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ABSTRACT 

In this paper, the problem of finding sequential patterns from 

graph databases is investigated. Two serious issues dealt in 

this paper are efficiency and effectiveness of mining 

algorithm. A huge volume of sequential patterns has been 

generated out of which most of them are uninteresting. The 

users have to go through a large number of patterns to find 

interesting results. In order to improve the efficiency and 

effectiveness of the mining process, constraints are more 

essential. Constraint-based mining is used in many fields of 

data mining such as frequent pattern mining, sequential 

pattern mining, and subgraph mining. A novel algorithm 

called CSGP (Constraint-based Sequential Graph Pattern 

mining) is proposed for mining interesting sequential patterns 

from graph databases. CSGP algorithm is revised to mine top-

k closed patterns and named as TCSGP (Top-k Closed 

constraint-based Sequential Graph Pattern mining). 

General Terms 

Data mining, Graph mining, Constraint-based mining. 

Keywords 

Sequential patterns, Closed patterns, Constraints. 

1. INTRODUCTION 
Sequential pattern mining and Constraint-based sequential 

pattern mining [4,12,13,18,20,27] are an interesting research 

area in the field of data mining. The aim of constraint based 

data mining [9,10,15,17] is to provide the user more 

interesting patterns. Constraints make the mining more 

effective and efficient. In order to reduce a very large input 

search space, constraints were pushed deep into the mining 

process. The importance of graph mining has increased in the 

past few years. Graphs are one of the important data structures 

in computer science. Graphs are very much useful in 

representing the relationships among objects. There are many 

subgraph mining algorithms [3] to find the frequently 

occurring subgraphs from the graph database. In literature 

only much less work is done on constraint based graph mining 

[5,25,26]. Two problems were found while generating 

sequential patterns from graphs. 

1.A Huge volume of sequential patterns is generated out of 

which most of them are uninteresting. The users have to go 

through a large number of patterns to find interesting patterns. 

2. The time taken to generate the sequential patterns is 

exponential time. 

 The following issues are addressed in this paper. 

1. Generating sequential patterns from graph databases. 

2. Improving the effectiveness and efficiency of the mining 

process by pushing constraints deep into the mining process. 

The rest of the paper is organized in the following manner. 

Section 2 describes the related work. Section 3 describes the 

problem statement and introduces various constraints. Section 

4 describes proposed algorithm. Experimental results are 

shown in section 5 and the work is concluded in section 6. 

2. RELATED WORK 
Constraint based graph-pattern mining improves the 

effectiveness and efficiency of the mining process. 

Constraints drive the mining algorithm towards more 

interesting patterns. In [20], a family of novel algorithms was 

presented for frequent sequential pattern mining. These 

algorithms make use of user-specified regular expression 

constraints. Interactive process of running mining algorithms 

by repeatedly changing the constraints is very time 

consuming. An efficient method was proposed in [8] to speed 

up the mining process by utilizing the previous mining results. 

The method in [8] was implemented on FP-tree and Tree 

projection algorithms. 

An approach [1] for automatically relaxing constraints has 

been developed. In [1], the authors defined two new operators 

to detect monotone or antimonotone constraints. Pushing 

constraints deep inside the mining algorithm reduces the 

search space of patterns and achieves high performance. A 

method for pushing convertible constraints deep inside 

frequent pattern-growth mining was introduced in [11]. 

Two algorithms CLOSECUT and SPLAT were proposed in 

[26] to mine closed relational graphs with connectivity 

constraints. CLOSECUT was a pattern-growth approach and 

SPLAT was a pattern-reduction approach. In [5], the authors 

developed novel algorithms to prune the search space for both 

data and patterns. In addition to frequency constraint, two new 

concepts compactness and recency are considered in [27]. 

Frequency and recency constraints ensure patterns that occur 

in the long run and in recent time periods. Compactness 

ensures that patterns occur within a reasonable time period. 

An algorithm [18] was developed to perform constraint-based 

mining of sequential patterns in the presence of consecutive 

repetitions. CabGin framework [2] was developed to push 

graph-based constraints into mining algorithm. Large search 

space was effectively pruned by pushing graph-based 

constraints into mining algorithm. Data-Peeler [14] algorithm 

extracts all closed n-sets from n-ary relation. It [14] is a depth 

first approach that computes closed n-sets satisfying (anti)  

monotonic constraints. The idea of soft constraints was 

introduced in [22]. In this paper [22], the authors introduced 

soft constraints, the constraints which are not boolean 

functions. Instead of dividing patterns into two classes, 

namely interesting and not interesting, soft constraints based 

paradigm generates an order of patterns in which one pattern 

is more interesting than others. Constraints can also be pushed 

into the mining process by means of data reduction 

techniques. ExAminer [6] was a level-wise Apriori-like 
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framework based on data reduction techniques. 

CONQUEST [7] was an exploratory pattern discovery system. 

Interactive extraction of interesting knowledge is possible 

with CONQUEST, user-defined constraints define the pattern 

interestingness. WCloset [24] was developed to mine closed 

frequent patterns with weight constraints. The authors of [24] 

introduced lossless closed weighted frequent pattern mining 

and proved that there will be an information loss in weighted 

closed frequent pattern mining. 

In this paper, two algorithms are developed, namely, CSGP 

and TCSGP to deal with the issues of  pushing constraints 

deep into the mining process to generate most interesting 

sequential patterns from graph databases. 

3. PROBLEM STATEMENT 
In this section, the basic concepts of graphs, various 

constraints, the problem of constraint-based sequential graph 

pattern mining and Top-k closed constraint-based sequential 

graph pattern mining are defined. 

3.1 Basic definitions 
3.1.1 Labeled directed graph 
A Labeled directed graph is defined as a tuple, G= (V, E, L, 

F) where V denotes a set of vertices, E denotes a set of 

directed edges, L denotes a set of labels and F is a labeling 

function that assigns labels to the vertices and edges. Every 

edge is a 4 tuple <s, d, g, l>, where s is a source vertex, d is a 

destination vertex, g is a graph id and l is an edge label. Every 

edge in a graph is assigned a unique timestamp as an edge 

label. A sample Graph data set is shown in Figure 1 

3.1.2 Graph sequential pattern 
An ordered collection of edges in a graph is called a graph 

sequence. A Graph sequence can be represented  as, 

GS=<vavb…vn> where va, vb, vn are the vertices of a graph. 

Sequence of graph edges in the input graph dataset is shown 

in Table 1. A frequent graph sequence that satisfies the given 

minimum support threshold is called a Graph sequential 

pattern. Length of the Graph sequential pattern is the number 

of edges in the sequence. 

3.1.3 Canonical form of a graph 
A standard way of representing a graph is known as its 

canonical form. Table 2 shows the Canonical form of a graph 

data set in Figure 1. Given a graph Gi with n vertices, m edges 

and an ordered sequence of edges  <v1,v2,…..vn>,  Canonical 

form of Gi is denoted as  (v1,v2,i,1),(v2,v3,i,2),….(vn-1,vn,i,m) 

3.1.4  Projected database of a vertex 

Given a Graph Database  GD = {G1, G2,… Gn}, The 

projected database of a vertex V is the set of subsequences 

whose prefix is V. For example, in the given graph database, 

the sequence that starts with vertex „a‟ as the source forms 

projected database of „a‟. In Figure 1, edge 1 of Graph 1, edge 

1 of Graph 2, edge 3 of Graph 3, edge 2 of Graph 4, edge 1 of 

Graph 5 and edge 2 of graph 6 forms the sequences starting 

with v. Instead of storing the projected database separately for 

every vertex, considering the space constraints, store only the 

<Graph-Id, Edge-Id> pairs. Hence a-projected database is  

<(1,1), (2,1), (3,3), (4,2), (5,1), (6,2) >.  

 

 
Fig. 1. An example graph data set 

Table 1. Sequence of graph edges 

(1) (2) (3) (4) (5) (6) 

a→b a→b b→c b→a a→d c→a 

b→c b→d c→a a→d d→c a→b 

c→a d→a a→b d→c c→d b→c 

a→d a→c  c→a  c→d 

d→c      

3.2 Constraints 
A constraint C is a boolean function C (Sg) on the set of all 

sequential graph patterns. A graph sequential pattern Sg 

satisfies a constraint if and only if C (Sg) is true. 

Seven constraints are used in the proposed algorithms. These 

constraints are classified into two classes as shown in Table3. 

1. Constraints to improve the efficiency of the mining 

process. 

2. Constraints to improve the effectiveness of the 

mining result. 

Table 3 shows the constraints and their performance level to 

improve the efficiency and effectiveness of mining. 

3.2.1 Constraint1: Average Constraint 
Average constraint is defined as the average number of edges 

per graph. Let the EG1, EG2, EG3,…..EGn be the number of 

edges in graph1, graph2, graph3 and so on respectively. The 

average constraint threshold is calculated as follows: 

avg =┌ ∑ EGi ┐ / n   

Where avg is an average constraint threshold, n is the total 

number of graphs in input database. 
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Table 2. Canonical representation of graphs 

Graph 

id 
Canonical form 

1 <(a,b,1,1),(b,c,1,2),(c,a,1,3),(a,d,1,4),(d,c,1,5)> 

2 <(a,b,2,1),(b,d,2,2),(d,a,2,3),(a,c,2,4)> 

3 <(b,c,3,1),(c,a,3,2),(a,b,3,3)> 

4 <(b,a,4,1),(a,d,4,2),(d,c,4,3),(c,a,4,4)> 

5 <(a,d,5,1),(d,c,5,2),(c,d,5,3)> 

6 <(c,a,6,1),(a,b,6,2),(b,c,6,3),(c,d,6,4)> 

Table 3. Constraint classification 

 

 

 

 

Sno. 

Constraint name 

Class1: 

Improves 

Efficiency 

Class2: 

Improves 

Effectiveness 

1 Average measure, Ca Low Low 

2 
Support of a vertex, 

Csv 
Low Low 

3 
Support of Prefix  of 

a sequence, Csp 
High Low 

4 

Support of a 

sequence extension, 

Cse 

High Low 

5 
Closed sequential 

pattern, Cc 
Low Low 

6 
Minimum length 

constraint, Cm 
Low High 

7 
Top-k sequential 

pattern, Ck 
High High 

  

Table 4. Projected database of vertices 

Vertex v Projected database of v Support of v Vertices reachable from v 

a <(1,1),(2,1),(3,3), (4,2), (5,1),(6,2) > 6 <b:6, c:6, d:6> 

b <(1,2),(2,2),(3,1),(4,1),(6,3)> 5 <a:5, c:6, d:4> 

c <(1,3),(3,2),(4,4),(5,3),(6,1)> 5 <a:4, b:2, d:3> 

d <(1,5),(2,3),(4,3),(5,2)> 4 <a:2, c:4> 

 

Example1: In figure1, avg = (5+4+3+4+3+4)/6 = 4. 

Graphs 3 and 5 do not satisfy the Average constraint and they 

are pruned from the graph database. 

3.2.2 Constraint2: Support of a vertex 
A directed graph may contain multiple sequences of edges 

starting at a vertex v. If a graph G contain one or more edges 

from v to any other vertex, then support count of v is 1 with 

respect to the graph G.  Support of a vertex v  is defined as the 

total number of edge sequences that start from vertex v with 

respect to all the graphs. 

Example2: Support of vertex „a‟ in Figure1 is 6 

All the 6 graphs contain at least one edge starting from „a‟. 

Hence its support is 6. The support of  all vertices in the input 

graph database is given in Table 4. 

3.2.3 Constraint3: Support of a prefix 

The set of first occurrence of (graphid, edgeid) pairs whose 

prefix is S with respect to all the graphs is called  the 

projected database of a sequence S.The count of such 

(graphid, edgeid) pairs for a sequence S is known as the 

support of prefix.  

Example3: Projected database of a sequence <ac> is  

calculated as follows: 

Scan the projected database of vertex „a‟, 

<(1,1),(2,1),(3,3),(4,2),(5,1),(6,2)>  

Scan graph 1 and find the first occurrence of „c‟ and it is 
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found to be 3. Scan graph 2 and find the first occurrence of „c‟ 

and it is found that there is no sequence starting with „c‟ as the 

source vertex. Similarly, there is no sequence in graph 3. In 

graph 4 the first occurrence of „c‟ as source is 4, similarly in  

graph 5 it is 3 and in graph 6 it is 4. Hence, projected database 

of <ac> is < (1,3), (4,4),(5,3),(6,4) > and support of  prefix 

<ac> is 4, that is the total number of (graphid, edgeid) pairs in 

its projected database.  

3.2.4 Constraint4: Support of a sequence extension 
The number of frequent sequences generated from the given 

sequence  is known as the support of sequence extension. 

Example4: Support of a sequence  extension of <ac> is   

calculated as follows: 

The frequent sequences generated from the sequence <ac> are 

<acd> and <aca>. The support of the sequence extension is 

therefore 2. 

3.2.5 Constraint5: Closed sequential pattern 

constraint 
A sequential pattern S is said to be closed if there exists no 

proper super sequential pattern with the same support as  S. 

Example5: If a Sequential pattern <aba>  and its super pattern 

<abac> are having the same support count 2 then <aba> is not 

closed sequential pattern. 

3.2.6 Constraint6: Minimum length constraint 
Minimum length constraint specifies the minimum length of a 

sequential pattern. The length of a sequence is defined as the 

number of edges in the sequence. 

Example6: The length of sequences <ac>, <ad>, <ab> are 1. If 

the minimum length threshold is set as 2 then the sequences 

<ac> <ad> <ab> are not in the result even though they are 

frequent. 

3.2.7 Constraint7: Top-k Sequential pattern 
A sequential pattern is said to be Top-k sequential pattern of 

minimum length min_len if there exists no more than (k-1) 

sequential patterns whose length is at least min_len. 

3.2.8 Constraint-based Sequential graph pattern 

mining 
Given a graph database GD, Minimum support threshold 

min_sup and a set of constraints C, the problem of Constraint-

based sequential graph pattern mining is to find the set of 

interesting sequential graph patterns satisfying C. 

3.2.9 Top-k Constraint-based closed sequential 

graph pattern mining 
Given a graph database GD, Minimum support threshold 

min_sup and a set of constraints C, the problem of Top-k 

Constraint-based closed sequential graph pattern mining is to 

find the top-k closed sequential graph patterns satisfying C. 

4. PROPOSED ALGORITHMS 
In this section, two algorithms CSGP and TCSGP are 

proposed, CSGP generates frequent sequential graph patterns 

based on constraints and TCSGP generates top-k frequent 

sequential graph patterns based on constraints. 

4.1 CSGP 
Algorithm 1 (CSGP)  Constraint-based sequential graph 

pattern mining 

Input:  

Global data: A graph database GD,  Minimum support 

threshold min_sup, Constraints: Average measure Ca, Support 

of a vertex Csv, Support of a prefix Csp, Support of sequence 

extension Cse. 

Local data: Projected database of each vertex PDv, Priority 

queue Q, Sequences generated from each vertex S. 

Output: Frequent sequential graph patterns Sg. 

Method:  

Step1. Find the average number of edges per graph            

and set it as a threshold for average measure 

constraint. 

Step2. Prune the graphs from the input database that do not 

satisfy the average constraint. 

Step3. Call the suprocedure1 FPDV (GD) to scan the 

pruned graph database and to find the projected 

database of each vertex and let it be PDv. 

Step4. Prune the infrequent vertices that do not satisfy the 

threshold Csv and Csp. Let the new vertex set be V. 

Step5. Sort the frequent vertex set V in descending order of 

their support counts and insert them in a priority 

queue Q. 

Step6. Repeat 

Step7. Remove the vertex v from Q and find the                                 

sequences S that can be grown from v                                  

whose support count is not less than                                  

min_sup. 

Step8. Add the frequent sequences to Sg. 

 Sg ← Sg ᴜ S  

Step9. ConstraintSequenceMining (PDv, S) 

Step10. Until Q is empty 

In step1, find the average measure constraint and push it into 

the mining algorithm. In step2, prune the graphs for which, 

the number of edges is less than the average measure 

constraint. Scan the pruned graph database and find the 

projected database of each vertex in step3. In step4, push the 

constraints Csv and Csp to prune the infrequent vertices that 

don‟t satisfy support of a vertex and support of prefix 

constraints. Sort the new frequent vertex set in descending 

order of their support count and insert them in a priority 

queue. Repeat steps  to 9 until the queue is empty.  Find the 

sequences that can be grown from each vertex and call the 

recursive procedure ConstraintSequenceMining (PDv, S). This 

procedure recursively finds the length 2, length 3 frequent 

patterns and so on. 

Subprocedure1. (FPDV) FindProjectedDatabaseofVertex(GD) 

Input: Pruned graph database GD 

Output: Projected database of vertices PDv, Support count of 

vertices SCv. 

Method: 

Step1. For each graph i in pruned graph database GD 

Step2. For each edge j in graph i 

 Step 2.1 Examine the edge v → u. 

Step 2.2 if v is the first occurrence as a source in 

edge j then 

Step 2.3 PDv ← PDv ᴜ (i,j) 
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Step 2.4 SCv ← SCv + 1 

Step3. End for 

Step4. End for 

Subprocedure1 scans each edge exactly once and finds the 

(graphid, edgeid) pair for each vertex as source. Whenever a  

new (graphid, edgeid) pair is found for a vertex, then SCv is 

incremented by 1. SCv holds the support count of vertex v. 

Subprocedure2. ConstraintSequenceMining (PDv, S) 

Input: Projected database of a vertex PDv, Set of graph 

sequences S. 

Output: Frequent sequential graph patterns Sg. 

Method: 

Step1. Repeat step 2  until S is empty. 

Step2. For every sequence Si in S  

Step 2.1 Call the subprocedure3 FPDS(PDv,S) to 

find the projected database of the 

sequence Si and let it be PDs. 

Step 2.2 if the projected database count of Si 

satisfies Csp then scan the projected 

database of Si and find the sequences 

generated from Si. 

Step 2.3 Add the  new sequences to Sʹ only if they 

satisfy the min_sup threshold. 

Step 2.4 if Sʹ is not empty then 

 Sg ← Sg ᴜ Sʹ. 

Step 2.5 if number of frequent sequences in Sʹ 

satisfy the constraint Cse, then call the 

recursive procedure ConstraintSequence 

Mining (PDs, Sʹ). 

Step3. End for 

In subprocedure2, push the constraints Csp and Cse. Csp is 

used to reduce the number of scans to projected database. 

Only the projected database of the sequences that satisfy Csp 
are scanned to extend the sequences to length 2 , length 3 and 

so on. Cse is used to reduce the number of recursive calls

Table 5. Comparison between the constraints 1 to 4 

 No 

Constraint 
Ca Csv Csp Cse Ca ᴜ Csv Ca ᴜ Csp Ca ᴜ Cse Csp ᴜ Cse Ca  ᴜ Csp ᴜ Cse 

4 4 5 2 3 2 3 4/3    4/4    4/2    4/3 4/2 4/3 2/2 3/3  4/2/2  4/3/3 

x 31 29 31 29 31 2 31 30 29 23 29 23 29 26 31 30 29 26 

y 19 19 19 17 15 11 15 6 15 12 15 10 15 6 11 6 11 5 

z 32 30 32 30 14 8 26 16 30 24 12 7 26 9 14 8 12 7 

 

Table 6. Comparison between the constraints 5 to 7 

 

Cc Ca ᴜ Cc 
Cm 

min_length=2 
Cc ᴜ Cm 

Ca ᴜ Cc ᴜ 

Cm 

Ck 

k=10 
Ck ᴜ Cc Ca ᴜ Ck ᴜ Cc 

All 

constraints 

from 1 to 7 

x 28 26 20 18 17 10 10 10 10 

y 12 10 19 12 10 7 7 7 6 

z 32 30 32 32 30 16 17 16 6 

 

Table 7. Comparison between all the  constraints 

S.No.  Number of sequential patterns 

generated, x 

Number of recursive calls, y Number of scans to 

projected database, z 

1 No constraint x y z 

2 Ca <x = y <z 

3 Csv =x for threshold 4, <x for threshold 5 =y for threshold 4, <y for threshold 5 =z for threshold 4, <z 

for threshold 5 

4 Csp =x for threshold 2, <x for threshold 3 <y <<z 

5 Cse =x for threshold 2, <x for threshold 3 <y for threshold 2, <<y for threshold 3 <z 

6 Ca ᴜ Csv <x <y <z 

7 Ca ᴜ Csp <x <y <<z 

8 Ca ᴜ Cse <x <y for threshold 2, <<y for threshold 3 <z for threshold 4/2 

<<z for threshold 4/3 

9 Csp ᴜ Cse =x for threshold 2/2, <x for threshold 3/3 <y for threshold 2/2, <<y for threshold <z for threshold 2/2 
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3/3 <<z for threshold 3/3 

10 Ca  ᴜ Csp ᴜ Cse <x <y for threshold 2/2, <<y for threshold 

3/3 

<z for threshold 4/2/2 

<<z for threshold 4/3/3 

11 Cc <x <y =z 

12 Ca ᴜ Cc <x <y <z 

13 Cm <x =y =z 

14 Cc ᴜ Cm <x =y =z 

15 Ca ᴜ Cc ᴜ Cm <x <y <z 

16 Ck <x <<y <z 

17 Ck ᴜ Cc <x <<y <z 

18 Ca ᴜ Ck ᴜ Cc <x <<y <z 

 

to the subprocedure ConstraintSequenceMining (PDs, Sʹ). The 

subprocedure2 is recursively invoked only if the number of 

frequent sequences extended from S satisfies the constraint 

Cse. 

Subprocedure3. (FPDS) FindProjectedDatabaseofSequence 

(PD,S) 

Input: Projected database PD, Graph sequence S, where 

S=<va,vb,……vn> 

Output:  Projected database of a sequence PDs. 

Method: 

Step1. For each graphid, edgeid pair (i,j) in PD 

Step2. Scan graph i from j to find k, where  k is the first 

occurrence of vn. 

Step3. PDS←PDS ᴜ (i,k) 

Step4. End for. 

4.2 TCSGP 
Algorithm 2 (TCSGP) Top-k Closed constraint-based 

Sequential Graph Pattern mining. 

Input:   

Global data: A graph database GD,  Minimum support 

threshold min_sup, Constraints: Average measure Ca, Support 

of a vertex Csv, Support of a prefix Csp,  Support of sequence 

extension Cse, Closed Sequential pattern Cc, Minimum length 

constraint Cm, Top-k sequential pattern constraint Ck . 

Local data: Projected database of each vertex PDv, Priority 

queue Q. 

Output: Top-k closed frequent sequential graph patterns Sg. 

Method:  

Step1. Push the average constraint Ca on the input graph 

database. Prune the graphs that do not satisfy Ca. 

Step2. Find the projected database PDv of all the vertices 

and their support counts. Push the constraints Csv 

and Csp and prune the infrequent vertices.  

Step3. Scan the projected database of frequent vertices and 

find the frequent sequences of length-1. 

Step4. Sort all frequent length-1 sequences in descending 

order of their support counts and insert them into a 

priority queue Q. 

Step5. Call the sub procedure Topk_ClosedSequences 

(PDv, Q). 

The constraints Ca , Csv, Csp are applied in step1 and step2 to 

prune the input graphs that do not satisfy the average measure 

and to prune the infrequent vertices. The step3 of algorithm2 

finds all the frequent length-1 sequences and step4 of 

algorithm2 arranges the sequences in descending order of 

their support. Recursive procedure Topk_ClosedSequences 

(PDv, Q) is called in step5 to find the top-k closed frequent 

sequential graph patterns based on constraints. 

Subprocedure4. Topk_ClosedSequences (PDv, S) 

Input: Projected Database of vertices PDv, Set of frequent 

graph sequences S. 

Output: Top-k closed frequent graph sequences based on 

constraints TCS. 

Method: 

Step1. Repeat step2 until S is empty. 

Step2. For every sequence Si in S  

Step2.1 call the subprocedure 3 FPDS (PDv, Si) to 

find projected database PDSi . 

Step2.2 if projected database count of Si satisfies 

Csp then scan PDSi and find the sequences 

that can be grown. 

Step2.3 for every new sequence grown from Si 

Step2.3.1 Add the new sequence to Sʹ only if the 

support count of the new sequence 

satisfies min_sup. 

Step2.3.2 End for 

Step2.4 if there is no new sequence with support 

same as the support of Si and if the length 

of the sequence Si is not less than min_len 

then add Si to set of closed sequences. 

TCS←TCS ᴜ Si. 

Step2.5 if the number of sequences in TCS is 

equal to k then return. 
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Step2.6 if the number of frequent sequences in Sʹ 

satisfies Cse then call the recursive 

procedure Topk_ClosedSequences (PDSi, 

Sʹ). 

Step3. End for 

Step2.1 of subprocedure4 calls the subprocedure3 to find the 

projected database of the input sequence. Five constraints Csp, 

Ck, Cm, Cc, and  Cse are applied in subprocedure4. The 

recursive procedure is returned either if number of sequential 

graph patterns generated are k or if the input set of sequences 

is empty. Here top-k closed patterns of minimum length 

min_len are generated. In order to generate top-k patterns, in 

algorithm2, all frequent length 1 sequences are found and 

arranged in descending order of their support. First grow the 

sequences of the highest support to generate top-k patterns. 

Example: Given the graph database with min_support=2, 

average measure threshold=4, support of vector=3, support of 

prefix=2, support of sequence  extension=2, min_length=2, 

k=10, the top 10 closed graph sequential patterns as mined as 

follows: 

1. Frequent length-1 sequences generated from TCSGP 

algorithm are as follows  

<ac:5>,<bc:5>,<ad:4><ba:4>,<bd:4>,<ab:3>,<ca:3>,<dc:3>,<

cd:2>,<da:2>. 

2. The sequence with the highest support is first grown, i.e. 

<ac>. Frequent sequences extended from <ac> are 

<aca:2>,<acd:2>. Among these 3 sequences only <aca> and 

<acd> are added to the list of closed sequential patterns. The 

next sequence that is extended is <bc>. The sequences <bca>, 

<bcd> are the frequent sequences generated from the prefix 

<bc>. The procedure is repeated until top 10 closed graph 

sequences are obtained. 

3. The result of TCSGP algorithm is 

<aca:2>,<acd:2>,<bca:2>,<bcd:2>,<adc:3>,<ada:2>,<bac:3>,

<badc:2>,<bdc:3><bda:2>. 

5. RESULTS 
 CSGP and TCSGP algorithms are implemented and tested on 

a synthetic dataset produced by a graph database generator 

[23]. It is based on the IBM Quest Synthetic Data Generation 

Code for Association and sequential patterns. Data sets are 

generated by the graph generator based on the five parameters 

as shown in Table 9.  

In CSGP Algorithm, first four constraints are used as 

mentioned in Table 3. 

1. Average measure Ca : This constraint prunes the input 

data prior to the mining process. This is used to remove 

the graphs that do not have an average number of edges. 

The idea behind this constraint is, the graphs that do not 

have sufficient number of edges cannot be used as input 

to generate the frequent sequences. 

2. Support of a vertex Csv : This constraint prunes the 

infrequent vertices. The vertex whose support count is 

less than the minimum support threshold is said to be 

infrequent . 

3. Support of a prefix Csp: In mining frequent sequential 

patterns, sufficient time is spent in scanning the projected 

database of prefixes.Prune infrequent prefixes whose 

support don‟t satisfy the constraint Csp. The idea behind 

this constraint is to prune the unnecessary extension of 

frequent sequences. 

4. Support of a sequence extension Cse : Once frequent 

vertices visited from a sequence are found, then new 

frequent sequences are obtained. Recursive procedure is 

called to find the projected database of new sequences 

and to extend them. In order to reduce the number of 

recursive calls, a constraint Cse is proposed.  

Constraints 3 and 4 improves the efficiency of the CSGP 

algorithm by reducing the frequency of scans to projected 

database and by reducing the frequency of recursive calls to 

subprocedure2. The patterns generated by CSGP algorithm 

are shown in Table 8. In CSGP algorithm, the constraints Ca , 

Csv, Csp and Cse are used. These constraints are applied 

individually as well as  all the four constraints are pushed at 

once into the mining process. The values of parameters y and 

z obtained are minimized when the constraints Ca , Csp and 

Table 8. Frequent sequential graph patterns 

Vertex Frequent sequential length 1 

patterns 

Frequent sequential length 2 patterns Frequent sequential length 3 

patterns 

a <ac:5>,<ad:4>,<ab:3> <aca:2>,<acd:2>,<adc:3>,<ada:2> <abcd:2>,<abdc:2>,<abac:2> 

b <bc:5>,<ba:4>,<bd:4> <bca:2>,<bcd:2>,<bac:3>,<bad:2>,<bdc:3>,<bda:2> <badc:2> 

c <ca:3>,<cd:2> <cad:2>,<cac:2> - 

d <dc:3>,<da:2> - - 

 

Table 9. Database parameters 

Parameter Meaning 

D Total number of graphs 

V Number of vertex labels 

E Number of edge labels 

T Average size of the graph 

M  Average density of the graph 

 

 

Cse are combined as highlighted in Table 5. Increasing the 

threshold of constraint Csv reduces the number of recursive 

calls and number of projected database scans, but it results in 

pruning of vertices that might result in frequent sequences. 

Pushing the above mentioned four constraints into CSGP 

algorithm increased the performance of the algorithm 

compared to running the algorithm without constraints. In the 

experimental results, it is found that these constraints alone 

will not improve the effectiveness of the algorithm. The 

number of sequential patterns generated are still high as 

shown in Figure 2 and also found the importance of finding 

still more highly interesting patterns. This rise to the problem 

of improving effectiveness of the mining algorithm. Three 

more constraints are included and TCSGP algorithm is 

developed to deal with the problem of effectiveness of the 
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mining process. Cm, Cc, Ck are the three additional constraints 

used in TCSGP algorithm. The comparison of the results 

obtained by introducing these 3 constraints is shown in Table 

6 and Table 7. In the experimental evaluation, the 

performance of CSGP and TCSGP algorithm are compared as 

shown in Figure 3. Pushing all the constraints from 1 to 7  into 

TCSGP algorithm resulted in higher performance than CSGP 

algorithm. 

6. CONCLUSION 
In this paper, the problem of pushing constraints into the 

mining process is studied to generate top-k closed sequential 

graph patterns. Two algorithms are proposed, CSGP generates 

a constraint based sequential frequent graph patterns and 

TCSGP generates a constraint based top-k closed sequential 

frequent graph patterns. The constraints are classified into two 

classes, constraints that improve the efficiency of mining 

process and constraints that improve the effectiveness of the 

mining process. Both classes of constraints are pushed inside 

TCSGP algorithm and the algorithms are implemented on a 

synthetic database [23]. The constraint based top-k closed 

sequential graph pattern mining is more preferable to generate 

highly interesting graph patterns with high performance. 

Interactive process of running mining algorithms by 

repeatedly changing the constraints is very time consuming. 

As a future work, the mining process speed can be increased 

by utilizing the previous mining results. Data mining is an 

interactive and iterative process. The user must change the 

constraints and run the algorithm many times to obtain the 

final results. The interactive process of mining is time 

consuming. The proposed approach can be further extended to 

speed up the mining process by incrementally mining the 

graph data whenever constraints are changed. 

 

 

Fig. 2. Efficiency of constraints 

 

Fig. 3. Effectiveness of constraints 
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