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ABSTRACT 
 In this paper optimal second order sliding mode controller for 

uncertain systems by using integral sliding surface is 

proposed. The optimal controller is designed based on linear 

quadratic regulator (LQR) method for nominal model of the 

system. In optimal control method, the LQR is combined with 

sliding mode control to obtain equivalent control and 

switching control. The sliding mode controller is designed 

using integral sliding surface to obtain the value of switching 

control and to equivalent control values are obtained using 

LQR technique. It is observed that LQR and integral sliding 

mode control method are more efficient compare to other 

conventional techniques.  Stabilization of inverted pendulum 

system is done using the sliding mode control approach.  The 

system of inverted pendulum is used in state space approach. 

The main advantages of this method  is that disturbance 

rejection, insensitivity to parameter variations and 

implementation issues are addressed  easily using proposed 

controller stabilization of inverted system. The simulation 

result conform an advantage of the designed optimal sliding 

mode control approach in terms of output responses and 

stabilization of the system. 

Keywords  
linear uncertain systems, optimal control, linear quadratic 

regulator, integral sliding surface, non-singular terminal 

sliding surface, second order sliding mode control. 

1. INTRODUCTION 
The uncertainty in any system can be of two types such as 

disturbance signals and dynamic perturbations. The former 

includes input and output disturbance, sensor noise and 

actuator noise, etc. The latter represents the discrepancy 

between the mathematical model and the actual dynamics of 

the system in operation. Uncertainties are unavoidable in a 

real control system. To overcome such type of problems many 

researchers have suggested different control methods [12-13]. 

One of the robust control method was variable structure 

control based sliding mode control (SMC) has received much 

attention in the past 60 years for controlling certain as well as 

uncertain systems [2-6].  In  SMC,  the system state trajectory 

was forced to move along a chosen manifold in the state 

space, called the sliding manifold, by using an appropriate 

variable structure control signal. The SMC has been widely 

recognized as a powerful control strategy for its ability of 

making a control system very robust, which yields complete 

rejection of external disturbances satisfying the matching 

conditions. The SMC has widely been extended to incorporate 

new techniques, such as higher-order sliding mode control, 

dynamic sliding mode control and optimal sliding mode 

control. 

 The optimal control laws (in terms of switch curves and 

surfaces) were obtained for a variety of second and third-order 

systems in the early fifties. Then the and constrained cases. 

The combination of optimal control with the SMC has given 

rise to a new field of robust control strategy known as optimal 

sliding mode control (OSMC). finite and infinite-time linear 

quadratic optimal control problem has been intensively 

studied for both the unconstrained The optimal sliding mode 

control can be designed by combining an integral sliding 

mode with an optimal controller. Because of integral sliding 

mode, the order of the system does not get reduce, but system 

is immune to matched uncertainities once the  system 

trajectories are on sliding manifold. These techniques retain 

the main advantages of SMC and also yield more accuracy 

and desired performances. However, OSMC suffers from a 

problem of chattering. The second order sliding mode 

controller is developed as a generalization of the first order 

sliding mode control theory. In second order SMC method , 

the selected sliding surface has one degree higher with respect 

to the control. The discontinuous control signal acts on the 

higher derivatives of sliding surface (𝒔 (t)) to enforce a sliding 

motion on (s = 0) Indeed, in the second-order sliding mode, 

the control affects s, i.e., the second derivative of the sliding 

variable. The higher order SMC provides a natural solution to 

avoid the chattering effect . To overcomes the problem of 

chattering occurred in SMC, a second order sliding mode 

controller is proposed .The outline of this paper is as follows. 

In Section 1, the problem formulation is gives with short 

description while in Section 2, controller design concepts in 

view of state space are included. In Subsection 3.1, the 

optimal control design is included while  sliding mode 

approach  with equivalent and switching control is give in 
Subsection 3.2. The concept of stabilization with inverted 

pendulum example and conclusions are included in Section 

4and5 respectively. 

2. PROBLEM FORMULATION 
 The system considered in time domain analysis is given as 

follows 

))(()( ttx  )(tx ))(( t )(tu

)(t  

)()( tCxty                                                             (1) 

 This is equivalent in differential equation form as t

zetattxtutxdtdx  )()()()(  

 where,  „ ‟ is system matrix,  is uncertainty  (means  

error in A matrix ),   is input matrix, means error or 

uncertainity in B matrix, this is similar to state space equation 

given as, )(t  be the exogenous disturbance affecting the 

system 

uxdtdx   
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uCxy                                                         (2) 

Which follows assumption in equation (1) Where, )(td  

denotes the uncertain part of the system (1). This mean all 

uncertainty or disturbance is denoted by )(td . 

))()(()()( tdtutxtx   

)()( tCxty                                                          (3) 

 In this paper  the u is designed based on sliding mode control 

method.  The  sliding  mode  controller  u  has  two controllers 

as, 

u  = 1u 2u                                                          (4) 

where , 1u -equivalent controller  and  2u - switching 

controller are discussed in the  following  section.   

3. CONTROLLER DESIGN  
To design controller u for the given system, equation (1) can 

be transformed into controllable canonical form by using 

linear transformation is obtain  as follows, 

)()( tztx                                                         (5) 

                                                                                                                                                        

where T is the transformation.  The state space of the given 

system can be represented in ideally infinity form. After linear 

transformation, matrix A can be written as 

 

 ˆ()(tz + )())(ˆ tzt ) + ( )())(ˆˆ( tut  

             + )(ˆ t                                                                                                                                                                                         

)(ty )(ˆ tzC                                                             (6) 

where,  
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The parameters  321 ,, aaa are nothing but parameter of 

transfer function. 
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 e  is the error, that is actual state ( z ) minus desired state (

dz ), The state can be output of the system or speed in case of 

DC motor. In this paper the error is taken as the state, 

therefore the equation comes; replace „ e ‟ by z  in equation 

(7) in paper  
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Equation above is nothing but, the following 

))(ˆˆ()( tte  )(te  + )())(ˆˆ( tut  

           + )()(ˆ tt d                                     (9) 
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(10) 

where Ψ(t) is an unknown function  

)(te )(ˆ))()((ˆ)(ˆ
21 ttutute           (11) 

3.1 Optimal controller design 

 In this section 1u  can be designed by using LQR system 

  )()(ˆ)(ˆ)( 1 tuttete                                     (12) 

And suppose we want to design state feedback control  u = K 

e(t) to stabilize the system. Design of K is a tradeoff between 

the transient response and control effort. The optimal control 

approach to this design trade off  is to define the performance 

index (cost function)  QeJ 



0

[ 
)(e   

)(1 u R

)(1 u ] d          (13) 

   Q   
nnR 

 is positive semi-definite and    R  R  is 

positive definite weighing matrix.  T he optimal control law is 

)(1 tu obtained as 

 )(1 tu  = BR ˆ1  )(tPe  = )(tKe                 (14)                                                                                                                                                                                                              

Where PRK   ˆ1
and p is symmetric, positive definite 

matrix . 

The nominal system equation (12) is stabilized by the optimal 

control )(1 tu  which is obtained by minimizing the 

performance index from equation (13). 

In this stabilization problem, it can be considered that the 

desired trajectory 0)( txd  .Hence tracking error )(te  

can be describe as    
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In this paper given value of Q and R to minimize the control  

input , the performance index J is given by   From equation 

(14) similarly )()(  ze   

 The feedback control )(1 tu  is calculated by using LQR 

technique. 

3.2 Sliding mode controller design  

    




0

0 ])()([)( deteGts  d           (16) 

where G is design parameter, 0e  be the error condition 

 ˆ)(t )(te  + ̂ )(1 tu                                   (17)                

Differentiation Equation (16) with respective time 

 )(ts G [ )]()( tte                                       (18) 

Equation (12) and equation (17) put in equation (18) 

 ˆ)(ts )(te )(ˆ t )(1 tu ‒ )(ˆ te   ‒ )(ˆ t )(1 tu  

0)( ts                                                                 (19) 

In this method )(1 tu  is not calculated from equation  (19).So 

LQR  technique is used Equation (11) and equation (17) put in 

equation (18) 

)(ts G [ ̂ )(te ̂  ))()(( 21 tutu )(ˆ t ‒      

)(ˆ te ‒ )(ˆ t )(1 tu  ] 

)(ts [ G ̂ )(2 tu  + )(ˆ t ]                              (20) 

We get  )(2 tu   in  equation (20)   
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Above  equation  reaching  phase is eliminated in the integral 

sliding mode control .switching control is designed based on  

 - reachability condition is given as 

)(ts ))(sgn( ts                                                   (21) 

                                                                                                                      

Where 0 and 

))(sgn( ts
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From equation (22) and (21) is obtained by  

̂G )(2 tu  < [ ))(sgn( ts + )(ˆ t ]                       (23) 

)(2 tu  <  ‒ (
1)ˆ( G  [ ))(sgn( ts    

+ G )(ˆ t ]                                                                     (24) 

Where, ̂G  Invertible means the matrix is has inverse.  In 

this sgn means signum function given in   From equation (24) 

it is clear that the switching control )(2 tu is effected by sign 

function of the sliding mode. This sign function is created 

chattering in the control input. ISMC, the chattering effect is 

eliminated, the  proposes second order sliding mode manifold.                                                  

Design of  equation(16) is not required for  knowledge of  

initial condition .But  the very  beginning of sliding  surface is 

not system. Hence a  non-singular  terminal sliding surface  is 

added to guarantee finite time convergence of )(ts . So  non-

singular terminal sliding surface  )(t  can be designed by 

)(t  = s (t) +  )(ts                                               (25) 

Where 0 is switching gain                                          (26) 

                                                                                                                                                                                                                            

and   ,  are the value of  variable structure system with 

sliding mode control .In this system is given condition.    

 ,    nn :12[  is an integer ]                                (27)    

Alpha and beta belongs to nn :12[  ] means the value of 

alpha and beta is between n: to  12 n  . Where „n‟ is any 

integer value. Example if  1n , alpha and beta are having 

values in between 1 and 3 

 and  21 



                                                            (28)        

Equation (28) is another condition on alpha and beta, the ratio 

of alpha/beta should be between 1 and 2.  

The  linear sliding manifold s(t) in equation (16) and  non-

singular terminal sliding manifold σ(t) is combined  to  realize 

the second order SMC by designed the constant plus  

proportion  reaching law [15]  gives rise to  
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Where   01  and 01  . 

 Differentiation equation (25) with respective to t  
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                  (30) 

For the parameter  ,   equation (27) and (28) value is 

given by 

0)( 1 ts   for 0)( ts  

0)( 1 ts    for 0)( ts                            (31)                                                                                                                

From  equation (26), (27) and (31). The term 

1)()(  ts  (30) can be substituted by  a scalar 

01   for 0)( ts in this condition is given by 

))()(()( 2

2 tstst    




                           (32) 

Substituting the value of )(t from (29), (32) can be 

expressed as 

)())(sgn())()(( 11

2
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(33) Where 021    and 021   .  

Then (33) can be rewritten as 

)())(sgn()( ttts    
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(34) Differentiating (20) given by 

)](ˆ)(ˆ[)( 2 ttuGts                                        (35) 

(35)  From Equation(34) and(35), the switching control 

law 
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 Where the  design parameters are chosen in  
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 Such a way that   and      

  )(ˆ tG      (From equation 35)  

4. SIMULATION AND RESULT 
Consider example of inverted pendulum, Since the 

analysis (state space model) and control design techniques 

that I will employ in this problem apply only to linear 

systems, these equations need to be linearized. 

Specifically, I will linearize the equations about the 

vertically upward equilibrium position, 0 , and will 

assume that the system stays within a small neighborhood 

of this equilibrium 
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Fig 1.inverted pendulum 

As shown in fig(1) cart having mass   is displaced by 

an amount of the r  due to external force u  .   be the 

mass of pendulum mounted on cart has an angular 

displacement  . l2  be the length of the pendulum and 

J  be the inertia of pendulum. 

Inverted pendulum is given by 
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Where, states  )(),(),(),( 4321 txtxtxtx   be the cart 

displacement of the pendulum r(t),angular displacement of 

the pendulum 𝜃 (t).d(t) is the disturbance ,value of d(t) is 

given by tt cos)3sin(5.1  . Equation (39) is to be 

stabilize with control input similarly transformation is 

used to  
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(37)Equation (36) is obtained  in the controllable 

canonical form a 
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In this paper design parameters of optimal second order 

sliding mode controller is given by 

   a)   ,100ˆ 
 G is chosen in such that ̂G is 

invertible. Accordingly ,  1000G  

  b)  from equation(27) and equation(28) is given by value of   

           5,7    

 c)  terminal sliding surface to be stable ,δ should be positive 

value  150   

d)   , be the design parameter of the switching control law         

1.0,3    

 1. The following graphs are of inverted pendulum by 

applying the proposed OSOSMC & LQR system. 

2.  )(td  is the disturbance , value of )(td  is given by 

tt cos)3sin(5.1  . These value put in program to 

obtain similar graph because SMC is the eliminate the 

disturbance 

3. I have shown  SMC without disturbance  & SMC with 

disturbance 
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Fig 2.State )(1 tx  

 

Fig 3 .State )(2 tx                        

 

Fig 4 Control  input 

 

 

Fig 5. Sliding Surface 

 

Fig 6 .  equivalent  control  1u  by using LQR and                             

switching control 2u by using OSOSMC 

5. CONCLUSION 
This paper proposed optimal second order sliding mode 

control for uncertain system  by using integral sliding surface. 

The stabilization of inverted pendulum system is made using 

the integral sliding surface designed  based SMC. The result 

describes the design of  integral sliding surface designed  

based SMC to obtain value of switching control which is used 

to control the hard system such as inverted pendulum .  Linear 

quadratic regulator  is used effectively to obtain value of 

equivalent control. It is observed that  LQR and ISMC  

method  are  more efficient to control the position of the 

pendulum at predefined position.  The main advantages of the 

proposed   method includes the disturbance rejection  as well 

as insensitivity to parameter variations. The simulation result 

shows an effectiveness of the proposed optimal sliding mode 

control approach in terms of output responses and 

stabilization of the system. 
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