
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

9

A Survey on Detection and Prevention Techniques of

SQL Injection Attacks

Harish Dehariya
Student

UIT, RGPV, Bhopal
Madhya Pradesh, India

 Piyush Kumar Shukla,
PhD

Assistant Professor
UIT, RGPV, Bhopal

Madhya Pradesh, India

Manish Ahirwar
Assistant Professor
UIT, RGPV, Bhopal

Madhya Pradesh, India

ABSTRACT
Web applications are widely using nowadays. In these web

applications, most of those that are based on money

transaction like on-line baking, e-shopping, on-line bill

payment, Money transfer, etc. The interaction between the

web applications and Database is done with Structured Query

Language (SQL) and Scripting Language is used. These

queries keep sensitive or personal information of various

users. So it is necessary to maintain confidentiality from

unauthorized access. SQL injection Attack (SQLIA) is the

most common type of vulnerability in which crafted query is

inserts as input for retrieving personal information about other

users. In this paper, various detection and prevention

techniques of SQL injection attacks are described and perform

a comparison between them.

Keywords
Web Application, SQL Injection, Vulnerabilities, Detection

and Prevention techniques.

1. INTRODUCTION
As the rapid increasing dependency on web applications,

organizations connected their database for sharing

information. Developer uses various mechanisms for securing

the web applications but attacker may get that points where

vulnerability may find. All web applications communicate

through Databases, which keeps all sensitive information

about users. An attacker may get his information and may

harm the Database. SQL is a communication medium between

Web application and back end database. So the mostly

attackers use SQL for accessing a database. A SQL Injection

attack (SQLIA) is that in which a malicious mind person

injects its own crafted query as input. The back end server

executes the query statement and sends the result to the

attackers. An attacker obtains the result and back end

database. So the mostly attackers use SQL for accessing the

database. So the mostly attackers use SQL for accessing a

database. A SQL injection attack (SQLIA) is that in which a

malicious mind person injects its own crafted query as input.

The backend server executes the query statement and sends

the result to the attackers. An attacker obtains the result and

may use to the purpose of breaking confidentiality of

database. This SQL Injection Attack mostly affects financial

web applications or secret information system that could be

the victim of this vulnerability because the attacker by

abusing this vulnerability can threat their authority integrity

and confidentiality.

For detection and prevention, various tools have been evolved

A detection block model [4] based on calculation on static and

dynamic message authentication code (MAC) value. The

model works both on client and server side. Client side

implements a filter function and server side is based on

Information theory. These static MAC value and Dynamic

MAC value compared for knowing that the web application is

injected by SQL or not. Another approach is SQLRand [10]

which is based on a randomization query algorithms

CANDID [26] based on the dynamic candidate evaluation

approach for mining the structures of programmer intended

queries and a formal basis for this dynamic approach by using

symbolic queries. Static analysis and runtime monitoring

combine in AMNESIA [30]. SQLGAURD and SQL CHECK

[1] proposed a model of expected queries at runtime. In these

approaches, the model is expressed as a grammar that only

accepts legal queries. Static analysis algorithm is derived from

type system and type state for a secure information flow. At

the time of analysis codes checks for any vulnerability

without user intervention.

The WebSSARI [32] tool uses predefined set of filters for

filtering inputs for finding security vulnerabilities in the

application. The drawback of this technique is that it assumes

that sufficient preconditions for sensitive functions can be

precisely expressed adopting their typing system. For many

types of applications, this assumption is too strong.

2. MAIN CAUSE OF SQL INJECTION
In this section various cause of SQL injection presented those

are:

2.1 Invalidated Input: Any SQL query consist some

parameters such as INSERT, UPATE, ALTER and some SQL

control character such as semicolon and quotation mark. If

there is no checking for web applications so it can be abused

in SQL injection.

2.2 Generous Privileges: Privileges are some rules for

accessing some database for some object and by object which

actions going to be perform. SELECT, INSERT, DELETE are

actions of executing SQL queries that included typical

privileges.web application is use for accessing any specific

information from database. By bypass authentication an

attacker gain privileges.

2.3 Uncontrollable variable size: If any variable is using

storage for large amount of data so some time can be possible

that attacker may enter faked input values.

2.4 Error Message: Error message generates when wrong

input values is inserted in web application. Attacker may get

the script structure or information about database .so that

attacker may create its own attack.

2.5 Clint side only control: If input validation is

implemented in client side scripts only, then by using cross

site scripting security function of script at client side can be

override and attacker can invalidate input or accessing

database.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

10

2.6 Stored Procedure: Stored Procedure is small program

with some function that calls multiple times in execution.

When these functions become calls so that stored procedure

become calls in place of that functions. These stored

procedures become storedin database. The problem with the

stored procedure is that an attacker can execute and damage

database.

2.7 Into Outfile support: A text file of containing SQL query

result may get by manipulating SQL query. This can be

possible by using condition of INTO OUTFILE clause that is

benefit of Some Relational Database.

2.8 Sub-select: When a SQL query is inserted in WHERE

clause of other SQL query so this is a weakness for Database.

This weakness makes the web application more vulnerable.

3. TYPE OF SQL INJECTION

ATTACKS
There are different methods of attacks that depending upon

the goal of an attacker is performed together or sequentially.

3.1 Tautologies [6]: In this type of attack tautology

commands uses for making the SQL query always true. In the

SQL query condition uses in WHERE clause so making this

condition true the tautology statement applied in WHERE

clause.

For example"SELECT * FROM the employee WHERE

userid = '112' and password ='aaa' OR '1'='1'"

Here tautology statement (1=1) has been added to the query

statement so it is always true.

3.2 Illegal /Logically Incorrect Queries [11]: In this type of

attack when a query became rejected so an error message is

returned that include useful debugging information. An

attacker may get the various parameters from this message. So

these parameters may help for creating new Query. Junk input

is provided for checkingtype mismatches, or logical errors by

purpose. For example an URL

http://www.tickitbooking.it/event/?id_nav=8862) is original

but in place type

http://www.tickitbooking.it/event/?id_nav=8864' 3)

It will be a SQL injection.

3.3 Stored Procedure [2]:A program coded by Developer for

security purpose that is stored in database for providing an

abstraction layer is stored procedure. Because it coded by

programmer it can also be uses as attack. Depend on specific

stored procedure on the database there are different ways to

attack. In the following example, an attacker exploits

parameterize stored procedure.

For example a stored procedure written as

CREATE PROCEDURE DBO.is Authenticated @userName

varchar2, @pass varchar2, @pin int AS EXEC("SELECT

accounts FROM users WHERE login=’" +@userName+ "’

and pass=’" +@password+ "’ and pin=" +@pin);

3.4 Inference: This type of attackhas two categories are Blind

attack and Timing attack.

3.4.1 Blind Injection [1]: When developers hide the error

details and provide a generic page in place of an error

message so this time attacker can get the information of

database structure by asking true/false type of questions

through SQL statements.

SELECT accounts FROM users WHERE login= 'doe' and

1 =0 -- AND pass = AND pin=O SELECT accounts FROM

users WHERE login= 'doe' and 1 = 1 -- AND pass = AND

pin=O

If there is no input validation so query will execute.

3.4.2 Timing Attacks [1]: Timing attack is related to

response time given by database. Here WAITFOR keyword

is used for delay response by database. An attacker can gather

information from a database by timing delays. This technique

uses an if-then statement for injecting queries.

For example, in the following query:

declare @ varchar(8000) select @ = db_nameO if

(ascii(substring(@, 1, 1)) & (power(2, 0))) > 0 waitfor

delay '0:0:5'

from the above SQL query it is specify that database will

pause for five seconds if the first bit of the primary byte of the

name of the current database is 1. Then code is injected to

generate a delay in response time when the condition is true.

Furthermore, an attacker can ask a series of other questions

about this character. As these examples show, the information

is extracted from the database using a vulnerable parameter.

3.5 Union Query [2]: in this type of attacker join a new query

in original query by using UNION keyword and can get data

tables from database.

For example

SELECT Name, Phone FROM Users WHERE Id=$id

By injecting Id value and append the following query

$id=1 UNION ALLSELECT creditCardNumber, 1 FROM

CreditCarTable

So the executable queries will be as the following:

SELECT Name, Phone FROM Users WHERE Id=1

UNION ALL SELECT creditCardNumber,1 FROM

CreditCardTable

3.6 Piggy-backed Queries [11]: As like UNION query this

type of attack ";"is uses for to append extra query to the

original query. With a successful attack database receives and

executes multiple distinct queries. Normally, the first query is

legitimate query, whereas following queries could be

illegitimate. This is mostly use for destroy the table from

database.

In the following example, an attacker injects" 0; drop table

user” into the pin input field instead of logical value. Then

the application would produce the query:

SELECT info FROM users WHERE login='doe'

ANDpin=0; drop table users

4. SQL ATTACK INJECTION

DETECTION TOOLS

4.1Tautology Checker [6] –It is proposed in 2004. This tool

provides an analysis framework for security. Static analysis

and automated reasoning performs for checking any tautology

statement contains in coding. For limited scope of this tool it

is not useful.

4.2 CANDID [26] - Dynamically Candidate evaluation tool

modify web applications written in java through a program

transformation. This tool dynamically mines the programmer-

intended query structure on any input and detects attacks by

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

11

comparing it against the structure of the actual query issued.

CANDID’s natural and simple approach turns out to be very

powerful for detection of SQL injection attacks.

4.3 SQLGAURD [11]-SQL Guard is work on basis of

evaluation of the structure of the query before, and after the

addition of user-input based on the model.

4.9 AMNESIA [30] - Analysis and Monitoring for

Neutralizing SQL Injection Attacks which combines Static

and run time analysis. AMNESIA is a tool for analysis and

monitoring for detecting illegal quires before execution on the

database, which is based on static and dynamic analysis. Here

on static phase, build a model of queries could be generated in

dynamic phase check dynamically generated queries. From

the figure it show AMNESIA tool consist three modules is

built, in which keeps all possible SQL query queries that

may be generated.

Analysis module – In this module identification of hotspots

done by scanning of code files and for each hotspot a model

Instrument module - here each hotspot is instrument with a

call to the runtime monitor.

Runtime monitoring modules – here query string is give as

input and id of hotspot generates the query retrieve the SQL

model and check against the model.

Figure 1:- AMNESIA TOOL et al [30]

4.4 CSSE [29]-This techniques use a Context-Sensitive

analysis for detecting SQL tokens in query if an untrusted

query id found so query will be rejected. A common

drawback of this approach is that it requires modifications at

the runtime environment, which affects portability.

4.5 SQL IDS [6] - This tool is based on machine learning

technique. It builds a model of typical queries and match at

run time that queries those does not match treat as attacks.

This tool detects attacks successfully, but it depends on

training seriously.

4.6 SQLPrevent[10]– SQL Prevent is works on the

interception of an HTTP request. AllHTTP request from web

application is stored in storage. When a SQL query generates

SQL web application and passes them to SQLIA detector

module at this timeHTTP request from thread local storage is

fetched and examined to determine.

4.7. SQLRand [10] - According to the Keromytis and Boyd

in SQLRand Proxy server is used between Client (Web

server) and SQL server.They de-randomized queries received

from the client and sent the request to the server. Portability

and security are the advantages of this de-randomization

framework.

4.8 SQLChecker [1] - In this model is specified

independently by the developer. It uses a secret key at runtime

checking so security of the approach is dependent on

attackers. In approach, developer should have to modify code

to use a special intermediate library or manually insert special

markers into the code where user input is added to a

dynamically generates query.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

12

5. SQL ATTACK INJECTION

PREVENTION TOOLS
5.1 JDBC Checker [11] - It is uses for dynamically generated

query string on basis of mismatching. As we know that most

of the SQLIAs consist of syntactically and type correct

queries so this technique would not catch more general forms

of attacks.

5.2 WAVES [6] - WAVES a black-box technique that uses a

Web crawler to identify all points in a Web application that

can be used to inject SQLIAs. It target on a specified list of

patterns and attack techniques. WAVES then monitors the

application’s response to the attacks and uses machine

learning techniques to improve its attack methodology.

5.3 SECURITYFly [2] is tool that is implemented for java.

Here check string in place of character for any suspicious

information and try to sanitize query strings. This tool has a

drawback that is numeric fields cannot stop by this approach.

Difficulty of identifying all sources of user input is the main

limitation of this approach.

5.4 SECURITY GATWAY [2] - It works on the filtering

system that forces the input validation. By using Security

Policy Descriptor Language (SPDL), developers provided

specify transformation that is applied to the parameters of web

application.

5.5 SQL DOM [6]- It is an object model for proposing a

solution for building a secure communication environment for

accessing relational databases from the OOP (Object-Oriented

Programming) Languages because they mainly focus on

identifying the obstacles in the interaction with the database

via Call Level Interfaces.

5.6 WebSSARI [32]– A WebSSARI tool use for sanitizing

input that passed through predefined set of filters. Here static

analysis to check taint flows against preconditions for

sensitive functions. The drawback of this approach is that it is

not necessary preconditions for sensitive function accurately

expressed. WebSSARI’s system architecture is presented in

Figure 2. A code walker consists of a lexer, a parser, an AST

(abstract syntax tree) maker, and a program abstractor. The

program abstractor asks the AST maker to generate a full

representation of a PHP program’s AST. The AST maker uses

the lexer and the parser to perform this task, handling external

file inclusions along the way. By traversing the AST, the

program abstractor generates a control flow graph and a

symbol table. Based on the prelude files, the verification

engine moves through the Control Flow Graph and references

the ST to generates type qualifiers for variables and

preconditions and post conditions for functions. This routine

is repeated until no new information is generated. The

verification engine then moves through the control flow graph

once again, this time performing type state tracking to

determine insecure information flow. It outputs insecure

statements (with line numbers and the invalid arguments). For

each variable involved in an insecure statement, it inserts a

statement that secures the variable by treating it with a

sanitization routine. The insertion is made right after the

statement that caused the variable to become tainted.

Sanitization routines are stored in a prelude, and users can

supply the prelude with their own routines.

Figure:-2 WebSSARI system Architecture et al [32]

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

13

Table 1 Comparison of SQL Injection Attack Detection Techniques with Respect to attack types et al [6, 11]

ATTACK

TOOLS

Tautology

Piggy

Baked

Illegal/

Incorrect

Union

Alternate

encoding

Timing

attack

Blind

attack

Stored

procedure

Tautology

checker

√ × × × × × × ×

CANDID[29]
√ × × × × × × ×

DIWeDa[23]
× × × × × √ √ ×

CSSE[29]
√ √ √ √ √ × √ ×

SQLRand[10]
√ √ √ √ √ √ √ ×

AMNESIA[33]
√ √ √ √ √ √ √ ×

SQL IDS[2]
√ √ √ √ √ √ √ √

SQLPrevent[28]
√ √ √ √ √ √ √ √

SQLChecker [6]
√ √ √ √ √ √ √ √

Here sign× Represent attack cannot detected and √ represents attack detected

 From the above table it is clear that Tautology checker and CANDID can detect tautology attack only whereas DIWed can

detect TIMIMG and BLIND attacks only.

 SQLRand and AMNESIA can detect all type of attacks except Stored Procedure.

 SQL IDS SQL Checker and SQLPrevent can detect all type of SQL injection Attacks.

Table 2 Comparison of SQL injection Attack Prevention Techniques with respect to attack type’s et al [6, 11]

ATTACKS

TOOLS

Tautology

Piggy-baked

Illegal/
Incorrect

Union

Alternate
Encoding

Timing
Attack

Blind Attack

Stored
Procedure

JDBC

Checker
       

WAVES        

Security

Gateway
       

Security Fly        

SQL DOM √ √ √ √ √ √ √ ×

WebSAARI √ √ √ √ √ √ √ √

6. CONCLUSION
SQL injection attack is major headache for developers for

securing web applications. Various tools have been developed

for detection and prevention. In these most of the tools can

attack all types of SQLIAs except Stored procedure. In this

paper a survey of various detection and prevention techniques

of SQL Injection Attack is enlist. Started from Tautology

checker that on only check tautology attack then CANDID

[26] that can detect more attacks then CSSE [29] by using

string evaluation mechanism it made possible to detect all

type of attack except Stored Procedure, then AMNEISA [25]

which is based on combination of static and runtime

monitoring. Other newly method of detection by comparing

static MAC value and Dynamic MAC value is done in

detection block model [1]. So this is broad area where new

tools can be developed for detection as well as prevention of

SQL Injection Attacks.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

14

7. REFERENCES
[1] Diksha G. Kumar, Madhumita Chatterjee “Detection Block

Model for SQL Injection Attacks” I.J. computer Network

and Information Security, 2014

[2] Bojken Shehu, Aleksander Xhuvani “A literature Review

and comparaative analysis on SQL injection:

Vulnerabiities, attacks and their detection and

prevention Techniques” International Journal of

Computer Science Issues, Vol 11,Issue 4, no1 2014

[3] Geogiana Buja, Dr. Kamarularifin Bin Abd Jalil, Dr.

Fakariah Bt. Hj Mohd Ali, The Faradilla Abdul

“Detection model for SQL Injection Attack: An approach

for preventing a web application from the SQL injection

Attack”IEEE Symposium on Computer Applications and

Industrial Electronics, April 2014

[4] Nuno Seixas, Marco Vieira, Jose Fonseca, Henrique

Madeira “Analysis of field data on web security

vulnerabilities ”IEEE Transactions on Dependable and

secure computing Vol. 11 No.2 March/Aril 2014

[5] Hossaian Shahriar, Mohammad Zulkernine, “Information

Theoretic Detection of SQL Injection Attacks”

International Symposium on high-Assurance systems

Engineering, IEEE 2014

[6] Hussein AlNabulsi, Izzat Alsmadi,, Mohammad Al-

Jarrah “Textual Manipulation for SQL Injection attack”

I.J. computer Network and Information Security, 2014

[7] Monali R. Boradel, Neeta A. Despande “Extensive

Review of SQLIA’s Detection and Prevention

Techniques” International Journal of Emerging

Technology and Advanced Engineering ISSN 2250-

2459, ISO 9001:2008 Certified Journal, Volume 3, Issue

10, October 2013

[8] Shelly Rohilla, Pradeep Kumar Mittal “Database

Security by Preventing SQL Injection Attacks in Stored

Procedure” Journal of Advanced Research in Computer

Science and software Engineering Volume 3, Issue 11

November 2013.

[9] Jaskanwal Minhas Raman Kumar “Blocking of SQL

Injection attack by Comparing Static and Dynamic

queries” International Journal of computer network and

Information Security 2013

[10] Mihir Gandhi, Jwalant Baria “SQL INJECTION Attacks

in Web application”International Journal of Soft

Computing and Engineering (IJSCE) ISSN: 2231-2307,

Volume-2, Issue-6, January 2013”

[11] Srinivas Avireddy, Varalaxhmi perumal, Narayan

Gowraj, Ram Srivastava Kannan“Random4: An

Application Specific Randomized Encryption Algorithm

to prevent SQL Injection” 11th International conference

on trust, Security and privacy in computing and

communications IEEE 2012.

[12] Atefeh Tajpour, Suhaimi Ibrahim, Mohammad Sharifi

“Web Application security by SQL Injection Detection

tools” International Journal of Computer science Issue,

Volume 9 Issue 2 No 3 March 2012

[13] Neha Singh, Ravindra Kumar Purwar “SQL Injections –

A Hazard to web application” International Journal of

Advanced Research in computer Science and Software

Engineering Volume 2, Issue 6, June 2012

[14] Iyano Alessandro Elia, Jose Fonseca and Marco Vieira

“Computing SQL Injection Detection Tools Using

Attack Injection: An Experimental study” IEEE

International Symposium on software reliability

Engineering 2012

[15] Kanchana Natrajan, Sarala Subramani “Generation of

SQL injection free secure algorithm to detect and prevent

SQL Injection attack” ELESE VIER C3IT-2012

[16] Inyong Lee, Soonki Jeong, Sangsoo Yeo, Jongsub Moon

“A novel method for SQL Injection attack detection

based on removing SQL Query attribute values”,

ELSEVIER 2012.

[17] Qian XUE, Peng HE “On Defence and Detection of SQL

Server Injection Attack” IEEE 2011

[18] Jie Wang, Raphael C.W. Phan, John N Whitley, David J.

Parish “Augmented Attack Tree Modelling of SQL

Injection Attacks” IEEE 2010

[19] Atefeh Tajpour, Maslin Masrom, Suhaimi Ibrahim,

Mohammad Sharifi “SQL injection detection and

prevention Tools Assessments” IEEE 2010.

[20] Ntagwabira Lambert, Kang Song Lin “Use of Query

Tokenization to detect and prevent SQL Injection

attacks” IEEE 2010

[21] J. Fonseca, M. Vieira, and H. Madeira, “The web

Attacker Perspective –A Field study” IEEE 2010.

[22] Michelle Ruse, Tanmoy Sarkar, Samik Basu“Analysis

and Detection of SQL Injection Vulnerabilities via

Automatic Test Case Generation of Programs”. Annual

International Symposium on application and the Internet.

2010

[23] Nuno Auntunes, Nuno Laranjeiro, Marco Vieira,

Henrique Madeira “Effective detection of SQL /X Path

Injection Vulnerabilities in web services” IEEE

International conference on services computing 2009.

[24] A. Roichman E. Gudes, “DIWeDa –Detecting Intrusions

in Web Databases”. Vol. 5094, pp. 313-329 Springer

Heidelberg 2008[26] J. Fonseca and Marco Vieira

“Mapping software fault with web security

vulnerabilities” IEEE conference on dependable system

and network, June 2008

[25] J. Fonseca and Marco Vieira and Henrique Madeira

“Training Security Assurance Team using Vulnerability

Injection” IEEE Pacific Rim Dependable Computing,

December 2008

[26] P. Grazie “SQL Prevent Thesis” University of Columbia,

Vancouver, Canada 2008

[27] Prithvi Bisht, P. Madhusudan, V N. Venkatraman, Sruthi

Bandhakavi “CANDID Preventing SQL injection Attack

using Dynamic Candidate Evaluations” ACM

Transactions on Information and Security (TISSEC)

October/November 2007

[28] Fonseca, J. Vieira, M. Madeira, “H. Testing and

Comparing Web Vulnerability Scanning Tools for SQL

Injection and XSS Attacks” IEEE Dec. 2007.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

15

[29] J. Duraes, H. Madeira “Emulation of software faults: A

field study and practical approach” IEEE transaction

vol. 32 no.11 pages 849-867 November 2006

[30] T. Pietraszek, C. V. Berghe. “Defending against

Injection Attacks Trough Context-Sensitive String

Evaluation” Recent Advanced in Intrusion Detection

Volume: 3858, 2006

[31] William G. Halfond and Alessandro Orso “AMNESIA:

Analysis and Monitoring for NEutrializing SQL Injection

Attacks” pages 22-28 St. Louis, MO, USA, May 2005

[32] McClure and I. H. Kruger, “SQL DOM: Compile time

checking and dynamic SQL statements” Software

Engineering ICSE 2005.

[33] Yao-Wen Huang, Fang Yu, Christian Hang, Chuang

Hang, Tsai, D.T. Lee, Sy-Yen Kuo “Securing Web

Application Code by Static Analysis and Runtime

Protection” 13th conference on World wide web in ACM

New York USA 2004.

[34] Y. Huang S. Huang T. Lin and C. Tsai, “Web

Application security Assessment by Fault Injection and

Behavior" In Proceeding of the 11th International World

Wide Web Conference, May 2003.

IJCATM : www.ijcaonline.org

