
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

34

Pushing Constraints to Generate Top-K Closed

Sequential Graph Patterns

K. Vijay Bhaskar
GITAM University

Visakhapatnam, 530045
India

 K. Thammi Reddy, PhD
GITAM University

Visakhapatnam, 530045
India

S. Sumalatha
National Institute of

Technology
Warangal, 506004

India

ABSTRACT

In this paper, the problem of finding sequential patterns from

graph databases is investigated. Two serious issues dealt in

this paper are efficiency and effectiveness of mining

algorithm. A huge volume of sequential patterns has been

generated out of which most of them are uninteresting. The

users have to go through a large number of patterns to find

interesting results. In order to improve the efficiency and

effectiveness of the mining process, constraints are more

essential. Constraint-based mining is used in many fields of

data mining such as frequent pattern mining, sequential

pattern mining, and subgraph mining. A novel algorithm

called CSGP (Constraint-based Sequential Graph Pattern

mining) is proposed for mining interesting sequential patterns

from graph databases. CSGP algorithm is revised to mine top-

k closed patterns and named as TCSGP (Top-k Closed

constraint-based Sequential Graph Pattern mining).

General Terms

Data mining, Graph mining, Constraint-based mining.

Keywords

Sequential patterns, Closed patterns, Constraints.

1. INTRODUCTION
Sequential pattern mining and Constraint-based sequential

pattern mining [4,12,13,18,20,27] are an interesting research

area in the field of data mining. The aim of constraint based

data mining [9,10,15,17] is to provide the user more

interesting patterns. Constraints make the mining more

effective and efficient. In order to reduce a very large input

search space, constraints were pushed deep into the mining

process. The importance of graph mining has increased in the

past few years. Graphs are one of the important data structures

in computer science. Graphs are very much useful in

representing the relationships among objects. There are many

subgraph mining algorithms [3] to find the frequently

occurring subgraphs from the graph database. In literature

only much less work is done on constraint based graph mining

[5,25,26]. Two problems were found while generating

sequential patterns from graphs.

1.A Huge volume of sequential patterns is generated out of

which most of them are uninteresting. The users have to go

through a large number of patterns to find interesting patterns.

2. The time taken to generate the sequential patterns is

exponential time.

 The following issues are addressed in this paper.

1. Generating sequential patterns from graph databases.

2. Improving the effectiveness and efficiency of the mining

process by pushing constraints deep into the mining process.

The rest of the paper is organized in the following manner.

Section 2 describes the related work. Section 3 describes the

problem statement and introduces various constraints. Section

4 describes proposed algorithm. Experimental results are

shown in section 5 and the work is concluded in section 6.

2. RELATED WORK
Constraint based graph-pattern mining improves the

effectiveness and efficiency of the mining process.

Constraints drive the mining algorithm towards more

interesting patterns. In [20], a family of novel algorithms was

presented for frequent sequential pattern mining. These

algorithms make use of user-specified regular expression

constraints. Interactive process of running mining algorithms

by repeatedly changing the constraints is very time

consuming. An efficient method was proposed in [8] to speed

up the mining process by utilizing the previous mining results.

The method in [8] was implemented on FP-tree and Tree

projection algorithms.

An approach [1] for automatically relaxing constraints has

been developed. In [1], the authors defined two new operators

to detect monotone or antimonotone constraints. Pushing

constraints deep inside the mining algorithm reduces the

search space of patterns and achieves high performance. A

method for pushing convertible constraints deep inside

frequent pattern-growth mining was introduced in [11].

Two algorithms CLOSECUT and SPLAT were proposed in

[26] to mine closed relational graphs with connectivity

constraints. CLOSECUT was a pattern-growth approach and

SPLAT was a pattern-reduction approach. In [5], the authors

developed novel algorithms to prune the search space for both

data and patterns. In addition to frequency constraint, two new

concepts compactness and recency are considered in [27].

Frequency and recency constraints ensure patterns that occur

in the long run and in recent time periods. Compactness

ensures that patterns occur within a reasonable time period.

An algorithm [18] was developed to perform constraint-based

mining of sequential patterns in the presence of consecutive

repetitions. CabGin framework [2] was developed to push

graph-based constraints into mining algorithm. Large search

space was effectively pruned by pushing graph-based

constraints into mining algorithm. Data-Peeler [14] algorithm

extracts all closed n-sets from n-ary relation. It [14] is a depth

first approach that computes closed n-sets satisfying (anti)

monotonic constraints. The idea of soft constraints was

introduced in [22]. In this paper [22], the authors introduced

soft constraints, the constraints which are not boolean

functions. Instead of dividing patterns into two classes,

namely interesting and not interesting, soft constraints based

paradigm generates an order of patterns in which one pattern

is more interesting than others. Constraints can also be pushed

into the mining process by means of data reduction

techniques. ExAminer [6] was a level-wise Apriori-like

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

35

framework based on data reduction techniques.

CONQUEST [7] was an exploratory pattern discovery system.

Interactive extraction of interesting knowledge is possible

with CONQUEST, user-defined constraints define the pattern

interestingness. WCloset [24] was developed to mine closed

frequent patterns with weight constraints. The authors of [24]

introduced lossless closed weighted frequent pattern mining

and proved that there will be an information loss in weighted

closed frequent pattern mining.

In this paper, two algorithms are developed, namely, CSGP

and TCSGP to deal with the issues of pushing constraints

deep into the mining process to generate most interesting

sequential patterns from graph databases.

3. PROBLEM STATEMENT
In this section, the basic concepts of graphs, various

constraints, the problem of constraint-based sequential graph

pattern mining and Top-k closed constraint-based sequential

graph pattern mining are defined.

3.1 Basic definitions
3.1.1 Labeled directed graph
A Labeled directed graph is defined as a tuple, G= (V, E, L,

F) where V denotes a set of vertices, E denotes a set of

directed edges, L denotes a set of labels and F is a labeling

function that assigns labels to the vertices and edges. Every

edge is a 4 tuple <s, d, g, l>, where s is a source vertex, d is a

destination vertex, g is a graph id and l is an edge label. Every

edge in a graph is assigned a unique timestamp as an edge

label. A sample Graph data set is shown in Figure 1

3.1.2 Graph sequential pattern
An ordered collection of edges in a graph is called a graph

sequence. A Graph sequence can be represented as,

GS=<vavb…vn> where va, vb, vn are the vertices of a graph.

Sequence of graph edges in the input graph dataset is shown

in Table 1. A frequent graph sequence that satisfies the given

minimum support threshold is called a Graph sequential

pattern. Length of the Graph sequential pattern is the number

of edges in the sequence.

3.1.3 Canonical form of a graph
A standard way of representing a graph is known as its

canonical form. Table 2 shows the Canonical form of a graph

data set in Figure 1. Given a graph Gi with n vertices, m edges

and an ordered sequence of edges <v1,v2,…..vn>, Canonical

form of Gi is denoted as (v1,v2,i,1),(v2,v3,i,2),….(vn-1,vn,i,m)

3.1.4 Projected database of a vertex

Given a Graph Database GD = {G1, G2,… Gn}, The

projected database of a vertex V is the set of subsequences

whose prefix is V. For example, in the given graph database,

the sequence that starts with vertex „a‟ as the source forms

projected database of „a‟. In Figure 1, edge 1 of Graph 1, edge

1 of Graph 2, edge 3 of Graph 3, edge 2 of Graph 4, edge 1 of

Graph 5 and edge 2 of graph 6 forms the sequences starting

with v. Instead of storing the projected database separately for

every vertex, considering the space constraints, store only the

<Graph-Id, Edge-Id> pairs. Hence a-projected database is

<(1,1), (2,1), (3,3), (4,2), (5,1), (6,2) >.

Fig. 1. An example graph data set

Table 1. Sequence of graph edges

(1) (2) (3) (4) (5) (6)

a→b a→b b→c b→a a→d c→a

b→c b→d c→a a→d d→c a→b

c→a d→a a→b d→c c→d b→c

a→d a→c c→a c→d

d→c

3.2 Constraints
A constraint C is a boolean function C (Sg) on the set of all

sequential graph patterns. A graph sequential pattern Sg

satisfies a constraint if and only if C (Sg) is true.

Seven constraints are used in the proposed algorithms. These

constraints are classified into two classes as shown in Table3.

1. Constraints to improve the efficiency of the mining

process.

2. Constraints to improve the effectiveness of the

mining result.

Table 3 shows the constraints and their performance level to

improve the efficiency and effectiveness of mining.

3.2.1 Constraint1: Average Constraint
Average constraint is defined as the average number of edges

per graph. Let the EG1, EG2, EG3,…..EGn be the number of

edges in graph1, graph2, graph3 and so on respectively. The

average constraint threshold is calculated as follows:

avg =┌ ∑ EGi ┐ / n

Where avg is an average constraint threshold, n is the total

number of graphs in input database.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

36

Table 2. Canonical representation of graphs

Graph

id
Canonical form

1 <(a,b,1,1),(b,c,1,2),(c,a,1,3),(a,d,1,4),(d,c,1,5)>

2 <(a,b,2,1),(b,d,2,2),(d,a,2,3),(a,c,2,4)>

3 <(b,c,3,1),(c,a,3,2),(a,b,3,3)>

4 <(b,a,4,1),(a,d,4,2),(d,c,4,3),(c,a,4,4)>

5 <(a,d,5,1),(d,c,5,2),(c,d,5,3)>

6 <(c,a,6,1),(a,b,6,2),(b,c,6,3),(c,d,6,4)>

Table 3. Constraint classification

Sno.

Constraint name

Class1:

Improves

Efficiency

Class2:

Improves

Effectiveness

1 Average measure, Ca Low Low

2
Support of a vertex,

Csv
Low Low

3
Support of Prefix of

a sequence, Csp
High Low

4

Support of a

sequence extension,

Cse

High Low

5
Closed sequential

pattern, Cc
Low Low

6
Minimum length

constraint, Cm
Low High

7
Top-k sequential

pattern, Ck
High High

Table 4. Projected database of vertices

Vertex v Projected database of v Support of v Vertices reachable from v

a <(1,1),(2,1),(3,3), (4,2), (5,1),(6,2) > 6 <b:6, c:6, d:6>

b <(1,2),(2,2),(3,1),(4,1),(6,3)> 5 <a:5, c:6, d:4>

c <(1,3),(3,2),(4,4),(5,3),(6,1)> 5 <a:4, b:2, d:3>

d <(1,5),(2,3),(4,3),(5,2)> 4 <a:2, c:4>

Example1: In figure1, avg = (5+4+3+4+3+4)/6 = 4.

Graphs 3 and 5 do not satisfy the Average constraint and they

are pruned from the graph database.

3.2.2 Constraint2: Support of a vertex
A directed graph may contain multiple sequences of edges

starting at a vertex v. If a graph G contain one or more edges

from v to any other vertex, then support count of v is 1 with

respect to the graph G. Support of a vertex v is defined as the

total number of edge sequences that start from vertex v with

respect to all the graphs.

Example2: Support of vertex „a‟ in Figure1 is 6

All the 6 graphs contain at least one edge starting from „a‟.

Hence its support is 6. The support of all vertices in the input

graph database is given in Table 4.

3.2.3 Constraint3: Support of a prefix

The set of first occurrence of (graphid, edgeid) pairs whose

prefix is S with respect to all the graphs is called the

projected database of a sequence S.The count of such

(graphid, edgeid) pairs for a sequence S is known as the

support of prefix.

Example3: Projected database of a sequence <ac> is

calculated as follows:

Scan the projected database of vertex „a‟,

<(1,1),(2,1),(3,3),(4,2),(5,1),(6,2)>

Scan graph 1 and find the first occurrence of „c‟ and it is

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

37

found to be 3. Scan graph 2 and find the first occurrence of „c‟

and it is found that there is no sequence starting with „c‟ as the

source vertex. Similarly, there is no sequence in graph 3. In

graph 4 the first occurrence of „c‟ as source is 4, similarly in

graph 5 it is 3 and in graph 6 it is 4. Hence, projected database

of <ac> is < (1,3), (4,4),(5,3),(6,4) > and support of prefix

<ac> is 4, that is the total number of (graphid, edgeid) pairs in

its projected database.

3.2.4 Constraint4: Support of a sequence extension
The number of frequent sequences generated from the given

sequence is known as the support of sequence extension.

Example4: Support of a sequence extension of <ac> is

calculated as follows:

The frequent sequences generated from the sequence <ac> are

<acd> and <aca>. The support of the sequence extension is

therefore 2.

3.2.5 Constraint5: Closed sequential pattern

constraint
A sequential pattern S is said to be closed if there exists no

proper super sequential pattern with the same support as S.

Example5: If a Sequential pattern <aba> and its super pattern

<abac> are having the same support count 2 then <aba> is not

closed sequential pattern.

3.2.6 Constraint6: Minimum length constraint
Minimum length constraint specifies the minimum length of a

sequential pattern. The length of a sequence is defined as the

number of edges in the sequence.

Example6: The length of sequences <ac>, <ad>, <ab> are 1. If

the minimum length threshold is set as 2 then the sequences

<ac> <ad> <ab> are not in the result even though they are

frequent.

3.2.7 Constraint7: Top-k Sequential pattern
A sequential pattern is said to be Top-k sequential pattern of

minimum length min_len if there exists no more than (k-1)

sequential patterns whose length is at least min_len.

3.2.8 Constraint-based Sequential graph pattern

mining
Given a graph database GD, Minimum support threshold

min_sup and a set of constraints C, the problem of Constraint-

based sequential graph pattern mining is to find the set of

interesting sequential graph patterns satisfying C.

3.2.9 Top-k Constraint-based closed sequential

graph pattern mining
Given a graph database GD, Minimum support threshold

min_sup and a set of constraints C, the problem of Top-k

Constraint-based closed sequential graph pattern mining is to

find the top-k closed sequential graph patterns satisfying C.

4. PROPOSED ALGORITHMS
In this section, two algorithms CSGP and TCSGP are

proposed, CSGP generates frequent sequential graph patterns

based on constraints and TCSGP generates top-k frequent

sequential graph patterns based on constraints.

4.1 CSGP
Algorithm 1 (CSGP) Constraint-based sequential graph

pattern mining

Input:

Global data: A graph database GD, Minimum support

threshold min_sup, Constraints: Average measure Ca, Support

of a vertex Csv, Support of a prefix Csp, Support of sequence

extension Cse.

Local data: Projected database of each vertex PDv, Priority

queue Q, Sequences generated from each vertex S.

Output: Frequent sequential graph patterns Sg.

Method:

Step1. Find the average number of edges per graph

and set it as a threshold for average measure

constraint.

Step2. Prune the graphs from the input database that do not

satisfy the average constraint.

Step3. Call the suprocedure1 FPDV (GD) to scan the

pruned graph database and to find the projected

database of each vertex and let it be PDv.

Step4. Prune the infrequent vertices that do not satisfy the

threshold Csv and Csp. Let the new vertex set be V.

Step5. Sort the frequent vertex set V in descending order of

their support counts and insert them in a priority

queue Q.

Step6. Repeat

Step7. Remove the vertex v from Q and find the

sequences S that can be grown from v

whose support count is not less than

min_sup.

Step8. Add the frequent sequences to Sg.

 Sg ← Sg ᴜ S

Step9. ConstraintSequenceMining (PDv, S)

Step10. Until Q is empty

In step1, find the average measure constraint and push it into

the mining algorithm. In step2, prune the graphs for which,

the number of edges is less than the average measure

constraint. Scan the pruned graph database and find the

projected database of each vertex in step3. In step4, push the

constraints Csv and Csp to prune the infrequent vertices that

don‟t satisfy support of a vertex and support of prefix

constraints. Sort the new frequent vertex set in descending

order of their support count and insert them in a priority

queue. Repeat steps to 9 until the queue is empty. Find the

sequences that can be grown from each vertex and call the

recursive procedure ConstraintSequenceMining (PDv, S). This

procedure recursively finds the length 2, length 3 frequent

patterns and so on.

Subprocedure1. (FPDV) FindProjectedDatabaseofVertex(GD)

Input: Pruned graph database GD

Output: Projected database of vertices PDv, Support count of

vertices SCv.

Method:

Step1. For each graph i in pruned graph database GD

Step2. For each edge j in graph i

 Step 2.1 Examine the edge v → u.

Step 2.2 if v is the first occurrence as a source in

edge j then

Step 2.3 PDv ← PDv ᴜ (i,j)

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

38

Step 2.4 SCv ← SCv + 1

Step3. End for

Step4. End for

Subprocedure1 scans each edge exactly once and finds the

(graphid, edgeid) pair for each vertex as source. Whenever a

new (graphid, edgeid) pair is found for a vertex, then SCv is

incremented by 1. SCv holds the support count of vertex v.

Subprocedure2. ConstraintSequenceMining (PDv, S)

Input: Projected database of a vertex PDv, Set of graph

sequences S.

Output: Frequent sequential graph patterns Sg.

Method:

Step1. Repeat step 2 until S is empty.

Step2. For every sequence Si in S

Step 2.1 Call the subprocedure3 FPDS(PDv,S) to

find the projected database of the

sequence Si and let it be PDs.

Step 2.2 if the projected database count of Si

satisfies Csp then scan the projected

database of Si and find the sequences

generated from Si.

Step 2.3 Add the new sequences to Sʹ only if they

satisfy the min_sup threshold.

Step 2.4 if Sʹ is not empty then

 Sg ← Sg ᴜ Sʹ.

Step 2.5 if number of frequent sequences in Sʹ

satisfy the constraint Cse, then call the

recursive procedure ConstraintSequence

Mining (PDs, Sʹ).

Step3. End for

In subprocedure2, push the constraints Csp and Cse. Csp is

used to reduce the number of scans to projected database.

Only the projected database of the sequences that satisfy Csp
are scanned to extend the sequences to length 2 , length 3 and

so on. Cse is used to reduce the number of recursive calls

Table 5. Comparison between the constraints 1 to 4

 No

Constraint
Ca Csv Csp Cse Ca ᴜ Csv Ca ᴜ Csp Ca ᴜ Cse Csp ᴜ Cse Ca ᴜ Csp ᴜ Cse

4 4 5 2 3 2 3 4/3 4/4 4/2 4/3 4/2 4/3 2/2 3/3 4/2/2 4/3/3

x 31 29 31 29 31 2 31 30 29 23 29 23 29 26 31 30 29 26

y 19 19 19 17 15 11 15 6 15 12 15 10 15 6 11 6 11 5

z 32 30 32 30 14 8 26 16 30 24 12 7 26 9 14 8 12 7

Table 6. Comparison between the constraints 5 to 7

Cc Ca ᴜ Cc
Cm

min_length=2
Cc ᴜ Cm

Ca ᴜ Cc ᴜ

Cm

Ck

k=10
Ck ᴜ Cc Ca ᴜ Ck ᴜ Cc

All

constraints

from 1 to 7

x 28 26 20 18 17 10 10 10 10

y 12 10 19 12 10 7 7 7 6

z 32 30 32 32 30 16 17 16 6

Table 7. Comparison between all the constraints

S.No. Number of sequential patterns

generated, x

Number of recursive calls, y Number of scans to

projected database, z

1 No constraint x y z

2 Ca <x = y <z

3 Csv =x for threshold 4, <x for threshold 5 =y for threshold 4, <y for threshold 5 =z for threshold 4, <z

for threshold 5

4 Csp =x for threshold 2, <x for threshold 3 <y <<z

5 Cse =x for threshold 2, <x for threshold 3 <y for threshold 2, <<y for threshold 3 <z

6 Ca ᴜ Csv <x <y <z

7 Ca ᴜ Csp <x <y <<z

8 Ca ᴜ Cse <x <y for threshold 2, <<y for threshold 3 <z for threshold 4/2

<<z for threshold 4/3

9 Csp ᴜ Cse =x for threshold 2/2, <x for threshold 3/3 <y for threshold 2/2, <<y for threshold <z for threshold 2/2

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

39

3/3 <<z for threshold 3/3

10 Ca ᴜ Csp ᴜ Cse <x <y for threshold 2/2, <<y for threshold

3/3

<z for threshold 4/2/2

<<z for threshold 4/3/3

11 Cc <x <y =z

12 Ca ᴜ Cc <x <y <z

13 Cm <x =y =z

14 Cc ᴜ Cm <x =y =z

15 Ca ᴜ Cc ᴜ Cm <x <y <z

16 Ck <x <<y <z

17 Ck ᴜ Cc <x <<y <z

18 Ca ᴜ Ck ᴜ Cc <x <<y <z

to the subprocedure ConstraintSequenceMining (PDs, Sʹ). The

subprocedure2 is recursively invoked only if the number of

frequent sequences extended from S satisfies the constraint

Cse.

Subprocedure3. (FPDS) FindProjectedDatabaseofSequence

(PD,S)

Input: Projected database PD, Graph sequence S, where

S=<va,vb,……vn>

Output: Projected database of a sequence PDs.

Method:

Step1. For each graphid, edgeid pair (i,j) in PD

Step2. Scan graph i from j to find k, where k is the first

occurrence of vn.

Step3. PDS←PDS ᴜ (i,k)

Step4. End for.

4.2 TCSGP
Algorithm 2 (TCSGP) Top-k Closed constraint-based

Sequential Graph Pattern mining.

Input:

Global data: A graph database GD, Minimum support

threshold min_sup, Constraints: Average measure Ca, Support

of a vertex Csv, Support of a prefix Csp, Support of sequence

extension Cse, Closed Sequential pattern Cc, Minimum length

constraint Cm, Top-k sequential pattern constraint Ck .

Local data: Projected database of each vertex PDv, Priority

queue Q.

Output: Top-k closed frequent sequential graph patterns Sg.

Method:

Step1. Push the average constraint Ca on the input graph

database. Prune the graphs that do not satisfy Ca.

Step2. Find the projected database PDv of all the vertices

and their support counts. Push the constraints Csv

and Csp and prune the infrequent vertices.

Step3. Scan the projected database of frequent vertices and

find the frequent sequences of length-1.

Step4. Sort all frequent length-1 sequences in descending

order of their support counts and insert them into a

priority queue Q.

Step5. Call the sub procedure Topk_ClosedSequences

(PDv, Q).

The constraints Ca , Csv, Csp are applied in step1 and step2 to

prune the input graphs that do not satisfy the average measure

and to prune the infrequent vertices. The step3 of algorithm2

finds all the frequent length-1 sequences and step4 of

algorithm2 arranges the sequences in descending order of

their support. Recursive procedure Topk_ClosedSequences

(PDv, Q) is called in step5 to find the top-k closed frequent

sequential graph patterns based on constraints.

Subprocedure4. Topk_ClosedSequences (PDv, S)

Input: Projected Database of vertices PDv, Set of frequent

graph sequences S.

Output: Top-k closed frequent graph sequences based on

constraints TCS.

Method:

Step1. Repeat step2 until S is empty.

Step2. For every sequence Si in S

Step2.1 call the subprocedure 3 FPDS (PDv, Si) to

find projected database PDSi .

Step2.2 if projected database count of Si satisfies

Csp then scan PDSi and find the sequences

that can be grown.

Step2.3 for every new sequence grown from Si

Step2.3.1 Add the new sequence to Sʹ only if the

support count of the new sequence

satisfies min_sup.

Step2.3.2 End for

Step2.4 if there is no new sequence with support

same as the support of Si and if the length

of the sequence Si is not less than min_len

then add Si to set of closed sequences.

TCS←TCS ᴜ Si.

Step2.5 if the number of sequences in TCS is

equal to k then return.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

40

Step2.6 if the number of frequent sequences in Sʹ

satisfies Cse then call the recursive

procedure Topk_ClosedSequences (PDSi,

Sʹ).

Step3. End for

Step2.1 of subprocedure4 calls the subprocedure3 to find the

projected database of the input sequence. Five constraints Csp,

Ck, Cm, Cc, and Cse are applied in subprocedure4. The

recursive procedure is returned either if number of sequential

graph patterns generated are k or if the input set of sequences

is empty. Here top-k closed patterns of minimum length

min_len are generated. In order to generate top-k patterns, in

algorithm2, all frequent length 1 sequences are found and

arranged in descending order of their support. First grow the

sequences of the highest support to generate top-k patterns.

Example: Given the graph database with min_support=2,

average measure threshold=4, support of vector=3, support of

prefix=2, support of sequence extension=2, min_length=2,

k=10, the top 10 closed graph sequential patterns as mined as

follows:

1. Frequent length-1 sequences generated from TCSGP

algorithm are as follows

<ac:5>,<bc:5>,<ad:4><ba:4>,<bd:4>,<ab:3>,<ca:3>,<dc:3>,<

cd:2>,<da:2>.

2. The sequence with the highest support is first grown, i.e.

<ac>. Frequent sequences extended from <ac> are

<aca:2>,<acd:2>. Among these 3 sequences only <aca> and

<acd> are added to the list of closed sequential patterns. The

next sequence that is extended is <bc>. The sequences <bca>,

<bcd> are the frequent sequences generated from the prefix

<bc>. The procedure is repeated until top 10 closed graph

sequences are obtained.

3. The result of TCSGP algorithm is

<aca:2>,<acd:2>,<bca:2>,<bcd:2>,<adc:3>,<ada:2>,<bac:3>,

<badc:2>,<bdc:3><bda:2>.

5. RESULTS
 CSGP and TCSGP algorithms are implemented and tested on

a synthetic dataset produced by a graph database generator

[23]. It is based on the IBM Quest Synthetic Data Generation

Code for Association and sequential patterns. Data sets are

generated by the graph generator based on the five parameters

as shown in Table 9.

In CSGP Algorithm, first four constraints are used as

mentioned in Table 3.

1. Average measure Ca : This constraint prunes the input

data prior to the mining process. This is used to remove

the graphs that do not have an average number of edges.

The idea behind this constraint is, the graphs that do not

have sufficient number of edges cannot be used as input

to generate the frequent sequences.

2. Support of a vertex Csv : This constraint prunes the

infrequent vertices. The vertex whose support count is

less than the minimum support threshold is said to be

infrequent .

3. Support of a prefix Csp: In mining frequent sequential

patterns, sufficient time is spent in scanning the projected

database of prefixes.Prune infrequent prefixes whose

support don‟t satisfy the constraint Csp. The idea behind

this constraint is to prune the unnecessary extension of

frequent sequences.

4. Support of a sequence extension Cse : Once frequent

vertices visited from a sequence are found, then new

frequent sequences are obtained. Recursive procedure is

called to find the projected database of new sequences

and to extend them. In order to reduce the number of

recursive calls, a constraint Cse is proposed.

Constraints 3 and 4 improves the efficiency of the CSGP

algorithm by reducing the frequency of scans to projected

database and by reducing the frequency of recursive calls to

subprocedure2. The patterns generated by CSGP algorithm

are shown in Table 8. In CSGP algorithm, the constraints Ca ,

Csv, Csp and Cse are used. These constraints are applied

individually as well as all the four constraints are pushed at

once into the mining process. The values of parameters y and

z obtained are minimized when the constraints Ca , Csp and

Table 8. Frequent sequential graph patterns

Vertex Frequent sequential length 1

patterns

Frequent sequential length 2 patterns Frequent sequential length 3

patterns

a <ac:5>,<ad:4>,<ab:3> <aca:2>,<acd:2>,<adc:3>,<ada:2> <abcd:2>,<abdc:2>,<abac:2>

b <bc:5>,<ba:4>,<bd:4> <bca:2>,<bcd:2>,<bac:3>,<bad:2>,<bdc:3>,<bda:2> <badc:2>

c <ca:3>,<cd:2> <cad:2>,<cac:2> -

d <dc:3>,<da:2> - -

Table 9. Database parameters

Parameter Meaning

D Total number of graphs

V Number of vertex labels

E Number of edge labels

T Average size of the graph

M Average density of the graph

Cse are combined as highlighted in Table 5. Increasing the

threshold of constraint Csv reduces the number of recursive

calls and number of projected database scans, but it results in

pruning of vertices that might result in frequent sequences.

Pushing the above mentioned four constraints into CSGP

algorithm increased the performance of the algorithm

compared to running the algorithm without constraints. In the

experimental results, it is found that these constraints alone

will not improve the effectiveness of the algorithm. The

number of sequential patterns generated are still high as

shown in Figure 2 and also found the importance of finding

still more highly interesting patterns. This rise to the problem

of improving effectiveness of the mining algorithm. Three

more constraints are included and TCSGP algorithm is

developed to deal with the problem of effectiveness of the

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

41

mining process. Cm, Cc, Ck are the three additional constraints

used in TCSGP algorithm. The comparison of the results

obtained by introducing these 3 constraints is shown in Table

6 and Table 7. In the experimental evaluation, the

performance of CSGP and TCSGP algorithm are compared as

shown in Figure 3. Pushing all the constraints from 1 to 7 into

TCSGP algorithm resulted in higher performance than CSGP

algorithm.

6. CONCLUSION
In this paper, the problem of pushing constraints into the

mining process is studied to generate top-k closed sequential

graph patterns. Two algorithms are proposed, CSGP generates

a constraint based sequential frequent graph patterns and

TCSGP generates a constraint based top-k closed sequential

frequent graph patterns. The constraints are classified into two

classes, constraints that improve the efficiency of mining

process and constraints that improve the effectiveness of the

mining process. Both classes of constraints are pushed inside

TCSGP algorithm and the algorithms are implemented on a

synthetic database [23]. The constraint based top-k closed

sequential graph pattern mining is more preferable to generate

highly interesting graph patterns with high performance.

Interactive process of running mining algorithms by

repeatedly changing the constraints is very time consuming.

As a future work, the mining process speed can be increased

by utilizing the previous mining results. Data mining is an

interactive and iterative process. The user must change the

constraints and run the algorithm many times to obtain the

final results. The interactive process of mining is time

consuming. The proposed approach can be further extended to

speed up the mining process by incrementally mining the

graph data whenever constraints are changed.

Fig. 2. Efficiency of constraints

Fig. 3. Effectiveness of constraints

7. ACKNOWLEDGMENTS
We express our deepest gratitude to Prof. R. B. V.

Subramanyam for his inspiration, comments and suggestions.

8. REFERENCES
[1] Arnaud Soulet, and Bruno Cremilleux, “Optimizing

Constraint-Based Mining by Automatically Relaxing

Constraints”, Fifth IEEE International conference on

Data mining, Nov 2005.

[2] Chen Wang, Yangtai Zhu, Tianyi Wu, Baileshi,

“Constraint-Based Graph Mining in Large Database”,

Web Technologies Research and Development-ApWeb

2005, Lecture Notes in Computer Science, Volume 3399,

2005, 133-144.

[3] Chuntao Jiang, Frans Coenen and Michele Zito, “A

survey of Frequent Subgraph Mining Algorithms”, The

Knowledge Engineering Review, Volume 28, Issue 01,

Mar 2013, 75-105.

[4] F. Masseglia, P. Poncelet, and M. Teisseire, “Efficient

mining of sequential patterns with time constraints:

Reducing the combinations”, Expert Systems with

Applications, Elsevier, Volume 36, Issue 02, Mar 2009,

2677-2690.

[5] Feida Zhu, Xifeng Yan, Jiawei Han, and Philip S. Yu,

“gPrune: A Constraint Pushing Framework for Graph

Pattern Mining”, Advances in Knowledge Discovery and

Data Mining, Lecture notes in Computer Science,

Springer, Volume 4426, 2007, 388-400.

[6] Francesco Bonchi, Claudio Lucchese, “Extending the

state-of-the-art of Constraint-based pattern discovery”,

Data and Knowledge Engineering, Elsevier, Volume 60,

Issue 02, Feb 2007, 377-399.

[7] Francesco Bonchi, Fosca Giannotti, Claudio Lucchese,

Salvatore Orlando, Raffaele Perego, Roberto Trasarti, “A

constraint-based querying system for exploratory pattern

discovery”, Information Systems, Elsevier, Volume 34,

Issue 01, March 2009, 3-27.

[8] Gao Cong, and Bing Liu, “ Speed-up Iterative Frequent

Itemset Mining with Constraint Changes”. In

proceedings of 2002 IEEE International conference on

Data mining, 2002, 107-114.

[9] Jean-Francois Boulicat and Baptiste Jeudy, “Constraint-

Based Data Mining”. The Data mining and Knowledge

Discovery Handbook, Springer, 2005, 399-416.

[10] Jian Pei and Jiawei Han, “Can We Push More

Constraints into Frequent Pattern Mining?”. In

Proceedings of the Sixth ACM SIGKDD international

conference on knowledge discovery and data mining,

2000, 350-354.

[11] Jian Pei, Jiawei Han, and Laks V.S. Lakshmanan,

“Mining Frequent Itemsets with Convertible

Constraints”. In proceedings of 1th international

conference on Data Engineering, IEEE, April 2001, 433-

442.

[12] Jian Pei, Jiawei Han, and Wei Wang, “ Mining

Sequential Patterns with Constraints in Large

Databases”. In Proceedings of CIKM‟02 Eleventh

International conference on Information and knowledge

management, ACM, Newyork, 2002, 18-25.

[13] Jian Pei, Jiawei Han, and Wei Wang, “Constraint-based

0

500

1000

1500

2000

200 400 600 800 1000N
u

m
b

e
r

o
f

se
q

u
e

n
ti

al

p
at

te
rn

s

Numer of graphs

Csv

Csp

Cse

0

50

100

150

200

250

200 400 600 800 1000R
u

n
n

in
g

ti
m

e
 (

in
 s

e
co

n
d

s)

Numer of graphs

CSGP

TCSGP

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

42

sequential pattern mining: the pattern-growth methods”,

Journal of Intelligent Information Systems, Springer,

Volume 28, Issue 02, April 200, 133-160.

[14] Loic Cerf, Jeremy Besson, Celine Robardet, Jean-

Francois Boulicaut, “DATA-PEELER: Constraint-Based

Closed Pattern Mining in n-ary Relations”. In

proceedings of the 2008 SIAM International conference

on Data Mining, 2008, 37-48.

[15] Luc De Raedt, and Albrecht Zimmermann, “Constraint-

Based Pattern Set Mining”. In proceedings of the 2007

SIAM International conference on Data Mining, 2007.

[16] Luc De Raedt, Tias Guns, Siegfried Nijssen, “Constraint

Programming for Itemset Mining”. In Proceedings of

KDD‟08, ACM, Aug 2008, 204-212.

[17] Marek Wojciechowski and Maciej Zakrzewicz, “Dataset

Filtering Techniques in Constraint-Based Frequent

Pattern Mining”. In Proceedings of the ESF Exploratory

workshop on Pattern Detection and Discovery, Springer,

2002, 77-91.

[18] Marion Leleu, Christophe Rigotti, Jean-Francois

Boulicaut, and Guillaume Euvrard, “ Constraint-Based

Mining of Sequential Patterns over Datasets with

Consecutive Repetitions”, Knowledge Discovery in

databases: PKDD 2003, Lecture notes in Computer

Science, Springer, Volume 2838, 2003, 303-314.

[19] Mehdi Khiari, Patrice Boizumault, and Bruno

Cremilleux, “Combining CSP and Constraint-Based

Mining for Pattern Discovery”, Computational Science

and its applications, ICCSA 2010 Lecture Notes in

Computer science, Springer, Volume 601, Mar 2010,

432-447.

[20] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok

Shim, “ SPIRIT: Sequential Pattern Mining with Regular

Expression Constraints”. In Proceedings of VLDB‟99

25th International conference on very large databases,

Morgan Kaufmann publishers, San Francisco, 1999, 223-

234.

[21] Siegfried Nijssen, TiasGuns, and Luc De Raedt,

“Correlated Itemset Mining in ROC space : A Constraint

Programming Approach”. In Proceedings of KDD‟09,

ACM, 2009, 647-656.

[22] Stefano Bistarelli, and Francesco Bonchi, “Soft

constraint based pattern mining”, Data and Knowledge

Engineering, Elsevier, Volume 62, Issue 01, July 2007,

118-137.

[23] Synthetic graph generated by IBM Quest Synthetic Data

Generation Code for Associations and Sequential

Patterns. [http://www.7.ust.hk/graphgen/].

[24] Unil Yun, “Mining lossless closed frequent patterns with

weight constraints”, Knowledge-Based Systems,

Elsevier, Volume 20, Issue 01, Feb 2007, 86-97.

[25] Wei Wang, Chen Wang, Yongtai Zhu, Baile Shi, Jian

Pei, Xifeng Yan, and Jiawei Han, “ GraphMiner: A

Structural Pattern-Mining System for Large Disk-based

Graph Databases and Its Applications”. In proceedings of

the 2005 ACM SIGMOD international conference on

Management of data, ACM, Newyork, 2005, 89-881.

[26] Xifeng Yan, X.Jasmine Zhou, and Jiawei Han, “Mining

Closed Relational Graphs with Connectivity Constraints.

In proceedings of KDD‟05, ACM, Newyork, 2005, 324-

333.

[27] Yen-Liang Chen, Ya-Han Hu, “Constraint-based

sequential pattern mining: The consideration of recency

and compactness”, Decision Support Systems, Elsevier,

Volume 42, Issue 02, Nov 2006, 1203-1215.

IJCATM : www.ijcaonline.org

