
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

20

Methods to Enhance Transformation in Near Real Time

ETL

Mohammed Muddasir N.
Assistant Professor

Dept of IS&E
VVCE, Mysore

Ravi Kumar V.
Professor& HoD

Dept of IS&E
VVCE, Mysore

Prajwal V.
Student

Dept of IS&E
VVCE, Mysore

ABSTRACT
During the transformation phase of near real time ETL there

could be some technique applied so that we get better results

in terms of speed and accuracy. Transformation phase

concentrates on changing the transactional data into

semantically suitable format for the data warehouse. We try to

bring in some of the solution during transformation phase that

could enhance the speed and accuracy of the phase like

advanced query optimization techniques, designing a new

workflow so that we could reschedule some of the task. E.g.

some functions applied on two parallel flows could be applied

only once if the flows are converging. Also we look into some

of the solutions for stream data how we could merge stream

data and stored data, the challenges like speed and memory

utilization. We also explore solutions like event based

transformation for selected items, and handling of metadata

efficiently so that it could add valued to the transformation

phase.

Keywords

ETC,CBR, MDB

1. INTRODUCTION
Extract Transform and Load is the process of loading data

from transactional database to data warehouse. This process

was done in an offline mode in the non productive hours i.e.

past mid night or on weekends. Offline mode of operations

had the shortcoming of giving stale data for query results. But

this has got advantages of not tampering with the production

or transactional database and efficiency of transactional

database would not be affected by offline ETL. Because of

increased amount of data available on the net and in

transactional databases businesses are looking for real time

analytics. To do real time analytics data warehouses are

required to be updated in real time or as soon as possible not

waiting for the nightly or weekly scheduled update. This

requirement leads to the concept of Near Real Time ETL [1].

There are several challenges to near real time ETL and

research community has contributed effectively in

overcoming some of the challenges. During transformation

phase the extracted data are generated as streams from

transaction database sources and data from disk read. Various

solutions are proposed on this regard that processes the data in

parallel. We try to identify the various solution and algorithms

that address some of the issues related to ETL. Our focus in

this survey is on the transformation phase of ETL.

2. RELATED WORK
Some of the challenges and possible solutions for near real

time ETL are proposed in [2]. They have identified two

problems each in extraction, transformation and loading

phase. In extraction phase there are problems such as multiple

heterogeneous data source integration solved using change

data capture with stream processor and data integration tools.

Second problem is data source overload solved using update

significance and other record change methods. Also special

format of CDC [3] logs are considered. In transformation

phase they have identified master data overhead and need for

immediate server for aggregate data. The solution for the first

one is maintaining a cache of master data and database.

Solution for the second problem is instead of transform and

load we could actually load and transforms that could possibly

reduce the time consumed for aggregation. During the loading

phase the problems are performance degradation and OLAP

internal inconsistencies for which solutions such as stage

table, multiple stage table, staging outside data warehouse,

snapshot data, real time data cache and layer based view have

been proposed. Apart from this work not much work has been

done on survey concerning the challenges of near real time

ETL to the best of our knowledge.

3. METHODS TO ENHANCE

TRANSFORMATION PHASE IN ETL
One of the important features of OLAP is to eliminate

duplicates tuples by aggregating the tuples. In [4] the queries

based on aggregate functions are enhanced using the

semantics of the domain. They work on very basic aggregate

functions provided by SQL that are based on equality of the

tuples i.e. tuples get aggregated if they satisfy certain equality

criteria. Example if employees belong to the same department

they form a group [5]. In their work they have added further

semantics based grouping of tuples that is based on similarity

and not mostly on equality. In similarity bases duplication

elimination they have two phase entity identification where

tuples based on similarity are grouped and entity

reconciliation where they grouped tuples are identified as a

same real world entity. Tuples are similar if logic expression

evaluated to a value above the set threshold. Various logical

expressions are considered depending upon the domain. To

the existing SQL group by clause they have added “ON”

clause on which the similarity is evaluated.

Having a good query optimization technique is definitely an

advantage at the transformation phase. Further it’s also

important to design an efficient workflow. That is the focus in

[6] they design a work flow based on state space tree. They

identify that optimization is the task left for the DBMS to do

and hence this could be improved. They take a case of loading

data from two sources some of the data needs some

transformation like converting dollars to euros etc. What they

do is simply try to rework on the way things are executed first

transformation then loading or first loading then

transformation. They model each transformation task as an

activity and process of ETL has several such activities. An

activity can provide input to another activity or it could

generate data into a file. The solution is to minimize the

process or reschedule the process. As said earlier the process

is modeled as a state space tree where nodes of the tree are

activities or data stores and edges shows the flow of data from

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

21

one node to another. The ETL process is represented with a

directed acyclic graph. Each of the activities has four

components id, input schema, output schema and semantics of

data flow in terms of relation algebra. They perform the

transition in states by several ways like transforming

execution sequence; common flow parallel jobs are

transformed to a point where these parallel flows converge

and by dividing the tasks of joint flow to clone. Swap

transition are applied on unary operations like selection,

primary key check, null value check etc. It’s used to push

certain activities at the end of the tree. Factorize and distribute

are applied on binary operations e.g. union, join, difference

etc. Two activities having same functionality but on different

flow would be replaced after the flows have been converged.

This allows certain activities are performed only once. Merge

and split of two activities without changing the semantics to

reduce the state space tree without losing on any design

requirement.

In [7] the author has focused on the ETL workflow

optimization which includes data segmentation, feedback,

acquiring the required data, controlling the flow of the data

etc. The system also includes an intelligent control module,

which automatically judges the allocation of job. Data

segmentation is nothing but dividing the big chunk of data in

to smaller size which could be handled more easily and run

these smaller jobs in parallel .While performing the data

segmentation they consider the following aspects. 1) Amount

of data: As the size of the data increases the implementation

complexity also increases. 2) Disjoint sets: After the data

segmentation each of the smaller sized sets should be disjoint

in order to produce storage efficient and consistent results. 3)

Criteria: The data segmentation should be simple and should

have natural division standards to make the implementation

easier. Data partition is done horizontally focusing on number

of segments formed ,which follows all the above mentioned

aspects and this process of segmentation is done is parallel

fashion however parallelism is done only when it is suitable.

Intelligent control module: The main functions of an ICM are

monitoring the data acquisition, selecting an ETL strategy and

adjusting the old strategy to the new strategy.

Fig1: Intelligent ETL tool architecture

It has a (i) Monitor, which will be used to acquire the data

about the CPU utilization, I/O utilization and the cache.(ii)

Knowledge base is a collection of interrelated information

which is based on some representation .It also stores ,organize

and manage these information.(iii) selector is used for the

output of results as shown in fig1. Results are selected from

the ETL strategy which has conditions like: 1) whether the job

requires parallelism or not. 2) The reason for which the job

cannot be a multi-machine parallel. 3) The job is multi-

machine parallel and completes the task. The concept of the

selector is based on the decision tree which helps in selecting

the strategy. Decision trees are highly efficient and can be

easily used to classify.

In [8] they have designed a novel approach for master data

management dealing in transferring and transforming data in

the ETL layer. Usually the ETL process happen in batch

process and does offline operations so, there is a need for the

data to be available immediately. In this paper the author has

introduced an event-based near real-time.ETL layer for

transferring and transforming data from the operational

database to the data warehouse. This architecture uses the

database queue and the push technology to achieve the

content enrichment

Fig2: Traditional data warehouse architecture

The traditional data warehouse as shown in fig2 uses the batch

processing technique and the pull methodology and loads the

data from the source to the data warehouse which will not

provide the recent data to the decision makers. In the near-real

time, the event processing time is faster and the data will be

available soon. Content enrichment is nothing but adding

some extra information to the current data. To achieve this

data will be divided in to master data, which does not change

and the transactional data, which will be updated often. Here,

the master data referred by the transactional data should be

available. In the batch processing method for each time the

transaction data is loaded the corresponding master data will

be extracted it is time consuming so this new architecture as

shown in fig3 is proposed.

Fig3: Architecture of proposed solution

It has 3 main components: 1) Middleware, which is software

used to capture the changed data in the form of a write set. 2)

Database queue, it is a queue which stores the database tables.

This will allow to process soon, many message driven bean

can work on same queue and there is no need for writing

separate code for create (), queue (), delete () etc. The content-

based router (CBR) is used to distinguish the master and the

transactional data on the basis of table and field names and

sends it to the appropriate repository. 3) MDB, which checks

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

22

the DB queue for transformed updates if it is available it

extracts and loads in to data warehouse. Content enrichment

for the data is done using the INLJ (index nested loop join) on

the master table. The lookup is created using the foreign keys

of transactional data. By doing this it avoids the replication of

master data for each transaction

In [9] the focus is on the speed of arrival of stream data and

the I/O access speed of the disk. The streams arrive at a faster

rate than the access speed of I/O on the disk. They represent

input stream as S and look up table which is needed for

transformation as R. only after the data from S is joined with

R in the transformation phase it is loaded into the warehouse.

One more parameter is the memory of the system having the

lookup table. With the high arrival stream rate and limited

memory the algorithm tries to achieve a high service rate

keeping one of the parameters fixed. Either the streaming rate

is fixed and memory utilized is considered for high service

rate or memory is fixed and varying the arrival rate to

maximize the amount of data that is transformed and stored in

the warehouse. In their solution I/O cost of accessing disk

table are shared among the tuples in the stream data. The main

operation in transformation phase is join operation and they

developed a solution known as MESH join that is faster

compared to other joins. To understand MESH join the

following tables are considered fig4 in these sources

represents the arrival of stream data and lookup is the data on

the disk. While performing join the two inputs to join are the

source and lookup table these have different access speeds.

Also there is a limited amount of memory to buffer and join

the stream data and I/O data.

 Fig4: Surrogate key generation

The mesh join operation is demonstrated in the diagram below

fig5. At each time interval pages in the memory are joined

with stream data and with new stream arrival old stream data

are discarded as they have already being joined.

Fig5: Operations of Mesh Join

In [10] ETL includes the joining of the incoming updates and

the metadata, the author has proposed an algorithm called

Semi-Streaming Index Join (SSIJ) which improves the

throughput of the join and is dynamic in nature i.e., it will

manage both the memory and the incoming stream .Data may

be of different types and come from different origins so, there

is a need for cleansing, transforming and reconciliation before

the data is saved in data warehouse. ETL process is done to

update the data warehouse and it involves the job of joining

the incoming updates and the data which is already present in

the data warehouse. The join methods like conforming are

expensive in terms of the operation done on the data because

it involves refreshment of the data and tuples often and check

for the redundancy etc. Where as in active data warehouses

the data will be updated in real time so the joining of the

updates with the data has to be done quickly and in an

efficient way so there are joins like Nested-loop join, Mesh-

join etc. but these joins have their own drawbacks. So the

Semi-Streaming Index Join (SSIJ) as shown in fig6 is

introduced to join the update with the metadata because it has

the following characteristics: It exploits available memory

resources to cache F.A.P (frequently accessed pages) of the

relation and helps in faster join, accesses to pages are always

batched to minimize the access costs, blocks of the relation

that are not located in memory are read only, it dynamically

adapts memory allocation to cope up with different

characteristics of the streamed data, it supports equality,

conditions and works well for arbitrary join relations to

produce the exact join result, it is non blocking and produces a

high rate output stream and it adapts its execution in order to

meet processing deadlines for the incoming stream tuples.

Fig6: Semi Streamed Index Join Overview

SSIJ uses B+ tree for indexing which helps in reducing the

indexing overhead by decreasing the height of the tree by one

level and makes best use of the memory. The algorithm

performs a sort operation based on the indexes.

Algorithm: The memory of size M is partitioned in to 5

disjoint sets of variable sizes (will be dynamically adjusted by

the algorithm) .It has 3 phases: Pending phase: Here, the

algorithm waits for the minimum input buffer’s unprocessed

tuples to accumulate. Online phase: Here, the tuples are

looked up using an index and joined with the appropriate

relations. Join phase: This is the last phase where it reads the

disk continuously and records will be brought to the cache.

The tuples which are not joined with their relations in the

previous phase will be searched and Joined using “matching”.

Another work [11] develops a new method for partitioning the

data they call it QoX-driven design framework that’s based on

certain quality metrics. Quality matrices are used for

developing a tradeoff between the various competing

objectives like performance, fault tolerance, reliability,

recoverability, freshness etc. They try to optimize workflow

design and execution of ETL with their partitioning approach.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

23

The idea is to partition the flow keeping in mind flow

throughput, memory, load on each partition, response time

and synchronization. To do the partitioning they use two

operators one is the router operator and other is the merger

operator. Router operator performance the partitioning of the

flow and merger operator does the merger. There are several

aspects to be considered before the flow gets partitioned and

also before the flow gets merged.

Fig7: Abstract partition of flow F into N flows

The function R is the router function which does the

partitioning of the flow F in to several partitions f1, f2, f3,…

fn and M is the merger function which combines the flow as

shown in fig7. Ideally F after partition and merger should not

change but its ok in this experiment because if we wanted to

keep F unchanged it would be expensive and hence small

delta is allowed keeping in mind however the semantics does

not change. They complement the various partitioning policies

available with commercial ETL tools like the round

robin(RR), hash based (HB), and range(RG) with a novel

partitioning policy called QoX-based (QB). If we consider RR

then each operator i have the same processing cost cj for all

the partition uniformly throughout leaving less scope for

optimization. QB is based on the principal for taking the

semantics on data in all phases of ETL e.g. prioritizing data

based on SLA, origin of data etc so the partitioning varies and

we could optimize the processing of data.

In [12] they deal with challenge that is related to the

mismanagement of metadata. It uses ETL on metadata

repository to overcome the above challenge. Metadata is

nothing but the information that is related to the data, which

helps the data warehouse users in locating and using it easily.

ETL process has 3 parts namely Extraction phase, where the

data from the source is read. In transformation phase, the

above read data will undergo some changes depending on

some rules and deals with problems related to the data such as

redundancy, ambiguity, incompleteness etc. Loading phase,

where the above transformed data will be loaded in to the data

warehouse. The problem is that the general ETL processes

will not store this metadata in a proper way often it will be

undermined and stored using excel and other simple tool

which is ineffective on the larger data sets. To make this

effective the metadata will be stored in a centralized server,

which is also a metadata repository and is independent of

other tools. Metadata repository will have the unambiguous

and the correct data which can be directly used by the data

warehouse operators to join the tables, modifying the tables

etc. Metadata repository consists of business metadata and

technical metadata. Business metadata has dimensionality

model and the dependency relationship between

dimensionality model and data source. Technical metadata

should include this kind of metadata that can be applied in

developing, administrating and maintaining data warehouse.

Framework:

Fig8: ETL logical framework

Flat files are chosen as interface for each process, flat files

contain the data records with no structured relationship. After

the extraction it will create CIF files, these are then

transformed in to PLF files, finally it is loaded in to data

warehouse.CIF files can be obtained after the data cleansing

which helps in maintaining the source data in the same format

and eliminate the differences between source files. PLF are

the pre-loaded files which are the obtained after transforming

one or more CIF files. Choosing the flat files will give the

advantage of running the ETL process faster as shown in fig8.

4. CONCLUSION AND FUTURE WORK
Throughout this paper the transformation phase of ETL was

studied and methods required to improve this phase were

discussed. We could say that depending on the type of data

various different enhancements could be applied to

transformation phase. Example if the data are only from

stored sources we could enhance transformation with query

optimization techniques. If the data are from streams and

stored sources parallel flow algorithms, new work flow

design, and joins based on some part of stream data and some

part of stored data could be considered. Further our focus will

be on the extraction and loading phase. We would like to

study methods to enhance extraction and loading phase. Also

entire ETL optimization based on some hypothetical data and

considering different cases would be our next work.

5. REFERENCES
[1] P. Vassiliadis and A. Simitsis, "Near Real Time ETL,"

springer, vol. 3, 2008.

[2] A. Wibowo, "Problems and Available Solutions On The

Stage of Extract, Transform, and Loading In Near Real-

Time Data Warehousing," IEEE, p. 345, 2015.

[3] C. K. Bhensdadia, D. M. Tank, A. Ganatra and Y. P.

Kosta, "Speeding ETL Processing in Data Warehouses

Using High-Performance Joins For Changed Data

Capture (CDC)," IEEE, 2010.

[4] E. Schallehn, K.-U. Sattler and G. Saake, "Advanced

Grouping and Aggregation," in CIKM '01 Proceedings of

the tenth international conference on Information and

knowledge management, New York, 2001.

[5] R. Elmasri and S. Navathe, Fundamentals of Database

Systems, Addison-Wesley Pubs, 2000.

[6] A. Simitsis, P. Vassiliadis and T. Sellis, "State-Space

Optimization of ETL Workflows," IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.5, March 2016

24

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, vol. 17, no. 10, 2005.

[7] Y. Tu and C. Guo, "An Intelligent ETL Workflow

Framework based on data Partition," IEEE, 2010.

[8] M. A. Naeem, G. Dobbie and G. Weber, "An Event-

Based Near Real-Time Data Integration Architecture,"

IEEE, 2008. [9] N. Polyzotis, S. Skiadopoulos and P.

Vassiliadis, "Supporting Streaming Updates in an Active

Data Warehouse," IEEE, 2007.

[9] M. A. Bornea, A. Deligiannakis, Y. Kotidis and V.

Vassalos, "Semi-Streamed Index Join for Near-Real

Time Execution of ETL Transformations," IEEE, 2011.

[10] A. Simitsis, C. Gupta, S. Wang and U. Dayal,

"Partitioning Real-Time ETL Workflows," IEEE, 2010.

[11] L. Li, "A Framework Study of ETL Processes

Optimization Based on Metadata Repository," IEEE,

2010.

IJCATM : www.ijcaonline.org

