
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

11

A Proposed Architecture for Query Anomaly Detection

and Prevention against SQL Injection Attacks

T.K. George
Research Scholar

Cochin University of Science and Technology

 Poulose Jacob, PhD
Professor

Cochin University of Science and Technology

ABSTRACT

SQL injection is a predominant type of attack which targets

web applications and databases. SQL injection bypasses the

authentication logic and breaks the confidentiality of the

database or manipulates the database. It helps the attacker to

obtain unauthorized access into the back end database.

Vulnerability exists within a web application when it does not

provide a proper validation system for the data entered by the

user in the input field. Vulnerability scanners aid in checking

vulnerabilities embedded in a web application and has the

potential to test invalid forms of input query. However, the

limitation lies in the reduction of system availability due to

denial of service, especially in case of false positives. In this

paper, an approach which focuses on query template based

detection of SQL injection attack and reconstruction of

queries is proposed. Thus the proposed architecture can

mitigate the denial of service and increase the availability by

potentially reconstructing malicious queries.

Keywords

SQL Injection, Authentication, Vulnerability, Validation,

Malicious, Reconstruct.

1. INTRODUCTION
An SQL Injection Attack (SQLIA) increasingly targets online

applications. The traditional security measures adopted by

organizations are not sufficient enough to deal with new

vulnerabilities and their attack spectrum. Although numerous

protection strategies against SQLIA have been developed and

implemented with the support of security tools and

vulnerability scanners, there are frequent attacks on database

servers and compromise of critical applications within

business organizations. SQLIAs have been described as one

of the most serious security threats to web applications [1].

In SQL Injection Attacks [2], the crafted codes are directed at

the database server and these codes compromise critical

information. A crafted injection through a less secure online

application can cause major compromises in terms of data loss

and information disclosure on critical database servers. Most

of these attacks are targeted on web forms and login entry

screens of an application. However, there are limitations to

mitigation strategies or tools developed against SQLIA and

implemented strategies become obsolete due to the

inconsistencies existing in those insecure applications. The

availability and effective utilization of appropriate security

tools is still an issue that has to be dwelled upon by many of

the application users.

Defensive programming and effective input validation

techniques can handle some of the vulnerabilities, however

new exploits can overcome all the security barriers installed

by programmers. SQL Injection prevails as one of the top ten

vulnerabilities and threats to online businesses targeting

backend databases. It is observed that SQL injection appears

only in a small proportion of applications and are yet making

huge impact on business organizations through data theft or

compromising database servers. Figure1 shows the percentage

of various vulnerability classes as reported in OWASP [1].

Fig 1: Top 10 Vulnerability class listed

If web applications are heavily dependent on databases and

interactions through web forms, then user input validations

will be a major concern. Section 2 includes the motivation of

the research and related work is discussed in Section 3.

Section 4 describes the proposed architecture of SQLIA

Detection and Reconstruction of Queries and its advantages.

The implementation of the system is given in Section 5

followed by the conclusion and future scope in Section 6.

2. MOTIVATION
Though there are in-depth researches on SQL Injection

Attacks and protection strategies, most of the research studies

are focused on ensuring database access to legitimate users

only. They do not suggest prevention techniques against SQL

Injection Attacks carried out by legitimate users. There are

some approaches that do not require modification or

reconstruction of queries generated by user input on web

applications in order to detect SQLIA. Methods based on

pattern matching and behavior modeling make use of

manually or semi-automated constructed patterns. There are a

number of reports that alert the false positives and DoS

(Denial of Service), which contradict the availability aspects

of security property [3].

3. RELATED WORK
SQLRand [4][5] suggests a randomized SQL query language

to detect and abort queries which contain injected code. This

is done by modifying a query by appending a random number

with it followed by placing a proxy server between the client’s

web server and application server. The function of this proxy

server would be to receive the request and pass it on to the

database server. If the request is embedded with SQLIA, it

will not recognize the query and will end with a rejection.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

12

CANID [6] proposes a test set creation by extracting query

structures from every SQL query location in web application

source code for avoiding SQLIA and also suggests web app

code changes. The verification method concludes with the

issuing of the actual query if the test set matches.

AMNESIA [7] uses a combination of static analysis and

dynamic analysis to analyze web application codes and also to

monitor dynamically generated queries. This is followed by

the building of a query model with all possible queries

identified by the hotspot. The runtime monitoring mechanism

will reject or report the queries that violate the model.

DoubleGuard [8] is a java based application. In order to

avoid object duplication, lots of statistical analysis and

structure mapping is required.

POSITIVE TAINTING [9] suggests identifying trusted data

by considering trust marked strings and performing syntax

aware evaluation. Tracking and taint marking should be

accurate with a right level of precision.

SQL DOM [10] creates class tables and methods for possible

operation. Database structure mapping will be done manually

to avoid object duplication.

4. SQL DETECTION AND

RECONSTRUCTION OF QUERIES

4.1 Proposed Architecture

Fig 2: Proposed Architecture

Figure 2 shows the proposed architecture. The main

components of the proposed architecture include a SQL query

pattern retriever, a template mapper and a User SQL to

Template Translation for the reconstruction of queries [13].

SQL query pattern retriever extracts a set of features by

analyzing training data. Based on this extracted feature set,

the system generates the query template without the help of a

developer. The generated SQL templates (application

specific) are stored in the system”. Each query template must

also be stored according to the specifications using JSON

format [14][15]. Template mapper receives the input query

and maps it with the query stored in the template store. If the

injected query is detected, it will pass through the template

translation module for reconstruction of the query and avoids

Denial of Service.

The proposed research is divided into three phases. The first

phase is focused on detecting SQLIA in the authentication of

web pages. Most of the SQLIA happens while authenticating

a web page. The web developer also has to provide a standard

query with which every query is matched for anomaly. The

system places the requirement that each incoming query

should match with the developer supplied template.

To begin with the first phase, a set of (150) SQL injection

queries have been chosen. These queries are classified into

various sub types based on the structure of the SQL Queries.

They are further classified based on the technique used for

injecting the query. The proposed SQLIA detection and

mitigation approach initially checks every incoming query for

SQLIA, and in case an anomaly is detected, the approach

reconstructs the query according to the standard query

template specifications and forwards the same to the database

server.

In the second phase, strategies for detection and mitigation of

SQLIA through URL are framed and implemented. Training

methods for automatic construction of query templates from

training data are also proposed. Similar to Natural Language

Processing (NLP) techniques, there will be Structured Query

Language Processing (SQLP) methods to process SQL

constructs that are defined; and SQLP retrieves the required

input from requested SQL and places the values in an

expected query template[14],[15]. Only the newly formed

query is submitted to the database server.

An SQLIA detection approach based on features is also

proposed as part of the work. These features reflect on all

standard methods used to inject an anomaly into SQL. This

can be compared with other existing SQLIA detection

algorithms to analyze its performance. If the existing

approach detects SQLIA, then there is an immediate decision

of reconstruction of the query. This must be repeated through

a scan for SQLIA and verification followed by the

transmission of this information to the database server [16].

In the third phase of the approach, the SQLIA is verified with

the existing DoS based vulnerability detection systems to find

the total number of queries which were successfully

reconstructed, number of queries forwarded, number of

queries acted upon by the database server, and finally the

number of false positives actually processed by the system

[17].

4.2 Advantages of the Proposed

Architecture
The advantages of the proposed approach are increased

system availability by reducing DoS and a strong focus on

reconstruction of Injected Queries. This approach does not

analyze web application but only checks the query (SQL)

before reaching the specific database server. It also works

only between the web server and the database server.

The proposed architecture can detect different types of

SQLIA’s such as Tautology based injection, Statement

injection, Union query, Logically incorrect queries, Stored

procedures, Piggy backed queries and Alternate encoding

queries. It can be expanded for the detection of Inference

based on Blind Injection, out of band injection through Server

variables (Injection through URL). Moreover, it can be

modified further to detect Second Order Injection attacks [11]

[12].

5. IMPLEMENTATION OF SQLIA

DETECTION AND MITIGATION

SYSTEM
The proposed system is developed by using java based

application development. It can be implemented as an API or

placed as a proxy server which can be placed in between web

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

13

server and database server. Following are some of the Sample

screens designed for the detection, mitigation and

reconstruction of queries.

Fig 3: Main Screen for Query Verification

5.1 Sample format of Injected Queries
a. SELECT *FROM administrators WHERE username= ‘ ’

AND password= ‘ ’ OR ‘1’=‘1’;

In the above query, username is set to null and in the

password field, there is a single quote for closing the

password field and define a tautology (‘1’=’1’) with logical

OR.

b. SELECT *FROM administrators

 WHERE username= ‘ ‘ AND password= ‘ ‘ OR

‘1’=‘1’; DROP TABLE users;

Here the username is set to null and in the password field, Put

a single quote for closing the password field, define a

tautology (‘1’=’1) with logical OR. Place a single quote and

semi-colon for closing the password field. There is a new

SQL query for drop the table from database.

c. SELECT *FROM administrators

 WHERE username=’’ UNION ALL SELECT

LOAD_FILE (‘/etc/passwd’)--

 The above query can be described as In username field there

exist a single quote for closing the username field and Use

UNION ALL and write a new SQL query to load all the

contents from (‘/etc/passwd’) folder. Put double hyphen signs

to comment the remaining query. The password of the above

query is set to null.

d. SELECT * from admin where username = '' or 1=1--

Above given Query the username field, there exists a single

quote for closing the username field. And define a tautology

(1=1) with logical OR. Comment the remaining query with

double hyphen (--).The password is set to null.

e. SELECT * FROM administrators

 WHERE username =’ ’;

exec(char(0x73687574646f776e))--AND password=’ ‘;

 In the username field of the above query, there is a single

quote for closing the username field. There is a semi-colon

and write an SQL query for Shutdown the database and put a

semi-colon and comment the remaining query using double

hyphen (--).The password field is set to null.

Fig 4: Query Template for Verification

6. CONCLUSION AND FUTURE WORK
Existing approaches mainly focus on DoS in the presence of

suspected injected queries, while the proposed approach

concentrates on the extraction and reconstruction of a query,

which increases the availability of the system. The proposed

system offers automatic template construction, SQLIA

detection and mitigation algorithms for the authentication of

webpages, via URL or through HTML controls. Automatic

template extraction strategies can be built for other types of

web pages, other than authentication page. Similarly, SQLIA

anomalies for different SQL constructs follow varying

strategies thus the reconstruction of algorithms can be further

expanded to have better availability and performance in

complex systems.

7. REFERENCES
[1] Kumar, Pranaw, and R. K. Pateriya. "A Survey on SQL

injection attacks, detection and prevention

techniques". Computing Communication & Networking

Technologies (ICCCNT), 2012 Third International

Conference on. IEEE, 2012.

[2] Vanitha, A., and N. Radhika. "Multidimensional

Analysis of SQL Injection Attacks in Web Application."

[3] Bosworth, Seymour, and Michel E. Kabay,

eds. Computer security handbook. John Wiley & Sons,

2002.Tavel, P. 2007 Modeling and Simulation Design.

AK Peters Ltd.

[4] Boyd, Stephen W., and Angelos D. Keromytis.

"SQLrand: Preventing SQL injection attacks." Applied

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

14

Cryptography and Network Security. Springer Berlin

Heidelberg, 2004.

[5] Avireddy, Srinivas, et al. "Random4: an application

specific randomized encryption algorithm to prevent

SQL injection." Trust, Security and Privacy in

Computing and Communications (TrustCom), 2012

IEEE 11th International Conference on. IEEE, 2012.

[6] Bisht, Prithvi, Parthasarathy Madhusudan, and V. N.

Venkatakrishnan. "CANDID: Dynamic candidate

evaluations for automatic prevention of SQL injection

attacks." ACM Transactions on Information and System

Security (TISSEC) 13.2 (2010): 14.

[7] Halfond, William GJ, and Alessandro Orso. "AMNESIA:

analysis and monitoring for Neutralizing SQL-injection

attacks." Proceedings of the 20th IEEE/ACM

international Conference on Automated software

engineering. ACM, 2005.

[8] Ezumalai, R., and G. Aghila. "Combinatorial approach

for preventing SQL injection attacks." Advance

Computing Conference, 2009. IACC 2009. IEEE

International. IEEE, 2009.

[9] Halfond, William GJ, Alessandro Orso, and Panagiotis

Manolios. "WASP: Protecting Web applications using

positive tainting and syntax-aware evaluation." Software

Engineering, IEEE Transactions on 34.1 (2008): 65-81.

[10] McClure, Russell A., and Ingolf H. Krüger. "SQL DOM:

compile time checking of dynamic SQL

statements." Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on. IEEE,

2005.

[11] Johari, Rahul, and Pankaj Sharma. "A survey on web

application vulnerabilities (SQLIA, XSS) exploitation

and security engine for SQL injection." Communication

Systems and Network Technologies (CSNT), 2012

International Conference on. IEEE, 2012.

[12] Ezumalai, R., and G. Aghila. "Combinatorial approach

for preventing SQL injection attacks". Advance

Computing Conference, 2009. IACC 2009. IEEE

International. IEEE, 2009.

[13] Parker, Donn B. "Toward a new framework for

information security." FLY(2002): 501.

[14] Parker, Donn B. "Toward a new framework for

information security." FLY(2002): 501.

[15] Xie, Yichen, and Alex Aiken. "Static Detection of

Security Vulnerabilities in Scripting

Languages." USENIX Security. Vol. 6. 2006.

[16] Buehrer, Gregory, Bruce W. Weide, and Paolo AG

Sivilotti. "Using parse tree validation to prevent SQL

injection attacks." Proceedings of the 5th international

workshop on Software engineering and middleware.

ACM, 2005.

[17] Halfond, William G., Jeremy Viegas, and Alessandro

Orso. "A classification of SQL-injection attacks and

countermeasures." Proceedings of the IEEE International

Symposium on Secure Software Engineering. Vol. 1.

IEEE, 2006.

IJCATM : www.ijcaonline.org

