
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

35

Mobility Aware Task Allocation for Mobile Cloud

Computing

Bidoura Ahmad Hridita
MS Student

Institute of Information
Technology, University of

Dhaka

Mohammad Irfan
MS Student

Institute of Information
Technology, University of

Dhaka

Md. Shariful Islam
Associate Professor

Institute of Information
Technology, University of

Dhaka

ABSTRACT

The Mobile Cloud Computing is a promising technology that

has provided a way to overcome the limitations of the mobile

devices. The advancement of mobile devices technology has

made the applications of these devices more complex and

resource famished. Mobile cloud computing has created

opportunities to execute these applications on the mobile

devices by migrating the compute intensive task to the cloud.

This migration of task to the cloud is not an easy task. The

connectivity of the devices and the cloud is affected by the

network inconsistency of wireless network. The servers on the

cloud are heterogeneous in nature. Furthermore, the users are

most of the time in mobile state which results in frequent

change in association to access points. All of these make the

selection of an optimal server to offload the task in cloud into

a challenging work. In this paper, a comparative survey is

provided for allocating task on the cloud along with their

limitation. A mobility aware task allocation system for mobile

cloud computing is also proposed. An optimization problem is

formulated considering the workload and service rate of

servers, network inconsistency, time to execute the task,

mobility of the users etc. The proposed system aims to

allocate task to the server where minimum response time is

achieved in order to enhance users’ quality of experience.

General Terms

Cloud computing

Keywords

Mobile cloud computing, Cloudlet, Task Allocation, Code

offloading

1. INTRODUCTION
The number of mobile phone users in 2014 was 7100 million

which will become 9.2 billion by 2020 as per the mobility

report of November, 2015 from Ericsson [1]. Among them,

the smartphone users will be 6.1 billion. This rapid growth of

smartphone users is due to the increasing portability and

capacity of mobile devices. The increase in mobile device

users has created myriads of opportunities for mobile

applications. The application developers are creating a large

number of applications in various categories such as image

processing, entertainment, social networking, health, business,

real time monitoring etc. for mobile devices [2]. Though the

mobile devices are capable of executing different advanced

applications, these suffer from limitations like processing

capabilities, battery lifetime, storage capacity etc. These

limitations create a barrier over executing the resource

famished applications mentioned earlier in the mobile devices.

To unravel this problem, the researchers have introduced

Mobile Cloud Computing (MCC). It refers to an infrastructure

which amalgamates cloud computing, mobile computing and

the wireless network. All the compute intensive tasks and the

data storage are performed on the cloud resources to enable

the execution of resource famished and greedy tasks on the

mobile devices.

The process of migrating the compute intensive task to the

remote cloud server for execution is called task or code

offloading. As the real cloud provider may be located far

away from the users, it can lead to an additional overhead like

high latency and low bandwidth. For achieving high speed

offloading purposes, trusted, resource rich computers called

cloudlets are attached to the access points near the users of the

mobile devices [3], [4].

The selection of the servers on the cloud is an immense

research challenge considering the mobility of the users,

heterogeneity of the cloudlets and the application request,

network inconsistency etc. Existing offloading techniques

such as MAUI, ThinkAir, CloneCloud etc. assume that the

network performance is always consistent [5], [6], [7]. This is

not true in real scenario. The network performance is affected

by the mobility of the users. The performance gets degraded

as the users move away from the access point. Some other

techniques like MAPCloud, Location-aware task offloading

etc. have considered the network inconsistency but did not

predict the users’ mobility to select the resources on the cloud

[8], [9].

In this paper, at first a comparative survey is provided for

allocating resource greedy task on the cloud from the mobile

devices. After that a solution to the problem of where to

offload the task from the available resources on the cloud

from the mobile devices is proposed considering the users’

mobility, network inconsistency and the heterogeneous nature

of the cloudlets and the application request. The key

contributions of this paper are as follows.

i. A comparative study is provided for the existing

works addressing the issue of task allocation from

mobile devices on cloud and the limitation of these

works is presented.

ii. A two-tier architecture is proposed involving cloud,

cloudlets and the mobile devices. The decision of

selecting the server on the cloud will be taken on the

cloud side to reduce the burden over the mobile

devices.

iii. The solution considers users’ mobility, network

inconsistency and heterogeneity of the cloudlets.

iv. The mobility of the users is predicted based on the

history of the movement of the users.

The paper is organized as follows. Section 2 briefly describes

MCC architecture and applications, Section 3 present the

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

36

comparative analysis of existing works related to this issue,

Section 4 describes proposed solution for the problem and

finally Section 5 concludes the paper with future plan.

2. MOBILE CLOUD COMPUTING
Mobile devices are gradually becoming an indispensable part

of the human life with prodigious portability and flexibility. A

chief deficiency of mobile computing is the resource scarcity.

The Mobile Cloud Computing has overcome this deficiency.

In this section, a brief description of MCC including the

definition, applications and advantages of it is provided for

better understanding.

2.1 Definition
The mobile cloud computing is a technology where mobile

applications get the required large pool of resources from the

cloud computing. The MCC forum defines the mobile cloud

computing as “Mobile cloud computing as its simplest, refers

to an infrastructure where both the data storage and data

processing happen outside of the mobile device. Mobile cloud

applications move the computing power and data storage

away from mobile phones and into the cloud, bringing

applications and MC to not just smartphone users but a much

broader range of mobile subscribers” [18]. Satyanarayanan

has described mobile computing as “information at fingertips

anywhere, anytime” [19].

2.2 Architecture
Fig. 1 shows the basic architecture of MCC. Base stations and

wireless access points connect the mobile devices to the

mobile network. The connection and network interfaces

between the mobile networks and devices are established and

controlled through the base stations and access points. CPU

connected to the mobile network receives the request from the

mobile devices. Services like authentication, authorization etc.

are provided by the mobile network based on the home agent

and subscribers data from the database. Then the request from

the subscriber is forwarded to the cloud through the Internet.

The cloud controllers process the request from the subscribers

and provide the requested cloud services to the mobile

devices. The nearby cloudlets are used to increase users’

experience since they may be distant from the clouds. The

cloudlets are defined as “a trusted, resource-rich computer or

cluster of computers that’s well-connected to the Internet and

available for use by nearby mobile devices” [4]. The cloudlets

act as the middleware between the mobile devices and the

distant cloud. All the resource famished tasks are then

offloaded to the cloudlets to achieve a low response time.

2.3 Applications
With the use of the mobile devices, the number of the mobile

applications has grown enormously. The mobile applications

that are using the cloud computing advantages are briefly

discussed below.

 m-learning - m-learning is learning through the mobile

devices. It is an amalgamation of the electronic learning

and the mobility of the user. But it suffers from

limitations like high cost of the mobile devices, limited

educational resources, low transmission rate etc. These

limitations are addressed with the help of cloud

computing.

Figure 1: MCC architecture

 m-commerce - m-commerce helps to provide commerce

with the help of mobile devices. It actually consists of

the applications that require mobility such as mobile

money transfer, mobile ticketing, mobile vouchers,

coupons and loyalty etc. As the m-commerce includes

mobility, it faces some problems like security, high

complex configurations of mobile devices, low

bandwidth. The integration of m-commerce with the

cloud computing can help reducing these problems.

 m-gaming - The scope of the mobile games is generally

small because of the limited processing and battery

power of the devices. But the service provider can

generate a large revenue from this market with the help

of cloud computing. The mobile games can be

completely offloaded to the cloud. This reduces the

computation task on the mobile devices and saves the

energy.

2.4 Advantages
MCC has many features that are advantageous for the end

users and the cloud providers. These are listed below.

 Processing power - Mobile devices have limited

resources. Naturally the heavy weighted computations

are not feasible in these devices. The MCC provides the

devices a humongous resource pool. The heavy weighted

computations are performed on the cloud side. Thus the

limited processing power of the devices does not impede

the compute intensive application on the devices.

 Battery power - Another important shortcoming of the

mobile devices is the limited battery power. The power

consumption can be reduced by enhancing CPU

performance, using disk and screen in an efficient

manner. But these incur changes in the device structure

with increased monetary cost. The task offloading to the

mobile cloud helps address this issue. As the

computation intensive tasks are offloaded to the cloud,

long execution time on the mobile devices are avoided

which in turn increase the battery life of the devices.

 Data storage capacity - Storage capacity is another

constriction of mobile devices. Devices naturally have a

short storage capacity. The cloud computing can be used

to escalate the storage capacity of the devices by using

the huge storage capacity of the cloud through the

wireless network.

 Reliability - The cloud computing intensify the

reliability of the mobile devices as the data are stored on

several computers on the cloud. Ultimately the chance of

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

37

losing the data is scaled down. In addition to this, the

design of the MCC can be done in ways to make it a data

security model for the users and the providers of the

services.

3. STATE-OF-THE-ART TASK

ALLOCATION MECHANISMS
As MCC is a nascent technology, many researchers have been

showing interest in this field. Task offloading is a major issue

in MCC to overcome the limitations of mobile devices.

Different efforts have been taken by the researchers in recent

years like [10], [11], [12], [5], [6], [7], [8], [9], [13], [14], [15]

etc. Cuervo et al. [5] proposed a system called MAUI which

determines the offloadable task of the application either

statically or dynamically. This system aims to find the part of

an application which is compute intensive and thus can be

executed remotely on the cloud to save the energy of the

mobile devices. Chun et al. [7] proposed CloneCloud which

partitions the application between mobile devices and the

clouds. It stores the execution time, energy consumption etc.

of the task after executing it under different conditions such as

network characteristics, CPU speeds etc. From these, a

partition is picked at runtime and offloaded to the cloud. All

these works focused on finding the compute intensive part of

the application to migrate it to the remote cloud in order to

reduce the burden over mobile devices.

The issue of selecting the servers from the cloud to execute

the resource famished task is addressed by [8], [13], [9], [14],

[15], [16], etc. Brief description of these works is narrated

below with comparison among these.

3.1 MAPCloud
In MAPCloud [8], Rahimi et al. considered a two-tiered

architecture consisting of local cloud and public cloud. They

considered the application request as a workflow of task. By

assuming the location was known beforehand, they selected

the near optimal solution to allocate to the mobile devices

from the cloud which satisfies multidimensional quality of

service or QoS constraint like price, power and delay. But

they did not consider mobility of the users to find the optimal

resource on the cloud. The user may be far away from a

resource in time of returning the result if a resource near to the

user at a given time is selected as the optimal solution. Thus

mobility is an important factor in case of choosing a resource

on the cloud.

3.2 MuSIC
To address the issue of mobility, Rahimi et al. [13] expanded

their work MAPCloud where they considered the application

request as location-time workflow. The optimization

algorithm was designed to find the resource from the cloud

assuming the location and the time is known from the history

while satisfying the constraints over multidimensional QoS

like price, power and delay. Though they considered users’

mobility in this work, they did not consider the velocity and

change of direction of the user. Besides mobility, they have

assumed the resources on the clouds are homogeneous in

nature in both MAPCloud and MuSIC which is not in real life

scenario.

3.3 ENDA
In ENDA [14], Li et al. selected the server from the cloud

based on the user track prediction, server load and network

quality. The user track is predicted from the history of

mobility of the users stored in the database. The server that

can fulfill the desired response time with lowest latency on the

predicted route is selected to execute the task instead of the
mobile device. Like MuSIC, this work also did not consider

the velocity and the change of direction of users, and

heterogeneity of the cloudlets.

3.4 Context Sensitive Offloading Scheme
Jhou et al. [15] considered the context of the mobile devices

like network condition, location, workload etc. to offload the

task to a server on the cloud as these change continuously

with the movement of the mobile devices throughout the day.

The server with lowest cost of execution on the cloud is

selected as the location to execute the task remotely. Though

they considered the network condition, workload of the

clouds, they did not consider the mobility of the users,

heterogeneity of the cloudlets etc. to select the server.

3.5 Mobi-Het
Asma [16] considered the velocity and direction change of the

users, and heterogeneity of the cloudlets to optimally select

the server on the cloud in her thesis work Mobi-Het. She

predicted users’ speed and direction using smooth random

probability model. She formulated an optimization problem

considering the time of execution on the cloud, workload,

received signal strength etc. to offload the task to the server

on the cloud.

3.6 Online Algorithms for Location-aware

Task Offloading
All of the works mentioned earlier did not consider the

limitation of user access on the wireless access point. Xia et

al. [9] considered this factor to select the server on the cloud.

First their system finds out which access points are free to

associate with, then the server attached to the available access

point with lowest energy cost is selected as the location to

offload the task on the cloud.

3.7 Comparison
In this section a comparative study is provided among the

works described earlier. To compare the works, considered

parameters are users’ mobility, execution location, load

balancing, network inconsistency, fault tolerance, user access

limitation on AP, cloudlets’ heterogeneity, etc. The summary

of this comparative study is presented in Table 1. The criteria

of the table depict the following.

Execution location –where to offload the task?

Users’ mobility – whether the mechanism predicts the

mobility pattern of users?

Load balancing – either the mechanism considers the load

constraint of the resources or not?

User access limitation on AP – does the mechanism consider

the constraint of user access limitation of AP?

Cloudlets’ heterogeneity – if the mechanism considers the

cloudlets as homogeneous or heterogeneous

Fault tolerance – whether the mechanism has fault tolerant

capability?

Network inconsistency – if the mechanism considers the

network inconsistency for resource allocation?

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

38

Table 1. Comparison among the proposed solutions

 MAPCloud

[8]

MuSIC [13] ENDA [14] Online Algorithms

for Location-aware

Task Offloading [9]

Context Sensitive

Offloading

Scheme [15]

Mobi-Het

[16]

Execution

Location

Master cloud/cloudlet

Users’ mobility ×   ×  

Load balancing × ×  × × 

User access

limitation on AP
× × ×  × ×

Cloudlets’

heterogeneity
× × × × × 

Fault tolerance × ×  ×  ×
Network

inconsistency
× ×  ×  

The task can be offloaded to master cloud or cloudlet. The

cloudlets can response to the users faster than the master

cloud as this is located far from the users most of the time. All

of the works have considered master cloud and cloudlet as the

execution location. Device cloud is considered in Context

Sensitive Offloading Scheme [15] where the mobile devices

form an ad-hoc cloud as per the requirement.

Users’ mobility is an important issue which has a large impact

on task allocation. The task should be allocated to resources

that can satisfy users’ quality of experience. If the task is

allocated to a resource situated near to users at the time of

offloading without considering their mobility, users’ quality

of experience may degrade as they may become distant to the

resource for their mobility pattern at the time of returning the

result. Therefore, users’ mobility has to be predicted

beforehand to take a better offloading decision. MuSIC [13],

ENDA [14], Context Sensitive Offloading Scheme [15] and

Mobi-Het [16] have considered mobility of users. Among

these, the change of velocity and direction of users are
considered only in Mobi-Het. In real scenario, no user moves

along same direction with a constant velocity. To make a

better optimal decision for offloading, these should be

considered.

In case of offloading a task on the cloud, load balancing

should be carefully handled. Offloading a task to an

overloaded resource would result in increased response time.

To minimize the response time, load of the resources should

be balanced. Only ENDA [14] and Mobi-Het [16] have

considered load balancing at the time of allocating task to a

resource on the cloud.

All the works except Mobi-Het [16] have assumed the

resources on the cloudlets have similar processing capacity

which is not true for real scenario. The processing capability,

storage power, etc. of the resources are different.

Online Algorithms for Location-aware Task Offloading [9]

has considered users access limitation on access point. Access

points can serve to a limited number of users at a time. A user

can no longer associate to an access point if this number of

users exceeds. Thus, a user has to wait in order to associate to

an access point until an already associated user disassociates.

This results to a longer response time degrading users’ quality

of experience.

4. PROPOSED TASK ALLOCATION

SCHEME
In this section the system architecture of the proposed solution

is introduced. Then, an optimization problem is formulated to

select the server and a greedy algorithm of is provided for the

proposed solution.

4.1 System architecture
Fig. 2 depicts the architecture of the proposed system. The

system consists of two tiers of which tier 1 is master cloud

and tier 2 is local cloud. Master cloud is the cloud with a large

resource pool and high computation power. These resources

are highly available at any time to the user. But as the users

may remain far away from the master cloud due to their

mobility, local cloud is considered as the second tier to ensure

better service for the users. The local cloud consists of the

cloudlets each of which is attached to a wireless access points

and a middleware entity. These cloudlets are situated near the

users with limited computation capability and resource pool
compared to the master cloud. All of these cloudlets are

heterogeneous in nature that means these have different

computation power. The middleware entity consists of

database profiler, request scheduler and optimizer. The

functions of these are narrated below.

 Database - The database stores mobility history of the

users, location of each cloudlet and range of these. The

mobility history is kept as location with the duration of

time spent in that location.

 Profiler - The profiler keeps record of the current

workload and service rate of all the cloudlets and the

servers in master cloud.

 Request Scheduler - The request scheduler receives

application offload request from the mobile devices. It

collects mobility information of the mobile users from

database and servers from profilers. After getting this

information, it consults the optimizer to solve the

optimization problem.

 Optimizer – The optimizer solves the optimization

problem proposed in this paper to find the best server on

the cloud to offload the task.

Mobile devices in the proposed system have to convey very

small amount of information to the cloud so that the battery

life duration of the devices can be increased. The

responsibility of making offloading decisions is shifted to the

local clouds. In order to maintain the history of mobility of

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

39

the users, devices need to send its location information to the

cloud. The application request sent from a mobile device

includes mobile ID, present location, number of instruction of

the task and maximum allowable time to execute the task.

This request is received by the request scheduler in

middleware entity. It then consults the database to check the

mobility history of the user. From this history, it selects the

location where the user spends longest time. Then it finds the

cloudlets situated at the selected location. The recent

information of these cloudlets found near the location like

current workload, service rate etc. is collected from the

profiler. At last, the optimizer runs the optimization algorithm

to find the optimal server to allocate the task. Then the request

scheduler offloads the task to that server.

4.2 Problem Formulation
Main goal of the solution is to find a server that will return the

result of the offloaded task with lowest amount of time. In

other words, the response time R of the server is to be

minimized because the QoS constraint enforces a prerequisite

of executing the task within the maximum allowable time t.

Figure 2: Architecture of proposed system

By assuming the workload w, service rate µ of cloudlets,

number of instruction l and maximum allowable time t of

execution of a task T is known beforehand, the response time

R of a task T can be expressed as the time to send the task ts,

time to execute the task te and the time to receive the task tr.

Therefore, the response time R can be written as follows.

 R = ts + tr + te (1)

Table 2. Data Rate vs RSSI

Data Rate, d (Mbps) RSSI (dBm)

1 -81

2 -79

5.5 -77

11 -75

6 -81

9 -80

12 -78

18 -76

24 -73

36 -69

48 -65

54 -64

The mac layer delay for transmitting the data to the cloudlets

is considered. The mac layer delay will be high if the number

of nodes associated to an access point is high as the defer time

will increase for large number of users. Ultimately, the

response time for a particular device will increase.

Besides this, the values of ts and tr is affected greatly by the

received signal strength (RSSI) value. If the RSSI value of an

access point is low, the data rate for the connection would be

poor affecting the time to send the task and receive the result.

The mapping table for RSSI values and the corresponding

data rate is shown in Table 2 [17] which can be used to

calculate the data sending and receiving time. Denoting the

data to send as fs and data to receive as fr, for a task T and the

achievable data rate as d, the ts, tr and te can be calculated

from below.

 ts = fs/ d + d_mac (2)

where,

 d_mac = dbackoff + ddefer (3)

 tr = fr/d (4)

 te = l/µ (5)

After receiving an application request, the request scheduler

invokes the optimizer to carry out the following objective
function for finding the optimal server to offload the task.

 min ∑ij Rijxij (6)

s.t.

 ∑j wijxij ≤ wi
cap

∀i (7)

 ∑ixij = 1 ∀j (8)

 ∑i Rijxij ≤ tj ∀j (9)

Here, equation 6 is the objective function which is to be

solved by the optimizer of middleware entity in the local

cloud. It is assumed that the local cloud has enough

computing resources to solve this problem within the

specified time. Equation 7 is the constraint for workload

distribution. The workload w of a cloudlet should not exceed

its workload capacity wcap after allocating the task to it.

Equation 7 specifies this condition. The workload capacity of

a cloudlet can be calculated through summarizing the product

of size of the virtual machines in the cloudlet and their size as

in [16]. If a cloudlet has V number of instances of virtual

machines and the size is S, the workload capacity of a cloudlet

can be calculated as follows.

 wcap = ∑ Vi×S(i) (10)

If the current number of instances of the virtual machine is

Vcurrent, the current workload of a cloudlet can be expressed as

 w = ∑ Vi
current×S(i) (11)

The task can be offloaded to only one server. Equation 8

specifies this unique assignment of task to a server. Finally,

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

40

1: input: mobileID, location, maxAllowableTime,
serverInfo

2: output: serverID

3: procedure TASK ALLOCATION

4: location ← GetLocationFromDB(mobileID)
5: points[n]← GetPoints(Location)
6: initialize trajectory ← null
7: initialize max ← -1
8: for i ← 1 to n do
9: time ← GetSpentTime(point[i])
10: if max < time then
11: trajectory ← point[i]
12: end if
13: end for
14: servers[m] ← GetServers(point[i])
15: min ← maxAllowableTime
16: serverID ← -1
17: for i ← 1 to m do
18: resposeTime ←

GetServerResponseTime(serverInfo)
19: if min > responseTime then
20: serverID = server[i]
21: end if
22: end for
23: return serverID
24: end procedure

Table 3. Algorithm for Task Allocation

equation 9 specifies the constraint for QoS that is the task

should be completed within the maximum allowable time to

execute the task.

This problem is an NP-Hard problem. Therefore, a greedy

algorithm is proposed to solve this problem. In the following

section this algorithm is presented.

4.3 Greedy Solution
The algorithm for the proposed solution is shown in Table 3.

The algorithm starts by finding the mobility history of the

users. From this history, the location where the users spend

most of their time during mobility is selected. Servers situated

at that location is retrieved from the database in line 5.

Following this, algorithm enters a loop which calculates the

response time for the servers retrieved from the database. The

response time is calculated through the function

GetResponseTime having parameters current workload,

maximum workload and service rate of the server, time to

send the task, time to receive the result. If the calculated

response time is greater than the maximum allowable time of

the task, the loop will continue. Otherwise, the loop is

terminated and the server is returned as the solution.

5. CONCLUSION AND FUTURE WORK
In this paper, a system to offload a task from mobile devices

to cloud in a two-tiered environment is proposed to increase

the computation capacity of the devices. An optimization

problem for this is formulated. As this work is still ongoing,

the experimental result could not be provided in this paper.

Future plan is to implement the solution and conduct a wide-

ranging experiment to evaluate the performance of the

proposed system.

6. ACKNOWLDGEMENTS
The authors would like to thank the honorable reviewers for

reviewing this paper and their valuable and constructive

comments in case of improving this paper.

7. REFERENCES
[1] Ericsson Mobility Report, Nov 2015,

http://hugin.info/1061/R/1872291/659558.pdf

[2] N. Fernando, SW. Loke, and W. Rahayu, "Mobile cloud

computing: A survey," Future Generation Computer

Systems, vol. 29, pp. 84–106, Jan 2013.

[3] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt,

"Cloudelets: bringing the cloud to the mobile user," in

Proc. of third ACM Workshop on Mobile cloud

computing and services, 2012. MCS 2012, pp. 29-36.

[4] M. Satyanarayanan, P Bahl, R Caceres, and N Davies,

"The Case for VM-Based Cloudlets in Mobile

Computing," in IEEE Pervasive Computing, vol. 8, pp.

14-23, Oct 2009.

[5] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl, "Maui: Making

smartphones last longer with code offload," in Proc. of

International Conference on Mobile Systems,

Applications, and Services, 2010. MobiSys 2010. pp. 49–

62.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,

"ThinkAir: Dynamic resource allocation and parallel

execution in the cloud for mobile code offloading," in

Proc. of IEEE INFOCOM, 2012, pp. 945–953.

[7] B. Chun, M. Naik, S. Ihm, A. Patti, and P. Maniatis,

"Clonecloud: Elastic execution between mobile device

and cloud," in Proc. of European Conference on

Computer Systems, 2011. EuroSys 2011, pp. 181–194.

[8] M. R. Rahimi, N. Venkatasubramanian, S. Mehrotra, and

A. V. Vasilakos, "MAPCloud: Mobile Applications on

an Elastic and Scalable 2-Tier Cloud Architecture," in

Proceedings of the 2012 IEEE/ACM Fifth International

Conference on Utility and Cloud Computing, 2012, pp.

83-90.

[9] Q. Xia, W. Liang, Z. Xu, and B. Zhou, "Online

Algorithms for Location-Aware Task Offloading in Two-

Tiered Mobile Cloud Environments," in Proc. of the

2014 IEEE/ACM 7th International Conference on Utility

and Cloud Computing, 2014, pp. 109-116.

[10] S. Ou, K. Yang, and J. Zhang, "An effective offloading

middleware for pervasive services on mobile devices," in

Journal of Pervasive and Mobile Computing, 2007, vol.

3, pp. 362-385, August 2007.

[11] M. V. Barbera, S. Costa, A. Mei, and J. Stefa, "To

offload or not to offload? the bandwidth and energy costs

of mobile cloud computing," in Proc. of IEEE

INFOCOM, 2013, pp. 1285-1293.

[12] E. Gelenbe, R. Lent, and M. Douratsos, "Choosing a

local or remote cloud," in Second Symposium on Network

Cloud Computing and Applications, 2012, pp. 25-30.

[13] M. R. Rahimi, N. Venkatasubramanian, and A. V.

Vasilakos, "MuSIC: Mobility-aware optimal service

allocation in mobile cloud computing," in IEEE Sixth

International Conference on cloud computing (CLOUD),

2013, pp. 75- 82.

[14] J. Li, K. Bu, and B. Xiao, "ENDA: embracing network

inconsistency for dynamic application offloading in

mobile cloud computing," in Proc. of the second ACM

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

41

SIGCOMM workshop on Mobile Cloud Computing,

2013, pp. 39-44.

[15] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama,

and R. Buyya, "A Context Sensitive Offloading Scheme

for Mobile Cloud Computing Service," in Proc. of the

IEEE 8th International Conference on Cloud Computing

(CLOUD), 2015, pp. 869-876.

[16] Asma Enayet, "Mobility Aware Optimal Resource

Allocation in Heterogeneous Mobile Cloud Computing,"

MS thesis, Department of Computer Science and

Engineering, University of Dhaka, 2015.

[17] What is the relationship between data rate, SNR and

RSSI,

http://community.arubanetworks.com/t5/Controller-

Based-WLANs/What-is-the-relationship-between-data-

rate-SNR-and-RSSI/ta-p/178312

[18] Mobile Cloud Computing Forum,

http://www.mobilecloudcomputingforum.com

[19] M. Satyanarayanan, “Mobile computing: the next

decade,” ACM SIGMOBILE Mobile Computing and

Communications, vol. 15, issue 2, April 2011, pp. 2-10.

IJCATM : www.ijcaonline.org

