
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

23

Software Quality Problems in Requirement Engineering

and Proposed Solutions for an Organization in Mauritius

Kanishka Gopal
Dept. of Computer

Science and
Engineering
University of

Mauritius

Sneha Jadoo
Dept. of Computer

Science and
Engineering
University of

Mauritius

Jyotsna L.P.
Ramgoolam

Dept. of Computer
Science and
Engineering
University of

Mauritius

Vimla Devi
Ramdoo

Lecturer, Dept. of IT
Charles Telfair

Institute
Mauritius

ABSTRACT

Requirement engineering is traditionally the first step carried

out in any software project, precisely requirement elicitation

followed by the requirements specification documentation. It

is the requirements that principally dictate how the software

should be designed and implemented. Consequently, failing to

capture the right requirements in a clear and unambiguous

manner become a challenge in the field of software

development. The impact is directly felt in the quality of the

software produced. This paper analyzes the software quality

problems related with requirement engineering and the

associated challenges with respect to a software company

situated in Mauritius. In order to alleviate the problems,

solutions have been proposed to overcome the difficulties

encountered and hence enhance software quality.

General Terms

Requirement Engineering, Software Quality.

Keywords

Requirement Engineering, Software Quality, Requirement

Engineers, Software Requirements, Requirement Inspection.

1. INTRODUCTION
The world today is governed by the use of software. Software

has become pervasive in our commerce, culture and daily

activities. From the simple act of generating a chart to

conducting financial transactions online, the importance of

software is felt by virtually everyone and in every field.

Organizations today rely heavily on software for their daily

functioning.

Business domains vary from company to company. As a

consequence, different types of software are necessary to suit

demands depending on the nature of business of the

company. Therefore, the first step towards building software

is to understand what the software needs to do, that is, the

requirements of the software. For example, a point of sales

(POS) system for a shopping store needs to allow the user to

keep track of sales and also enable transactions to be effected

in an efficient way. As a result, requirements form the

baseline of any software project as the success of a software

system depends on how well it fits the needs of its users and

stakeholders [1] [2]. The process through which these

requirements are determined is known as Requirement

Engineering.

Many companies today focus a lot on requirement engineering

since it is one of the factors contributing towards a good

quality software [3] [4]. According to Computer Finance

Magazine, errors in software requirements and software

design documents are more frequent than errors in the source

code itself. Moreover, defects introduced during the

requirements and design phase are not only more probable but

also are more severe and more difficult to remove [5]. Hence,

it becomes crucial to have a proper and adequate requirement

engineering process in place in an organization to collect,

analyze and specify requirements correctly in order to ensure

that the software meets the customer needs, and at the same

time enhance the quality of the software.

2. SOFTWARE QUALITY – WHY IS IT

SO IMPORTANT?
According to IEEE Standard 1633-2008, the quality of

software can be defined as:

(A) The totality of features and characteristics of a

software product that bear on its ability to satisfy

given needs, such as conforming to specifications.

(B) The degree to which software possesses a desired

combination of attributes.

(C) The degree to which a customer or user perceives

that software meets his or her composite

expectations.

(D) The composite characteristics of software that

determine the degree to which the software in use

will meet the expectations of the customer.

By definition, software essentially satisfies the needs of the

customer. If the end-product does not meet the requirements

of the customer, even if it functions properly, it is of no use to

the customer. From the customer‟s perspective, the software

will not be a quality product if it does not meet its

expectations. High quality software not only means customer

satisfaction, but it also entails lower maintenance costs and an

increase in the software‟s sales values. The software

organization also takes advantage of a good reputation

provided by the satisfaction of its customers. Consequently,

the latter will push the quality standards even higher. As a

result, software quality is the focus of any software project,

from the viewpoint of the software engineers as well as the

customers.

The Cost of Quality is a measure that quantifies the cost of

control/conformance and the cost of failure of control/non-

conformance. In other words, it sums up the costs related to

prevention and detection of defects and the costs due to

occurrences of defects [6]. The relative cost of fixing an error

earlier in the software development life cycle is less costly

and the cost increases significantly as progress is made along

the life cycle [7] [8] [9] as shown by Figure 1.

http://softwaretestingfundamentals.com/defect/

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

24

Fig 1: Relative Cost of Correcting an Error [9]

Thus, for any software development organization, software

quality has an economic impact and this is the reason why

quality is a leading concern. Ultimately, it will also cost less

to the organization to build a quality software right from the

initial phases of the software development life cycle.

Factors leading to poor quality in software can be controlled

to a certain extent if appropriate considerations are given to

the phases of the software development life cycle. Software

quality can be predicted and controlled, but for that, it is

essential that its causes are understood and addressed. For the

context of this paper, the causes leading to poor software

quality will be identified considering a particular software

organization in Mauritius. Eventually, the cause having the

largest stake in the quality of the software will be ascertained

and solutions will be proposed in order to alleviate the

problems faced by the software organization concerned.

3. METHODOLOGY

3.1 Company Profile
The company chosen for the purpose of this research is a state

owned company, which designs and implements IT

applications for the Government of Mauritius. The software

development life cycle used is the traditional waterfall model.

The main development platforms used by the company are

Java and Oracle. Currently, at the start of any software

project, requirements gathering are done by the developers of

the software themselves. The team leader briefs the team of

developers who conduct meeting sessions with the in order to

collect the requirements. They are also the one responsible to

prepare the Software Requirements Specifications (SRS)

document for the software project. Often, developed software

is of poor quality at the end of the software development life

cycle, and is thus faced with many difficulties before actually

going live.

3.2 Causes of Poor Software Quality
The main causes contributing to poor software quality have

been identified using the Ishikawa or Fish-Bone diagram as

depicted in Figure 2 and are elaborated as follows:

3.2.1 Unrealistic Schedule
The schedule for the project is calculated by the project

manager and the latter rarely asks for the collaboration and

input of the development team. The schedule rarely reflect

reality as the majority of tasks take longer than the estimated

time due to varying level of skills of the developers, and thus

upsets the overall project‟s schedule caused by the Domino

Effect. Following schedule pressure, developers work under

stress and are hence more prone to make errors. Thus,

wrongly estimated schedules indirectly affect the quality of

the software produced. This is also because slippage in

schedules has an impact on the cost and scope of the project

according to the traditional project management triangle.

3.2.2 Requirement Problem
Since requirements are gathered by the developers, they lack

the required skills to negotiate and communicate with the

client. Developers are not experts in the business domain of

the clients and sometimes fail to understand the functional

requirements of the system. The busy schedule and workload

of the developers sometimes do not allow them to meet the

clients to clear all misunderstandings. As a matter of fact,

requirements inevitably change, even after the developers

have started coding. Significant time and resources go into

incorporating these changes by reworking on the codes.

Continuous changes in scope make it difficult to balance the

triple constraint of cost, time and scope. As a matter of fact,

software quality is highly compromised and reduced [24].

3.2.3 Testing
Testing is conducted at nearly the last stages of the software

development life cycle and by that time, most of the schedule

that was planned is over. Lack of time prevents the testers to

properly conduct testing. Absenteeism in the team also

handicaps the testing process making it difficult to achieve

good test coverage. At times, re-testing of the software once a

bug has been corrected is not done properly due to schedule

pressure.

3.2.4 People
The company comprises of a mix of experienced as well as

inexperienced developers. To be able to integrate the team

properly, new recruits need proper training which is given by

the experienced developers themselves. Unfortunately, the

developers are most of the time busy working on projects and

thus unable to train the new recruits properly.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

25

Fig 2: Potential causes of poor software quality (shown using the Ishikawa or Fish-Bone diagram)

3.3 Principal Cause of Software Quality

Problems
To be able to improve the software quality in an efficient

manner, it is imperative to know where to focus maximum

efforts in order to solve the root cause of the problem.

The Pareto chart is one of the seven basic tools of quality

control which can be used to quickly identify the major cause

of poor software quality in projects. Accordingly, the Pareto

chart has been used to come up with the major cause of poor

quality software in the company concerned.

For the Pareto analysis, the following steps have been

conducted:

1. A list of issues encountered in projects has been

compiled using inputs from members of the company as

shown in Table 1.

 The company uses an online tool to log all bugs and

issues that have been encountered for each project

under a specific project ID. The issues consist of all

change requests, rework requests, bug fixing

requests and assistance requests from clients. A

sample of two projects which deal with human

resource management was chosen and the list of

issues logged for those projects has been analyzed.

After the analysis, similar issues have been grouped

under a specific problem.

2. For each of the problems, a root cause (one of the main

causes identified in the Ishikawa/Fish-Bone diagram in

Figure 2) has been assigned as shown in Table 2.

3. A score has been assigned to each problem based on the

frequency the problem occurred as shown in Table 3.

 The aim of this research is to improve the

quality of the software which will ultimately

increase customer satisfaction. Therefore, the

method used for scoring each problem is based

on the number of times the problem occurred,

that is, the number of times the issue or

complaint has been logged on the online tool.

Lowering the number of complaints and issues

will help enhance software quality.

4. The scores for each root cause are added and the Pareto

chart is plotted as depicted in Figure 3.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

26

Table 1. Analysis of logged bugs (Step 1)

No Problems Analysis of Issues No. Of

Logged

Issues

1 Client logged request since a

long time and request was

serviced only later.

Client requested for assistance with some functions. Enhancement to certain

functions was also requested. Due to lack of resources (developers), the

requests were attended at a later date.

5

2 Staff lacking experience was

assigned for bug fixing.

Inexperienced developers were assigned for bug fixing. Thus, developers

took a lot of time to first understand the bug and then correct it. Intervention

from senior developers was also often needed on several issues.

4

3 Absence of some

requirements in the SRS

document.

Some requirements were not specified in the beginning. For instance,

requirements for a lot of reports had to be specified in later stages of the

software development life cycle.

7

4 Incomplete requirements. This resulted in several errors in coding the requirements. For example, the

difficulty in assignment of grades, salary scales to grades and refund of

leaves for specific grades due to missing information from client.

3

5 Misinterpretation of

requirements by developers.

Developers implemented some functionalities that did not match the

requirements of the client. Requirements were developed from the

developer‟s perspective and understanding, leading to misinterpretation

which came to the fore only after development.

6

6 Misunderstanding between

client and developers.

Failure to take into consideration the clients‟ perspective due to limited

communication caused developers to have some misunderstanding about the

requirements, resulting in re-designing of some parts of the system.

3

7 Changes in requirements

after coding started.

Once the client was acquainted with part of the system, some requirements

were changed since it was not what they really wanted. They proposed

changes and improvements to the initial requirements to better suit their

needs.

8

8 Reuse of modules without

proper analysis.

Codes from a previous project were re-used for similar functions. For

example, the icon for „Loan‟ module appearing in menu when this module

has not been requested by client but was present in the software.

1

9 Rework on same module

numerous times.

Due to incomplete regression testing, several bugs emerging from correction

of previous errors cropped up. Those modules had to be reworked.

3

10 Incomplete testing due to

schedule pressure.

There were certain deficiencies in testing such as reports parameters

accepting wrong input, forms accepting wrong format/range of dates as well

as list of values returning empty.

4

11 Incomplete correction of

bugs.

Some bugs which were corrected had an impact on other modules. The

impact was not assessed properly and testing was not done thoroughly.

Other issues cropped up which were a direct consequence of this. Also,

corresponding documents were not updated as was supposed.

10

12 Lack of testers. In some functionalities, bugs such as errors in data input format have been

logged. These errors were left out during testing which was not done

correctly due to lack of testers in the team.

2

13 Schedule estimated by

project managers only.

Since developers were not consulted for their opinions on schedule, the

consequence was wrong estimations were made for the software project. For

example, coding the processing of payroll module took nearly twice the

estimated time to reach completion.

1

14 Client not satisfied with how

requirement turned out.

Clients specified their requirements according to their perspective and at the

end of the software development life cycle, there were poor client

satisfaction about content and layout of some reports. For example, report

on passage benefits had to be reworked.

1

15 Developer not familiar with

business domain of client.

Some particular business domains were difficult to understand for some

developers. For example PAYE (Pay As You Earn) procedures and the

processing of bonus procedures and refund of leaves procedures were

difficult to understand for some developers.

3

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

27

Table 2. Root cause of logged issues (Step 2)

No Problems Root Cause Score

1 Client logged request since a long time and request was serviced only

later.

People 5

2 Staff lacking experience was assigned for bug fixing. People 4

3 Absence of some requirements in SRS. Requirements Problem 7

4 Incomplete requirements. Requirements Problem 3

5 Misinterpretation of requirements by developers. Requirements Problem 6

6 Misunderstanding between client and developers. Requirements Problem 3

7 Change in requirements after coding started. Requirements Problem 8

8 Reuse of modules without proper analysis. Requirements Problem 1

9 Rework on same module numerous times. Testing 3

10 Incomplete testing due to lack of time. Unrealistic Schedules 4

11 Incomplete correction of bugs. Testing 10

12 Lack of testers. Testing 2

13 Schedule estimated by project managers only. Unrealistic Schedules 1

14 Client not satisfied with how requirement turned out. Requirements Problem 1

15 Developer not familiar with business domain of client. Requirements Problem 3

Table 3. Total Score per cause (Step 3)

Category Total

Requirements Problems 32

Unrealistic Schedules 5

Testing 15

People 9

Fig 3: Pareto Chart showing the major cause of software quality problem (Step 4)

As demonstrated by the Pareto chart in Figure 3, the major

cause of poor software quality is essentially issues associated

with requirements. According to the chart, 52% of problems

are related to requirements. Therefore, by improving the

Requirements Engineering phase and focusing efforts on

reducing the difficulties associated, the quality of the software

produced by the company considered in this paper can be

greatly improved.

Also, as mentioned earlier, requirements are gathered by

developers who are not properly versed with the various

techniques of requirements elicitation procedures. There is no

proper framework to follow in order to collect requirements

either. Requirements form the baseline for any project and

must, therefore, be given utmost attention as correcting errors

at a later stage in the life cycle implies a larger cost to the

company. If the set of requirements are nearly perfect in the

beginning of the software development life cycle itself, this

will undoubtedly improve quality as well as save in terms of

budget, resources and schedule. This will definitely enable a

greater probability of success for the software project.

4. PROPOSED SOLUTIONS
This section proposes solutions and methods that can be used

by the company to alleviate the problem of quality caused by

the shortages that currently plague the Requirement

Engineering process in the company considered.

4.1 Capability Maturity Model Integration

(CMMI)
CMMI is a collection of best practices to improve product

quality and development efficiency for both hardware and

software. It is built upon three key concepts which are

process areas, goals and practices. According to the Software

Engineering Institute (SEI), CMMI helps with the integration

of separated organizational functions, it sets process

improvement goals, guide quality processes and gives a point

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

28

of reference for evaluating current processes. CMMI identifies

25 so-called process areas in the development process. Each

process area defines a set of so-called specific goals and a set

of specific practices that serve to fulfil the goals [10].

Depending on the CMMI areas of interest (acquisition,

services, development) used, the process areas it contains will

vary [13]. Process areas are the areas that will be covered by

the organization‟s processes.

The company could compare the current process being used

for requirements management against the best practices

proposed by CMMI, with a focus on the requirement

engineering best practices. Thus, areas where improvement

can be made need to be identified and worked on. Table 4

summarizes the benefits and drawbacks of the CMMI model

in order to alleviate the requirement engineering problems

faced by the company.

Table 4. Benefits & Drawbacks of Capability Maturity

Model Integration (CMMI) for solving requirement

problems

Benefits Drawbacks

Cost saving and increases

performance.

Requires a considerable

amount of time and effort to

put in place in the

organization. It is also costly.

Helps to have stakeholders

committed to requirements

so that there are minimal

changes in requirements.

Difficult to move back and

correct requirements.

Manages changes in

requirements by making

use of the requirements

impact analysis technique,

and the change log

technique.

Difficult to spot missing

requirements.

Makes use of traceability

matrix for requirements.

Requires much documentation

that is very time consuming.

Ensures quality from

conception to delivery and

maintenance by

maintaining alignment

between requirements and

project work.

Only help if implemented at an

early stage.

4.2 ISO 9001 Standard
ISO 9001 are procedures that cover key processes in the

software development life cycle. It monitors processes to

ensure their effectiveness, check for defects on outputs,

review individual processes regularly and facilitates continual

improvement. The ISO 9001 standard is made up of a

framework for managing an organization‟s processes in order

to meet client expectations and to provide a consistent service

and that quality is consistently improved. As control and

verification mechanism, the ISO 9001 standard uses document

control. Table 5 summarizes the benefits and drawbacks of the

ISO9001 standard in order to alleviate the requirement

engineering problems faced by the company considered in this

paper.

Table 5. Benefits & Drawbacks of ISO 9001 Standard for

solving requirement problems

Benefits Drawbacks

Ensures software product

meets customer

requirements.

Does not cater for major

changes in requirements that

may occur.

Ensures conformity to

applicable statutory and

regulatory requirements.

Does not consider existing

systems.

Improves communication. ISO 9001 registration need

heavy document workload.

Uses document control to

demonstrate effective

operation of the quality

management system.

ISO 9000 registration process

is a lengthy process as well

as costly.

4.3 Formal Inspection
An inspection is a powerful tool that can help achieve

significant improvements in software quality [11]. An

inspection is a rigorous process and in-depth technical review

to identify problems as close as to their point of origin. This

process can have a significant impact towards the

improvement of software quality. For example, inspections

held on Motorola‟s Iridium project detected 80% of the

defects present, whereas less formal reviews discovered only

60% of the defects [16]. Formal inspections contribute to high

defect removal efficiencies. Research has shown that formal

inspection is one of the common practices performed by those

companies considered to be “Best in Class” globally [17].

The aims of the inspection process are to:

(A) Find problems at the earliest possible point in the

software development process;

(B) Ensure that agreement is reached on rework that

may need to be done;

(C) Verify that any rework done meets predefined

criteria.

Table 6 summarizes the benefits and drawbacks of formal

inspection in order to alleviate the requirement engineering

problems faced by the company considered in this paper.

Table 6. Benefits & Drawbacks of Formal Inspection for

solving requirement problems

Benefits Drawbacks

Problems are found at the

earliest point in the software

development process.

Requirements are not traced.

In-depth review of

requirements; ensuring

customer satisfaction.

Does not consider existing

systems.

Removes ambiguity in

requirements.

Does not cater for major

changes in requirements that

may occur.

Ensures software product has

less defects; more effective

than testing.

Time consuming.

Caters for any possible

rework to be done.

4.4 Walkthroughs
Requirement walkthrough is an unstructured meeting where

requirements documents are reviewed in order to finalize or

baseline the requirements before they are handed off to the

https://en.wikipedia.org/wiki/Process_area_(CMMI)

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

29

development team [14]. It will be the responsibility of the

project manager to ensure that a walkthrough is performed at

least twice during project planning. The project‟s

stakeholders, the development team and the testers as well

need to participate in the meetings to ensure that everyone

understands the requirements. The walkthrough will help

bridge the communication gap between the different

stakeholders. Agreement on the requirements will ensure that

the right product will be delivered and also avoid confusion at

later stages in the life cycle. Table 7 summarizes the benefits

and drawbacks of walkthroughs in order to alleviate the

requirement engineering problems faced by the company

considered in this paper.

Table 7. Benefits & Drawbacks of Walkthroughs for

solving requirement problems

Benefits Drawbacks

Focuses on finding defects. Does not consider existing

systems.

The product is looked into

step-by-step.

Does not cater for major

changes in requirements that

may occur.

Faster turnaround. Walkthroughs are successful

only when right people are

involved.

 Is a lengthy process.

4.5 Prototyping
A prototype is an initial version of a software system which

may be used for experimentation and gather feedback from

the customer and stakeholders of the software system.

Prototyping is a flexible methodology that accommodates

changes until the software is finalized and the customer is

satisfied. Prototypes are valuable for requirements elicitation

because stakeholders can experiment with the system and

point out its strengths and weaknesses right from the

beginning [15]. The use of this methodology can help the

company concerned to eliminate problems such

misunderstandings, misinterpretation of requirements along

with incomplete requirements by presenting the stakeholders

with a prototype in the early stages of the software

development life cycle.

The advantages of using prototype is that it establishes

feasibility and usefulness of the product before high

development costs are incurred, forces a detailed study of the

requirements which reveals inconsistencies and omissions and

also, minimizes misunderstanding and omissions. Table 8

summarizes the benefits and drawbacks of prototyping in

order to alleviate the requirement engineering problems faced

by the company considered in this paper.

Table 8. Benefits & Drawbacks of Prototyping for solving

requirement problems

Benefits Drawbacks

Allows client to get a feel of

the overall functionality of

the product.

Once a prototype is

considered as accepted,

requirements cannot be

changed further.

Given feedback from client,

changes are made rapidly.

Many details are not built in

a prototype so it is an

incomplete problem analysis.

Ultimately, accurate

requirements are captured.

This technique may increase

the complexity of the system.

Missing functionality can be

identified easily.

Too much effort may be

invested if not monitored

properly.

5. RECOMMENDATION:

REQUIREMENT INSPECTION
Considering CMMI model, it tends to make an organization

look at each level as a target. Moreover, CMMI does not

outline a particular way to reach to the next level considering

the requirement engineering phase of software development.

It tend to focus on management related issues rather than

improving software quality. It is also costly to consult CMMI

professionals to become CMMI level certified, which is also a

major drawback.

Achieving ISO 9001 certification can also be a very costly

process, especially for small firms. Moreover, the ISO

certification relies heavily on documentation and procedures

that will demand more recruitment and training. In addition,

studies have shown that the registration process for ISO

standard is very time consuming.

Walkthroughs differ significantly from inspections because

the author takes the dominant role and conducts the meeting

where other specific review roles are usually not defined.

Walkthroughs are informal because they typically do not

follow a defined procedure, do not specify entry and exit

criteria, require no management reporting, and generate no

metrics [18]. Thus, walkthroughs is not an effective solution

for the company considered in the paper.

Rapid development of prototypes is essential so that they are

available early in the elicitation process. For the company

considered in this paper, it will not be feasible to develop

prototypes rapidly due to the lack of resources such as the

number of developers in the team. The expense of

implementing a prototype for each project may not be

economically viable for the company considered.

Requirement inspection should be the one inspection that is

never skipped [14]. Each major defect found by inspection

saves an average of nine labor hours in avoided downstream

rework [19]. In the requirements gathering process,

requirements are collected and documented as detailed

software requirements. The SRS is the document to be

inspected in this proposed solution. This is known as R1

inspection. A requirements inspection ensures that

specifications are well-written; each requirement in the SRS is

consistent, accurate, unambiguous, clear, traceable and

testable, that are also the software quality attributes that are

used to determine the quality of software [23]. The insights

gained after an inspection is carried out permit the remaining

part of the work to be done in a better way. Moreover, the

company will not have to invest on more resources, instead a

quality plan will be set up which can be followed to conduct

the inspection. Inspection can thus prove to be a powerful

technique for quality improvement. The recommended

solution is therefore to set up requirement inspection in the

company considered in this paper.

6. PROPOSED QUALITY PLAN FOR

REQUIREMENT INSPECTION
A quality plan describes the activities to be performed by an

organization with the aim to achieve quality in its product. In

order to conduct the recommended solution in the company

discussed in the paper, that is conduct requirement inspection,

the following quality plan is proposed.

6.1 Setting up of the Inspection Team
One of the most important aspects of the inspection process is

to define the role of the team members which comprises of

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

30

three to six people who play the roles of moderator, producer,

reader, recorder and inspector in this process.

6.2 The Requirements Inspection Process
6.2.1 Planning Phase
During the planning phase, the moderator selects inspectors

from different disciplines and functions in the organization.

This will ensure that the SRS is inspected from many different

points of view.

The important steps of the planning phase are:

(A) The software to be inspected and the inspection

team are determined.

(B) Specific work products are identified for inspection

from the SRS document.

(C) Selection of all the elements important for carrying

out the inspection are gathered such as the

identification of team members and the selection of

the moderator. Moreover, the team members should

follow an inspection training process prior to

conducting the inspection [25].

6.2.2 Preparation Phase
During the preparation phase, the inspection meeting is

prepared by critically reviewing the SRS and the work

product. Once the materials are ready, they are distributed to

the inspection team members so that they become familiar

with the documentations. Once each team member is ready for

the inspection meeting, they move to the next phase which is

the formal inspection meeting [25].

6.2.3 Formal Inspection Meeting
The aim of the inspection meeting is to identify all

discrepancies in the work products as compared to the SRS

document. Once the preparation phase is over and all the team

members are ready, the moderator calls for the inspection

meeting. The moderator will be the one responsible to go

around the table and solicits any potential errors or defects

from the team. Each potential error or defect is discussed, and

the team reaches consensus as to whether a potential problem

should be recorded as an error or a defect.

(A) Each potential problem is recorded on an Inspection

Problem Report form for consistency.

(B) The recorder ensures that the information entered on

the Inspection Problem Report forms is complete

and accurate and reflects any team discussions and

clarifications.

(C) The recorder records the meeting duration

information on the Inspection Process Summary

Report form.

(D) The moderator decides when the meeting is over

[25].

6.2.4 Follow-up
The moderator works with the team members to resolve

discrepancies rose at the inspection meeting. Upon successful

completion, the moderator will complete the Corrective

Action portion of the Inspection Summary Form to indicate

that the inspection has been successfully completed [25].

6.3 Proposed Inspection Metric
It is difficult to monitor and analyze any inspection without

measuring it. To be able to plan, monitor and improve the

requirements inspection process, the Fagan‟s Metric is being

proposed [20].

Fagan introduced the Error Detection Efficiency metric Mf for

measuring inspection efficiency. This metric is widely

recommended for software quality improvement that can be

used to measure the effectiveness of requirement inspection in

the company concerned. The formula of the metric is as

follows:

Mf = Number of Defects found during inspection (DEFr)

The Total Number of Defects in the Product before Inspection

(DEFtotal)

7. CONCLUSION
In any software projects, several issues crop up which directly

or indirectly affect the quality of software. Software quality

should not be compromised as it demonstrates how far the

requirements, features and characteristics of the software have

been completed and whether customer satisfaction has been

achieved. What govern software are essentially requirements.

Requirements gathering are a collaborative decision-making

activity involving users, developers, customers and any other

stakeholders. This paper has shown that for the state owned IT

organization in Mauritius, where there are many shortcomings

concerning the requirement engineering phase, which includes

requirements gathering, elicitation and management can be

improved via the proposed recommendation “Requirements

Inspection”. The latter can prove to be an effective solution as

many organizations have employed inspection as a tool to

detect defects and improve quality in their software

worldwide. Based on this, a quality plan for the organization

to achieve quality in its software products has been proposed.

The quality plan describes steps and activities to be performed

in order to proceed with the Formal Inspection process in the

Requirement phase of the Software Development Life Cycle.

The latter may at start consume a significant amount of time

but the benefits to be reaped outweigh the amount of time that

will be spent on the inspection process.

By conducting formal inspection on requirements, the

company will thus be able to come up with clear,

unambiguous, complete and verifiable requirements. This will

not only save maintenance and rework costs for the company

but also improve quality by a substantial margin and foster a

quality culture in the company. Furthermore, the impact of

good requirement engineering will be felt all along the

software development life cycle.

8. REFERENCES
[1] Nuseibeh, B. and Easterbrook, S. 2000. Requirements

engineering: a roadmap. In Proc. of the Int. Conf. on

Soft. Eng. (ICSE), pages 35–46.

[2] Parnas, D. L. 2007. Software engineering programmes

are not computer science programmes. Ann. Soft. Eng.,

6(1):19– 37, 1999.

[3] Hofmann, H.F. and Franz, L. 2001. Requirements

Engineering as a Success Factor in Software Projects.

IEEE Software, pp. 58-66

[4] Sharma, A. and Kushwaha, D.S. 2010. A Complexity

measure based on Requirement Engineering Document.

Journal of Computer Science and Engineering, V1.1.

[5] Defect Prevention: Reducing Costs and Enhancing

Quality. 2015. Defect Prevention: Reducing Costs and

Enhancing Quality. [ONLINE] Available at:

http://www.isixsigma.com/industries/software-it/defect-

prevention-reducing-costs-and-enhancing-quality/.

[Accessed 02 November 2015].

http://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
http://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.2, March 2016

31

[6] Cost of Quality | Software Testing Fundamentals.

[ONLINE] Available at:

http://softwaretestingfundamentals.com/cost-of-quality/.

[Accessed 12 November 2015].

[7] Error Cost Escalation Through the Project Life Cycle –

NASA Johnson Space Center [ONLINE] Available at:

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/2010

0036670.pdf. [Accessed 12 November 2015].

[8] Boehm, B. W. 1981. Software Engineering Economics,

Prentice-Hall, Englewood Cliffs, NJ.

[9] Pressman, R. S. 2001. Software engineering: A

practitioner‟s approach (5th ed.). New York: McGraw-

Hill.

[10] Höggerl, M. 2006. An Introduction to CMMI and its

Assessment Procedure. In Seminar for Computer

Science. University of Salzburg, Department of

Computer Science.

[11] Rakitin, S.R., 2001. Software Verification and Validation

for Practitioners and Managers. 2nd ed. Boston London:

Artech House, Inc.

[12] Walker, D. 2015. Notes on Prototyping. [ONLINE]

Available at:

http://fhs.mcmaster.ca/OHPToolkit/Content/TK_Prototy

ping.pdf. [Accessed 09 November 2015].

[13] CMMI V1.3 Process Areas | Ben Linders. [ONLINE]

Available at: http://www.benlinders.com/tools/cmmi-v1-

3-process-areas/. [Accessed 12 November 2015]

[14] Requirements Walkthrough Checklist – Project

Connections. [ONLINE] Available at:

http://www.projectconnections.com/templates/detail/requ

irements-walkthrough-meeting.html. [Accessed 12

November 2015].

[15] Kimmond, R.M. 1995. Survey into the acceptance of

prototyping in software development. Proceedings from

the IEEE 6th International Workshop on Rapid System

Prototyping.

[16] Brown, N. 1999. High-Leverage Best Practices: What

Hot Companies Are Doing to Stay Ahead. Cutter IT

Journal, v12.9, pp. 4-9.

[17] Brown, N. 1996. Industrial-Strength Management

Strategies. IEEE Software, v13.4, pp. 94-103.

[18] Karl, E. 2002. Peer Reviews in Software: A Practical

Guide. Addison-Wesley.

[19] Gilb, T., and Dorothy, G. 1993. Software Inspection.

Wokingham, England: Addison-Wesley.

[20] Fagan, M. 1976. Design and code inspections to reduce

errors in program development. IBM Systems Journal,

v15.3, pp.182-211.

[21] Piscataway, N.J. 1998. IEEE Guide to Software

Requirements Specification, IEEE Std. 830-1998, IEEE

Press.

[22] Pareto Chart Analysis (Pareto Diagram) | ASQ.

[ONLINE] Available at: http://asq.org/learn-about-

quality/cause-analysis-tools/overview/pareto.html.

[Accessed 12 November 2015].

[23] McCall, J. A., Richards, P. K., & Walters, G. F. Factors

in Software Quality. General Electric Co Sunnyvale CA,

1977.

[24] Huzooree, Geshwaree and Ramdoo, Vimla Devi. 2015.

A Systematic Study on Requirement Engineering

Processes and Practices in Mauritius. International

Journal of Advanced Research in Computer Science and

Software Engineering, v5.2, 40-46.

[25] Rakitin, S.R., 2001. Software verification and validation

for practitioners and managers. Artech House, Inc.

IJCATM : www.ijcaonline.org

http://softwaretestingfundamentals.com/cost-of-quality/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100036670.pdf
http://www.benlinders.com/tools/cmmi-v1-3-process-areas/
http://www.benlinders.com/tools/cmmi-v1-3-process-areas/
http://www.projectconnections.com/templates/detail/requirements-walkthrough-meeting.html
http://www.projectconnections.com/templates/detail/requirements-walkthrough-meeting.html
http://asq.org/learn-about-quality/cause-analysis-tools/overview/pareto.html
http://asq.org/learn-about-quality/cause-analysis-tools/overview/pareto.html

