\text { and } f^{*}\left(u_{2 i} u_{2 i+1}\right) & =1 .
\end{aligned}
$$

Thus

$$
e_{f}(-1)=e_{f}(0)=e_{f}(1)=n
$$

Hence $\left|e_{f}(i)-e_{f}(j)\right| \leq 1$ for all $-1 \leq i, j \leq 1$ and therefore F_{n} is a square difference 3-equitable graph.

EXAMPLE 7. The square difference 3-equitable labeling of F_{5} is shown below.

Fig 7. Square difference 3-equitable labeling of F_{5}

3. CONCLUSION

In [7], it was proved that paths and cycles admit square difference 3-equitable labelings. In the present work, it is proved that middle graph of paths, fan graphs, $\left(P_{2 n}, S_{1}\right), m K_{3}$, triangular snake graphs and friendship graphs admit square difference 3 -equitable labelings. To investigate analogous results for different graphs is an open area of research.

4. REFERENCES

[1] F. Harary, Graph Theory, Addition-Wesley, Reading, Mass, 1972.
[2] J. A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, 17 (2010), DS6.
[3] J. Shiama, Square sum labeling for some middle and total graphs, International Journal of Computer Applications (0975-8887) Volume 37- No. 4 January 2012.
[4] J. Shiama, Square difference labeling for some graphs, International Journal of Computer Applications (0975-8887) Volume 44- No.4, April 2012.
[5] J. Shiama, Some Special types of Square difference graphs, International Journal of Mathematical archives- 3(6), 2012, 2369-2374 ISSN 2229-5046.
[6] J. Shiama, Square difference labeling for some path, fan and gear graphs, International Journal of Scientific and Engineering Research volume 4, issues 3, March -2013, ISSN 22295518.
[7] S. Murugesan, J. Shiama, Square difference 3-equitable labeling of paths and cycles, International Journal of Computer Applications (0975-8887) Volume 123 - No.17, August 2015

