
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

15

ResMon: Securing Resource Consumption of Critical

Infrastructure from Wanton Applications

Emmanuel C. Ogu*
Department of

Computer Science,
School of Computing

and Engineering
Sciences,

Babcock University,
Ilishan-Remo, Ogun

State. Nigeria.

Sunday A. Idowu
Department of

Computer Science,
School of Computing

and Engineering
Sciences,

Babcock University,
Ilishan-Remo, Ogun

State. Nigeria.

Jean-Paul Ainam
Department of

Computer Science,
Adventist University,

Cosendai, Cameroon.

Ogu Chiemela
Department of

Computer Science,
School of Computing

and Engineering
Sciences,

Babcock University,
Ilishan-Remo, Ogun

State. Nigeria.

ABSTRACT
Hackers have devised a recent technique of infiltrating critical

infrastructure with wanton applications that gulp at the limited

resources possessed by these infrastructure for meeting critical

needs and deadlines. Also a reality is the fact that hackers

could breach already existing and trusted applications or

software on these critical infrastructure and bug them with

malicious codes that plunge them into a state of wantonness;

consuming limited, critical resources and making none (or

insufficient) available for other, equally critical applications

that depend on a fair portion of the same resources to meet

their deadlines and critical requirements. This development

portends the next generation of denial of service (DoS) and

distributed denial of service (DDoS) attacks to critical

infrastructure, where all that is required is to discover

vulnerabilities in already trusted and running applications on

critical infrastructure or deliver and escalate new applications

on these critical infrastructure and plunge them into

wantonness, consuming limited resources and resulting in a

denial of service. Proposals already exist in literature that

could forestall an occurrence of such attacks, but some of

these have not previously been tested; one of such being that

documented by [1]. This research is an experimental

implementation of the theoretical model proposed in the cited

article, in order to test and validate its workability and results.

An experimental prototype – codenamed “ResMon” – of the

model proposed is built and validated within the Ubuntu

Linux operating system environment.

General Terms
Network Security, Denial of Service, Critical Infrastructure.

Keywords
Critical Infrastructure, Computing Resources, DoS, DDoS.

1. INTRODUCTION
[1], proposed a theoretical model for monitoring and securing

resource of critical infrastructure in the real-time. The

advantage which is argued that this model boasts over such

other similar models for achieving the same or similar results

– such as those by [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], and [13], to mention but a few – is the fact that it is more

resource-centric.

In other words, as opposed to trying to analyse and classify

traffic, which is the primary feature of most other models and

is argued to have its own implication on the limited, critical

resources, this novel model proposed by [1] directly monitors

for wantonness and shuts down guilty applications that try to

usurp these limited resources.

2. PROTOTYPE DESIGN AND

IMPLEMENTATION
An algorithm is given in the proposal for the model, and this

is represented further in a functional flow block diagram

(FFBD) as shown in figure 1. This FFBD would form the

basis and guidelines for building the source codes for this

prototype experiment. See Appendix I for guides on how to

retrieve the compressed archive (.zip)1 of the experimental

codes online.

1 In order to access the source code archive file, a
compatible archive (compression) application software
that can open and decompress zip archive files (with
the extension: .zip) must be installed on the machine.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

16

Figure 1: Functional Flow Block Diagram for “ResMon” (Ogu, Idowu, & Adesegun, 2015)

The prototype designed is a proof of principle / concept

prototype simply for the purpose of testing the fundamental

logic and workability of the theoretical model proposed by

[1]. The source code of the prototype is in the C-high level

programming language in order that the additional computing

overhead imposed by running / executing the prototype

program is largely minimal.

Critical computing resources that were monitored for from

within the code base of “ResMon” were the CPU usage and

the Memory usage. Statistics relating to the consumption of

these resources were retrieved from the Linux operating

environment using the inbuilt Linux “Top” command.

Basically, in Ubuntu Linux, the “Top” command is a built-in

command that provides a current overview of processor

activity in real time. It displays a list of the tasks, processes

and applications that are currently running on the system, and

provides an interactive interface (through various commands

for specifying different features and parameters for the

overview) for manipulating these applications and processes.

It sorts the overview of tasks, processes and applications by

CPU usage, memory usage and runtime.

The “Top” command was called in this case for these needed

data so as to reduce the lines of codes that would need to be

compiled and computed before “ResMon” goes live and real-

time.

The prototype was built to function thus:

If application “A” alone, running on the computing

infrastructure, begins to consume say up to 60% and above of

any the resource provisions in that system; “ResMon” traps

application A (suspecting that application A may have become

wanton) and shuts it down immediately by calling the built-in

Linux “kill” command which has been programmed into the

source code.

The proposed algorithm for the monitoring system given in

[1] is enhanced as given in Appendix II for building

“ResMon”

3. PROTOTYPE TESTING AND

RESULTS
The prototype was designed for and experimented within the

Ubuntu Linux Desktop operating system (v13) environment.

The full specifications for the testing system used for testing

the prototype is given in Table 1:

Table 1: Specifications of Testing / Experimental

Computer

SPECIFICATIONS PC

Manufacturer Toshiba

Make Satellite

Model P300-20H

HDD Capacity 250GB

Memory 2GB

CPU Intel® Pentium® Dual CPU

T3400 (2CPUs) (~2.16GHz

each)

Page File Unavailable

Bios Version V3.40

Operating System Ubuntu Linux Desktop

Operating System 32-bit

(version 13.0, released 2013)

The prototype system was tested under two different

experimental scenarios (no-attack and attack scenarios). This

was to ensure test case completeness and effectiveness, as

well as dynamism of the testing process. In experiment 1, the

prototype was tested for functionality using the PC (see table

for specifications); the goal of this experiment was to ensure

that the prototype system is able to run in real time and

produce results by terminating defaulting applications that

exceed the specified threshold as long as the prototype is

running. This was essentially a “no-attack experiment”. In

experiment 2, an Application Layer DoS attack (a slowloris

attack) was simulated using the slowhttptest Application layer

DoS attack tool; the goal of this experiment was to observe

the behaviour and effects of the system prototype on

defaulting applications in an attack scenario.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

17

1.1 Slowhttptest Tool (v1.6)
2

The SlowHTTPTest tool is a highly configurable tool that

simulates some forms of Application Layer Denial of Service

attacks, essentially for experimental purposes. This tool works

on majority of Linux platforms (Ubuntu inclusive), OSX and

Cygwin - a UNIX-like environment and command-line

interface for Microsoft Windows.

It can be used to implement most common low-bandwidth

Application Layer DoS attacks, such as slowloris Attack, Slow

HTTP POST, Slow Read attack (based on TCP persist timer

exploit) by draining concurrent connections pool, as well as

Apache Range Header attack by causing very significant

memory and/or CPU usage on the server.

Slowloris DoS attacks rely on the fact that the HTTP protocol,

by design, requires requests to be completely received by the

server before they are processed. If an HTTP request is not

complete, or if the transfer rate is very low, the server keeps

its resources busy waiting for the rest of the data. If the server

keeps sufficient quantity of the resources busy, this can create

a denial of service. This tool thus sends partial HTTP requests,

aiming to getting a denial of service response from the target

HTTP server [14].

After a successful attack scenario and a proper exiting of the

slowhttptest tool, the results can be written to a file specified

in the input parameters, to contain a detailed report with the

parameters and statistics used to orchestrate the attack, as well

as some useful information that could be useful to the attacker

in orchestrating a more coordinated attack in the future.

1.2 Initialization
“ResMon” is designed to display information as shown in the

figure above. Information displayed by “ResMon” is shown in

four (4) columns. In the first column, the process ID (PID) of

each running process is displayed. In the second column, the

name of the application currently utilising each of the

processes is displayed. In the third column, the total memory

usage of each running process is displayed with the

percentage memory usage (shown in bracket). In the fourth

column, the total CPU usage of each running process is

displayed with the percentage CPU usage (shown in bracket).

See figure 2 in appendix III.

Before launching each time, “ResMon” demands for an input

each time, percentage upper consumption limits for the

Memory and CPU consumption respectively for any wanton

application / process.

1.3 Experiment One
 Step 1: A random application was opened (Mozilla

Firefox web browser in this case, and the resource

consumption levels of the application was noted.

 Step 2: For experimental purposes, application –

Mozilla Firefox – was made a culprit (a defaulting

application). The threshold limits of resmon was

lowered to 19% (for memory consumption) and

25% (for CPU consumption). This made Mozilla

Firefox a culprit application by virtue of its memory

consumption, as it was trying to download a large

file from the Internet while streaming an online

video in High Definition, which eventually

2 Could be retrieved online from the programmers’
website.

exceeded the specified threshold limit along the line.

See figure 3 in appendix III.

 Step 3: This made the application – Mozilla Firefox

– to be shut down in less than one second (exactly

0.27s).

1.4 Experiment Two
 Step 1: Successfully compile and install the attack tool

(see

http://code.google.com/p/slowhttptest/wiki/InstallationA

ndUsage for installation and usage instructions and

guidelines). At the time of conducting this research, this

tool is a freeware and is free to use for experimental,

non-profit purposes. Also ensure you have a webserver

(Apache in this case) installed and running.

Start the Apache service using any of the following

commands

$ sudo apache2ctl start

 or

$ sudo start apache2

 or

$ sudo service apache2 start

 or

/etc/init.d/apache2 start

 or

$ sudo /etc/init.d/apache2 start

 Step 2: Configure the attack tool using choice of

parameters as shown in the parameter table above.

During this experiment, the following parameter was fed

into the attack tool:

slowhttptest -c 100 -t ATTACK -x 204 -i

10 -l 5000 -p 3 -g -o attackinfo

See figure 4 in appendix III.

This attack was simulated against the resident apache server

on the machine via the localhost address.

 Step 3: The resource consumption rate of the attack

application was observed by viewing the “Top”

command. The percentage CPU consumption was 96.3%,

and the percentage Memory consumption was 0.1%. The

CPU consumption rate was relatively high.

It may be noted and argued that the parameters with which the

slowhttptest tool was bombarding the apache server may,

in comparison to real-life scenarios, be too insufficient to

cause any DoS on a real-life machine. This is a fact of

truth. However, the CPU consumption of the attack tool

was observed to be increasing at a rather steady rate,

rising to 99.6% within 5 seconds apart.

 Step 4: The resource monitoring system prototype –

“ResMon” was started up with threshold inputs of 50%

for Memory usage and 115% for CPU usage, in order to

forestall the imminent DoS caused by the wantonness of

the attack tool.

 Step 5: Observation continued until the slowhttptest tool

process was killed by “ResMon” as soon as its CPU

resource usage exceeded the set threshold for CPU usage.

See figure 5 in appendix III.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

18

Experiment Two lasted for a cumulative time of ~805

seconds. Because the attack tool was terminated abruptly

by “ResMon”, it was unable to write the statistics / report

to file as is expected. Hence, the file – attackinfo, which

is supposed to carry the statistics / detailed report of the

attack experiment – was created, but remained empty at

the end of the experiment.

4. EXPERIMENTAL SUMMARY,

FINDINGS AND AREAS OF

IMPROVEMENT
“ResMon” has been shown to perform well in both a non-

attack scenario as well as in an attack scenario. In the non-

attack scenario, “ResMon” was able to detect and shut down

an application (Mozilla Firefox) that was shown to be

consuming resources above the preset threshold. This suggests

that “ResMon” is able to detect and prevent a DoS that may

result from Flash Crowd3 activities when the resource

consumption of certain applications that are being accessed by

the flash crowds begin to increase dramatically.

In the attack scenario, “ResMon” was able to shut down, in

real-time, an attacking application that was going to result in a

DoS in the process of trying to attack the resident web server

with slow-connection-packets.

Throughout the entire experimental process, the resource

usage of the system prototype never exceeded 1% for both

CPU and Memory. This could be a plus for the proposed

model and/or the prototype system.

“ResMon” is configured to run in real time (< ~1s) (see the

source code in Appendix I). All observations and actions

documented in this research occurred within the specified

real-time value of (<=1s). This real-time value can be altered

from the source code by changing the parameter for the

“sleep” command (measured in seconds).

In line with this, it confirmed from the two test cases of attack

and no-attack that “ResMon” is always able to effectively shut

down defaulting applications, processes and tasks that exceed

the preset threshold limit by as little as 0.01%. It is also

proven that “ResMon” is able to efficiently execute and

deliver results based on its requirements within stable time

frame (<1s), possibly owing in part to its compact (~600

LOC) and code-optimized nature.

The prototype application could also be experimented with in

future researches using a low level programming language

such as the Assembly Language, in order to also investigate

and compare its computational behaviour under such an

instance.

A runtime malfunction was observed during the course of

experimenting on “ResMon”. It was noticed that after being

left to run for a period of time (~7secs), “ResMon” shut itself

down automatically and dumped to disk. This malfunction

was traced to a memory allocation function within the source

code that could not be resolved as at the time of documenting

3 Flash Crowds are a phenomenon that occurs when a
large crowd of legitimate users try to gain access to a
server resource, application or service at the same time
[15]. Flash Crowds can also cause DoS to occur, and in
fact go a long way to further complicate the task of
detecting and controlling DoS attacks.

this experiment. This memory allocation malfunction could

arguably be as a result of runtime memory allocation and re-

allocation privilege insufficiencies which may have arisen

because “ResMon” didn’t have enough privileges needed for

handling memory allocation and re-allocation above, beyond

or about a possible restriction which may have been imposed

by the Operating System that could not be ascertained. A

workaround for this was found in breaking down the attack

experiment into phases / sections (initialization, pre-attack,

attack, monitoring and reaction). Future research would seek

to look towards improvement, enhancement and optimization

of “ResMon” in a bid to overcome this malfunction.

The resource monitoring prototype system was system was

only tested against the Application-layer DoS attack, without

any form of distribution in the attack coordination. Future

researches would consider experimenting with the prototype

in simulated scenarios for other forms of DoS attacks with

some level of distribution in the attack coordination.

5. CONCLUSION
The theoretical model proposed by [1] proved laudable within

the limits and constraints of this experiment. However, some

improvements remain necessary for this proposed model to be

able to deliver commendable results with real-world critical

infrastructures. Basically, the prototype of the model was able

to shut down wanton applications in the attack and no-attack

experiments, which were headed to cause a DoS on the

computing system. In addition, it is recommended that the

resource pool partitioning suggested by [16] may go to a large

extent in enhancing the operations of the model, while a way

of escalating the permissions level of the model and its

prototype may also further boost its effectiveness.

This research has been able to shed light, however, on the

imminence of a next generation form of DoS attacks that may

not necessarily require the taking over of other machines in

order to increase the strength and impact of the attack, as is

common with traditional forms of these attacks, but these can

actually be orchestrated from within the critical infrastructure

itself by plunging already trusted, highly privileged resident

applications into a state of resource wantonness.

6. REFERENCES
[1] Ogu, E. C., Idowu, S. A., & Adesegun, O. A. (2015). A

Theoretical Model for Real-Time Resource Monitoring

for Securing Computing Infrastructure against DoS and

DDoS Attacks. International Journal of Advanced

Research in Computer Science, 132-136.

[2] Paxson, V. (1998). Bro: a system for detecting network

intruders in real-time. Proceedings of the 7th USENIX

Security Symposium. 7, pp. 1-22. San Antonio, Texas,

USA.: USENIX Association Berkeley, CA, USA.

[3] Mahajan, R., Bellovin, S. M., Floyd, S., Ioannidis, J.,

Paxson, V., & Shenker, S. (2001, February). Controlling

High Bandwidth Aggregates in the Network. ACM

SIGCOMM Computer Communications Review, 32(3),

62-72.

[4] Gil, T. M., & Poletto, M. (August, 2001). MULTOPS: a

data-structure for bandwidth attack detection.

Proceedings of the 10th USENIX Security Symposium,

(pp. 23-38). Washington, D.C., USA.

[5] Yau, D. K., Lui, J. C., & Liang, F. (2002, May).

Defending against distributed denial-of-service attacks

with max-min fair server-centric router throttles.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

19

Proceedings of IEEE International Workshop on Quality

of Service (IWQoS), 29-41.

[6] Peng, T., Leckie, C., & Ramamohanarao, K. (2003a).

Detecting Distributed Denial of Service Attacks Using

Source IP Address Monitoring. The University of

Melbourne, Australia, Department of Electrical and

Electronic Engineering. Victoria 3010, Australia: ARC

Special Research Center for Ultra-Broadband

Information Networks. Retrieved January 30, 2014, from

http://www.cs.mu.oz.au/~tpeng/mudguard/research/detec

tion.pdf

[7] Peng, T., Leckie, C., & Ramamohanarao, K. (August

2003b). Protection from Distributed Denial of Service

Attack Using History-based IP Filtering. The University

of Melbourne, Australia, Department of Electrical and

Electronic Engineering. Victoria 3010, Australia: ARC

Special Research Center for Ultra-Broadband

Information Networks. Retrieved January 31, 2014, from

http://ww2.cs.mu.oz.au/~tpeng/mudguard/research/icc20

03.pdf

[8] Verkaik, P., Spatscheck, O., Van der Merwe, J., &

Snoeren, A. C. (September 2006). PRIMED:

Community-of-Interest-Based DDoS Mitigation.

Proceedings of the 2006 SIGCOMM workshop on Large-

scale attack defense (pp. 147-154). New York, NY, USA:

Association for Computing Machinery.

[9] Ranjan, S., Swaminathan, R., Uysal, M., Nucci, A., &

Knightly, E. (2009, February). DDoS-shield: DDoS-

resilient scheduling to counter application layer attacks.

IEEE/ACM Transactions on Networking (TON), 17(1),

26-39.

[10] Xie, Y., & Yu, S.-Z. (2009, February). Monitoring the

application-layer DDoS attacks for popular websites.

IEEE/ACM Transactions on Networking (TON), 17(1),

15-25.

[11] Walfish, M., Vutukuru, M., Balakrishnan, H., Karger, D.,

& Shenker, S. (2010, March). DDoS defense by offense.

ACM Transactions on Computer Systems (TOCS),

28(1), Article No. 3 (54 pages).

doi:10.1145/1731060.1731063

[12] Das, D., Sharma, U., & Bhattacharyya, D. K. (2011).

Detection of HTTP flooding attacks in multiple

scenarios. Proceedings of the 2011 International

Conference on Communication, Computing & Security

(pp. 517-522). Rourkela, Odisha, India: Association for

Computing Machinery New York, NY, USA.

doi:10.1145/1947940.1948047

[13] François, J., Aib, I., & Boutaba, R. (2012, December).

FireCol: A Collaborative Protection Network for the

Detection of Flooding DDoS Attacks. IEEE/ACM

TRANSACTIONS ON NETWORKING, Volume

20(Issue 6), 1828-1841.

[14] Sergey, S. (2013, November). slowhttptest - Application

Layer DoS Attack Simulator - Google Project Hosting.

Retrieved from Google Projects:

http://code.google.com/p/slowhttptest/

[15] Peng, T., Leckie, C., & Ramamohanarao, K. (2007).

Survey of network-based defense mechanisms countering

the DoS and DDoS problems. ACM Computing Surveys

(CSUR): Article No. 3, 39(1).

doi:10.1145/1216370.1216373

[16] Ogu, E. C., Alao, O. D., Omotunde, A. A., Ogbonna, A.

C., & Izang, A. A. (2014, October). Partitioning of

Resource Provisions for Cloud Computing Infrastructure

against DoS and DDoS Attacks. International Journal of

Advanced Research in Computer Science, 5(7).

7. APPENDIX I
Online download links of the source code files for the

experimental prototype:

Download the files at:

https://drive.google.com/file/d/0B7sfblJHNzz-

TTBXeVFJMXpobEk/view?usp=sharing

For issues or enquiries, contact the corresponding author of

this research at: ecoxd1@yahoo.com

8. APPENDIX II
The algorithm for this prototype system is given below:
Program:

Step 1: Start

While (true)

Step 2: Get list of all running processes (application). This

includes:

 - The PID (Process ID) of each running process

 - The name of the program executed by the process

 - The percentage memory usage of the process

 - The percentage CPU usage of the process.

Step 3: Store this list in a dynamic array list called

process_array

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

20

Step 4: Update process_array after #var interval (specified

above)

Step 5: While (true)

/* Implement a wait until the #var interval time has

passed */

- Set variable waiting_time = current time (Get the current system time)

 - Set variable i = #var interval + current time;

 If (#var waitingtime < #var i)

 #var waitingtime++;

 Continue

 Else // When #var interval time has passed

 For each element in the process_array do

 4.1. Get the process id: pid

4.2. Get percentage the CPU

consumption: cpuusage

4.3. Get percentage memory usage:

memoryusage

4.4. Compute the overall resource consumption of each

process: resourceconsumed

 If (resourceconsumed > #var consumption)

- End the process using the system call: System

(kill (pid));

 End if

 End for

 - reset #var waitingtime to current time;

- reset #var i to #var interval + current

time;

 - Go back to step 5

 Break;

 End if

 End while

 End while

Stop

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

21

9. APPENDIX III
Experimental images of the prototype

Figure 2: Figure showing “ResMon” running

Figure 3: Figure showing resource consumption rate of Mozilla Firefox shortly before it was shut down by “ResMon”

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.7, March 2016

22

Figure 4: Figure illustrating parameters used to configure the slowhttptest tool for the experimental attack

Figure 5: Figure showing that the slowhttptest attack tool is “killed” by “ResMon”

IJCATM : www.ijcaonline.org

