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ABSTRACT  
In this article we developed an inventory model for non-

instantaneous decaying items is considered under crisp and 

fuzzy environment. In this study we have considered stock 

dependent demand rate and variable deterioration. It is 

supposed that shortages are allowed and partially backlogged 

with exponential backlogging rate. Holding cost follows the 

learning curve. The deterioration rate, ordering cost, shortage 

cost and deterioration cost are assumed as a triangular fuzzy 

numbers. The aim of our study is to defuzzify the total cost 

function by signed distance method. This model is developed 

in both crisp and fuzzy surroundings. A numerical experiment 

is given to demonstrate the developed crisp and fuzzy models. 

Sensitivity analysis is implemented to examine the effect of 

parameters. The convexity of the total cost function is shown 

by graphically. 
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1. INTRODUCTION 
Inventory optimization deals with the decision to minimize the 

total average cost or maximize the total average profit. To do 

this, the approach is to construct a mathematical model of the 

real life inventory system by taking into account various 

assumptions and approximations. In most of the inventory 

models, it is assumed that various parameters like demand rate 

and ordering cost, etc. are precisely known. But in reality, the 

nature of these parameters is uncertain, so it is important to 

consider them as fuzzy numbers. Considering the fuzzy set 

theory in inventory model brings authenticity to the model 

since fuzziness is the closest possible approach to reality. By 

considering approximations, fuzzy theory helps one to 

incorporate uncertainties in the model formulation making it 

closer to reality.  

The concept of fuzzy set theory modeling was developed by 

Zadeh (1965). Jain (1976) deliberated a fuzzy inventory 

model on decision making in the presence of fuzzy variables. 

Some operations on fuzzy numbers was defined by Dubois 

and Prade (1978). A long term inventory policy making 

through fuzzy decisions was formulated by Kacpryzk and 

Staniewski (1982). Zimmerman (1983) applied to use fuzzy 

sets in operational research. 

Demand is directly co-related to stock and cost. In a fuzzy 

environment, data of stock are not clear. So to take care 

demand & inventory cost, it is important to avoid shortage. 

There are lots of factor, keeping open eyes on them, we can 

minimize fuzzy environment. Fuzzy inventory with backorder 

for fuzzy order quantity was investigated by Yao and 

Lee(1996). A Single Period Inventory Model with Fuzzy 

Demand was proposed by Kao and Hsu(2002). An inventory 

model with total demand and storing cost as triangular  fuzzy  

numbers was developed by Yao and Chiang (2003). They 

applied the defuzzification  by  centroid method  and  signed 

distance method both. A multi-item, multi-objective inventory 

model for deteriorating items with stock- and time-dependent 

demand rate over a finite time horizon in fuzzy stochastic 

environment was presented by Mahapatra and Maiti (2006). 

Halim et. al. (2008) deliberated by an EOQ model for 

perishable items with stochastic demand and partial 

backlogging. A fuzzy inventory model without shortages by 

using triangular fuzzy number was presented by De and 

Rawat(2011). Some recent work in this direction is done by 

Jaggi et. al. (2012), Saha and Chakrabarti (2012), Dutta and 

Kumar (2013) and Kumar and Rajput (2015) etc.           

Stock maintain has directly related to deterioration specially 

for perishable items and short expiry period goods. To control 

these we have to convert larger waiting time to shorter waiting 

time, by this we can reduce backlogging. For this we have to 

improve production, logistics and stock in our model. The first 

model for deteriorating items was formulated by Ghare and 

Schrader (1963). Chang & Dye (1999) deliberated a decaying 

inventory model with time varying demand and partial 

backlogging. An optimal replenishment policy for non-

instantaneous deteriorating items with stock-dependent 

demand was introduced by Wu et. al.(2006).Other inspiring 

articles related to this research area are Singh & Singh (2008), 

Sugapriya & Jeyaraman (2008),Dye (2013), Shukla et. al. 

(2013), Singh & Sharma (2014), Jaggi (2014), Tayal et.al 

(2015) and Jaggi et. al.(2015), Khurana (2015) etc.        

Learning phenomena cannot be ommit. By monitoring 

demand, shortage, holding cost & backlogged we can improve 

results as well as performance, shortage cannot be vanish. 

While developing inventory model we have to improve 

effective tools and machinery, production procedure, human 

resource environment. Learning, shortage and backlogging, 

we have developed a new effective inventory model. The 

learning phenomena defined by Wright [1936]. Jordan [1958] 

formulated that how to use the learning curve. An EPQ model 

under learning effect was developed by Fisk and Ballou 

[1985]. Balkhi [2003] analyzed  an optimal production lot size 

for deteriorating items with learning effect. An inventory 

model for imperfect quality items with learning was 

introduced by Jaber et. al.(2008). Kumar et al. (2013) 

investigated a Learning effect on an inventory model with 

two-level storage and partial backlogging. An  imperfect  

quality  items  with  learning  under  two  limited  storage  

capacity was developed by Singh et.al.(2013). Singhal & 

Singh (2015) proposed an inventory system with multi variate 

demand under volume flexibility and learning. 

In this article a decaying inventory model with variable 

deterioration and stock dependent demand rate is developed. 

This model is explained both crisp and fuzzy environment. 
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Shortages are permitted and partial backlogging. Learning 

effect is also considered in this model. Therefore, an inventory 

model with partial-backlogging is considered in fuzzy sense. 

The signed distance method is applied for defuzzification 

2. ASSUMPTIONS AND NOTATIONS: 

2.1 Assumptions 
The basic assumptions are applied to analyze this inventory 

model:  

1. The demand rate for the product is assumed to be 

stock dependent which is given by            

( ) ( ), ( ) 0D t a mI t I t  > and

, ( ) 0a I t < ,where 0,a > 0 1,m 

a m         

2. The deteriorating rate (0 1) < <  is time 

dependent.  

3. Shortages are allowed and partial backlogged and 

backlogging rate is considered to be 

( )

( )
T t

B t e
 

 , 0 1  . 

4. Holding cost  is partly constant and partly 

decreasing in each cycle due to learning effect of 

employees and is of the form 

0( ), 0
h

h
n


 >  

5. dt  is the length of time in which the product has no 

deterioration. 

6. T is the length of the cycle. 

7. Lead-time is zero. 

2.2   Notations 
The basic notations are used to develop this inventory model: 

1. A is the ordering cost. 

2. P is the Purchasing cost. 

3. 1C   is the Deterioration Cost. 

4. 2C   is the Shortage Cost. 

5. 3C is the  Lost Sale Cost. 

6. No. of shipments is n. 

7.   is the fuzzy deterioration rate. 

8. A  is the fuzzy ordering cost. 

9. 
1C  is the fuzzy deterioration cost. 

10. 2C  is the fuzzy shortage cost. 

11. The Inventory Level at time t is 
1
( )I t with 

[0, ]
d

t t  

12. The Inventory Level at time t is 
2
( )I t with 

1
[ , ]

d
t t t  

13. The Inventory Level at time t is 
3
( )I t with 

1
[ , ]t t T  

14. 1( , )TC t T
 
is the total cost of the system for crisp 

model. 

15. 
1( , )TC t T  is the total cost of the system for fuzzy 

model. 

3. MATHEMATICAL FORMULATION 

OF THE MODEL 

Crisp model: 
Let I(t) be the inventory level at time t (0 )t T  . During 

the time interval (0, )dt  the inventory level is depletes only 

owing to stock-dependent demand rate. The differential 

equation during the interval (0, )dt is given by   

 1

1

( )
( ) , 0 d

dI t
a mI t t t

dt
                         (1) 

Again during the time interval 1( , )dt t
 inventory is dropping 

to zero due to demand rate and deterioration both. The 

differential equation during the interval 1( , )dt t
is given by   

 2

2 2 1

( )
( ) ( ) , d

dI t
tI t a mI t t t t

dt
          (2)

                                    

After that during the time interval 1( , )t T shortage starts and 

due to partial backlogging some sales are lost. The differential 

equation during the interval 1( , )t T is given by

 

 

( )3

1

( )
,T tdI t

a e t t T
dt

                      (3) 

With boundary conditions  

1 2 3 1. . 1(0) , ( ) 0 & ( ) 0ma xI I I t I t  
      (4)

 

Solutions of these equations are  

2

1 . .( )
2

mt

ma xI
mt

I t e a t
  

    
                   (5) 

     

2

2 3 3 2 2

2 1 1 1
( ) ( )

6 2

t
mt m

I t a e t t t t t t



 
 
 
      

 
  

                                                                                               (6) 
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22

1

3 1 1( ) [ ( )] [ ( )]
2 2

tt
I t a t Tt a t Tt       

                    (7)

 

Considering the continuity at 
dt t  it follows from 

equation (5) & (6) such that 
1 2
( ) ( )d dI t I t

 

     

2

2

. .

2 3 3 2 2

1 1 1

2

( )
6 2

d d

d
d

mt mt d

ma x d

t
mt

d d d

I
mt

e e a t

m
a e t t t t t t





 

 
  
 
 

 
   

 

 
     

 

                              

                                                                                               (8) 

Now Maximum inventory level for each cycle is 

   

 

3 3

1 . . 1 1

2 2 2 2 2 2

1 1 1

(1 )
2 6

( ) ( )
2 2 4

dmt

ma x d d d d

d d d d d

Q I
m

at t ae t t t t

m m
t t t t t t t t



 




     


     

 

  3 3

1 1( )
6

d d d d

m
mt t t t t t

 
    


                    (9)                                                                        

Now Equation (4) becomes  

     

 

( )

3 3 2 2 2

1 1 1 1

2 2 2 3 3

1 1 1

1 (1 ) (1 )
2 2

( )
6 2 2

( ) ( )
4 6

( ) dm t tmt mt

d d

d d d d d

d d d d d d

m m
at t e at t e ae

m
t t t t t t t t t

m m
t t t mt t t t t t

I t

 

 

     


      




      



 

                          (10) 

Put t T in equation (7) we get max. amount of 

backlogged per cycle as follows 

22

1

3 1 12 ( ) [ )] [ ( )]
2 2

T t
I T a T a t TtQ           

                                                                                       (11) 

The order quantity is 

     

 

22

1

1 1

3 3 2 2 2

1 1 1 1

2 2 2 3 3

1 1 1

Q= (1 ) [ ] [ ( )
2 2 2

( )
6 2 2

( ) ( )
4 6

]

d

d d

mt

d d d d d

d d d d d d

T tm
at t a T a t Tt

m
ae t t t t t t t t t

m m
t t t mt t t t t t

 

 

 

    


      




      



 

    

                                                                  (12) 

3.1  The Purchasing cost is given by 

1 2( )PC PQ P Q Q  
 

22

1

1 1PC=P (1 ) [ ] [ ( )
2 2 2

]d d

T tm
at t a T a t Tt 


     


  

 

     3 3 2 2 2

1 1 1 1( )
6 2 2

dmt

d d d d d

m
ae t t t t t t t t t

 
      


 

 2 2 2 3 3

1 1 1( ) ( )
4 6

d d d d d d

m m
t t t mt t t t t t

  
      


 

                                                                                    (13) 

3.2 Ordering Cost is given by 

                               OC= A                                               (14) 

 

3.3 Holding cost is given by 

10

1 2
02

( ) ( )( )
d

d

t t

t
I t dt I t dt

h
HC h

n


 
  

   
 

02

0 (1 ) (1 ) )
2 2

( )
dt mt mt

d d

m m
at t e at t e

h
HC h

n


  
   


  

 

     ( ) 3 3 2 2 2

1 1 1 1( ( )
6 2 2

dm t t

d d d d d

m
ae t t t t t t t t t

  
      



 

 2 2 2 3 3

1 1 1( ) ( )
4 6

d d d d d d

m m
t t t mt t t t t t dt

  
      



 

     
2

1 2 3 3 2 2

1 1 1
6 2d

t
mtt

t

m
ae t t t t t t dt




 

  
 
 

 
           

  

      

                                                                    
(15)

 3.4 Deterioration Cost is given by 

 
1

2 2( ) ( )

d

t

d

t

DC I t a mI t dt  

   
2

1

2 3 3

2 1 1( )
6

d

tt mt

d

t

DC I t a ma e t t t t




 

  
 
 


      



  

 2 2

1
2

m
t t dt


  


                                        (16) 

3.5 Shortage cost is given by 
1

2 3 ( )
T

t
SC C I t dt  

1

22

1

2 1 1[ ( ( )) ( ( ))]
2 2

T

t

tt
SC C a t Tt a t Tt dt           

                                                                               (17)   
 

3.6 Lost Sales Cost due to lost sales is given by
 

1

( )

3 (1 )
T

T t

t
LS C a e dt  

  

2

3 1( )
2

a
LS C T t


 

                                            (18) 
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3.7 Therefore, the total relevant inventory cost per 

unit time is given by (Crisp Model) 

1

1
( , ) [ ]TC t T DC OC PC HC SC LS

T
     

                                                                                     (19) 

4. OPTIMAL SOLUTION PROCEDURE 
The total values of t1 and T which minimize total cost TC can 

be solved by differentiating equation (21) ,put  

1 1

1

( , ) ( , )
0, 0

TC t T TC t T

t T

 
 

 

                      (20) 

Provided it satisfies the condition 

2 2

1 1

2 2

1

( , ) ( , )
0, 0

TC t T TC t T

t T

 

 
> >

 
2

2 2 2

1 1 1

2 2

11

( , ) ( , ) ( , )
0

TC t T TC t T TC t T

T tt T

       
     

       
>

                                                                                 (21) 

5. NUMERICAL EXPERIMENT 
Let us consider 

1150, 0.02, 4, 1.4, 150,A P C a      

2 30.44, 0.01, 2.5, 2, 5,m C C h      

0 2, 3, 0.1, 1.2dh n t     

Based on these input data, we get  

1 2.2718t  , T=5.42421 and optimal total cost will be  

1( , )TC t T =1494.51 

 

6. SENSITIVITY ANALYSIS 
Sensitivity analysis is performed by changing the parameters 

and considering one parameter at a time, keeping the left over 

parameters at their original values 

Table-(1) Variation in Deterioration cost parameter ‘ 1C ’ 

1C  
1t  T  TC 

1.41 2.27404 5.44213 1495.21 

1.42 2.27458 5.44437 1495.98 

1.43 2.27505 5.4466 1496.63 

1.44 2.27555 5.44896 1497.31 

Table-(2) Variation in Deterioration rate ‘ ’ 

  
1t  T  TC 

0.03 2.23729 5.29071 1470.43 

0.04 2.2062 5.18694 1446.02 

0.05 2.17894 5.09124 1425.53 

0.06 2.15594 5.04701 1402.01 

 

Table-(3) Variation in shortage cost parameter ‘ 2C ’ 

2C  
1t  T  TC 

2.6 2.27366 5.40955 1513.2 

2.7 2.2709 5.29606 1541.27 

2.8 2.26871 5.26503 1555.86 

2.9 2.271 5.24598 1575.13 

7. OBSERVATIONS 
 From Table 1, If we increase the deterioration cost 

parameter ‘ 1C ’then total cost TC increases. 

 From Table 2, If we increase the deterioration rate‘

 ’then total cost TC decreases. 

 From Table 3, If we increase the shortage cost 

parameter 2C then the total cost TC increases. 

8. FUZZY-MATHEMATICAL MODEL 

Let us consider in this inventory model 1 2, , ,A C andC  as 

triangular fuzzy numbers, i.e. 1 2, , ,A C andC    . Let us 

assume that parameters 1 2, , ,A C andC     may change 

within some limits.  

1 2( , , ),       where 10 < <  and  

1 2 0  > ,                     (22) 

3 4( , , )A A A A    ,where 30 A< < and

3 4 0  > ,                                                      (23)                                         

1 1 5 1 1 6( , , ),C C C C    where 5 10 C< <
 

and 5 6 0  > ,                                            (24) 

2 2 7 2 2 8( , , ),C C C C    where 7 20 C< <  

and 7 8 0  > ,                                            (25) 

By signed distance Method  

2 1

1
( )

4
                                          (26)                                                                                       

4 3

1
( )

4
A A                                          (27)                                                                                            

1 1 6 5

1
( )

4
C C                                        (28)                                                                                          

2 2 8 7

1
( )

4
C C                                       (29)                                                                                        
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Now defuzzified total cost per unit time by signed distance 

method is given by 

1 1 1 2 1 3 1

1
( , ) [ ( , ) 2 ( , ) ( , )]

4
TC t T TCF t T TCF t T TCF t T      (30) 

The necessary condition for minimize total cost are  

1 1

1

( , ) ( , )
0, 0

TC t T TC t T

t T

 
 

 

 

                     (31) 

Provided it satisfies the condition 

2 2

1 1

2 2

1

( , ) ( , )
0, 0

TC t T TC t T

t T

 

 

 
> >  

2
2 2 2

1 1 1

2 2

11

( , ) ( , ) ( , )
0

TC t T TC t T TC t T

T tt T

       
     

       

  
>

                        (32) 

Using the software  Mathematica, we get optimum value of 
* *

1 ,t T  and  the optimum total cost 
1( , )TC t T . 

9. FUZZY NUMERICAL EXAMPLE 
Let us consider 

1(130,150,170), 150, (1,1.4,1.8), 1.2,dA a C t    

3 0 22, 2, 0.01, (2.1,2.5,2.9), 5,C h C h    

(0.01,0.02,0.03), 0.44, 4, 3, 0.1m P n     

Based on these input data, we get 

* *

1 2.1678, 5.20747t T  and total cost 

1( , ) 649.637TC t T  . 

10. CONCLUSION 
This  paper  presents  a crisp and  fuzzy  inventory  model  for 

non-instantaneous decaying  items  with shortages considering 

demand rate  is  time dependent. The  demand, deterioration  

rate,  ordering cost and shortage  cost  are  represented  by  

triangular  fuzzy  numbers. For defuzzification signed distance 

method is utilized to evaluate the optimal total cost. The 

proposed model is more practical due to the impreciseness in 

inventory costs and demand. Considering variables as fuzzy 

numbers is also more useful business strategy to cope up with 

ups and downs conditions of the market. To make inventory 

model more realistic, we also consider stock dependent 

demand and partial backlogging since all shortages cannot be 

fully backlogged. At the end numerical example and 

sensitivity analysis is elaborated. The whole calculation part is 

done using Mathematica. For the future research we can 

incorporate some other parameters of inventory control 

system. 
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12. APPENDIX 

 

Fig. Convexity of the total cost function (Crisp Model) 
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Total cost function for fuzzy model from equation no.(30) 

Where  
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