
International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

1

A Novel Association Rule Algorithm to Discover Maximal

Frequent Item Set

Hartej Singh
MTech

NIT Jalandhar
Punjab,India

Vinay Dwivedi
MTech

NIT Jalandhar
Punjab,India

ABSTRACT

Association Rule mining is a sub-discipline of data mining.

Apriori algorithm is one of the most popular association rule

mining technique. Apriori technique has a disadvantage that

before generating a maximal frequent set it generates all

possible proper subsets of maximal set. Therefore it is very

slow as it requires many database scans before generating a

maximal frequent itemset In the method proposed in this

paper entire database is scanned only once. Frequency count

of all distinct transactions is stored in a hash map. Algorithm

maintains an array of tables such that each table in the array

contain frequency count of all potential k-itemsets..Binary

search and the concept of longest common subsequence are

used to efficiently extract maximal frequent itemset.

Experimental results show that proposed algorithm performs

better than apriori algorithm.

Keywords

Association rule mining ,Apriori algorithm, Frequent

itemset, Hashing, Longest common subsequence

1. INTRODUCTION
DATA mining has appeared as a significant research field

focusing mainly on knowledge discovery from the databases.

Data sets from the databases are mined so as to generate

information that can be used effectively in various domains.

The objective of data mining is prediction and description [1].

Association Rule mining is a sub-discipline of data mining.

Generic procedure in any associative rule mining procedure is

to first identify the frequent item-set in the database on the

basis of minimum support and then build the association rules

from the identified frequent item-set with specific minimum

confidence. The association rule relates the occurrence of item

A with the occurrence of item B. This type of mining is more

applicable and very useful in the market basket analysis [2].

2. RELATED WORKS
Apriori algorithm was proposed by R.Agrawal and R.Srikant

in 1994[2]. It uses an iterative procedure to evaluate the

specific length of item collection in the given database to

generate frequent item sets. It reduces the count of candidate

item sets using the principle that all subsets of frequent item

sets are frequent too.

Han et al. [3] proposed FP – Tree algorithm which scans the

database only two times without any iteration for candidate
sets generation. In the first scan FP Tree is constructed in the
next scan using a procedure known as FP growth frequent

patterns are extracted from FP tree.

Christian Hidber in [4] proposed CARMA - continuous

Association rule mining algorithm. CARMA performs the

scan of transaction database twice. In phase I it generates a

lattice of large itemsets and in phase II it prunes all itemsets

with support lesser than threshold.

Another associative rule mining algorithm Rapid association

rule mining algorithm RARM [5] uses a tree like data structure

to represent a database. Preprocessing in RARM is done using

trie Item set TrieIT. RARM generates 1-itemset and 2-itemset

faster using Support Oriented Trie Itemset (SOTrieIT)

structure.

DHP algorithm [6] uses Hash technique in order to avoid the

scanning of entire transactional database every time when we

need to scan for a subset of item-sets and Reduction technique

of event database in order to improve the efficiency of the

Apriori algorithm.

3. THE PROPOSED METHOD
Classical apriori algorithm begins with item set containing a

single element and gradually increases size of the item set to

obtain maximal frequent item set.

 In the proposed approach the idea of set table is introduced.

A set table kBT contains all possible itemsets of length k

where 1<=k<=n. Set tables { nBTBT1 } are kept in an

array.

For n items, there can exist at most 2n distinct transactions in

the transaction database. Frequencies of all distinct transaction

are stored in a hash map. To figure out whether an itemset in

the set table is frequent or not we used the concept of longest

common subsequence [8].

 A longest common subsequence (LCS) is the the longest

subsequence common to all sequences in a set of sequences

[8]. The complexity of finding a longest common

subsequence between two sequences of lengths m and n is

O(m*n). Using LCS technique improves the performance of

proposed methodology over classical Apriori, as we do not
need to generate all possible subsets of each transaction in the

database and moreover instead of scanning the whole

transaction database the proposed algorithm only scans 2n

records stored in a Hash table. Thus this approach is very

effective in cases, where the value 2n is less than number of

transactions. The detailed strategy proposed is discussed in

this section:

Step1: Create set tables

If there are n distinct items in the database, an array of size n

is constructed and every element in this array contains a table.

A set table kB contains all item sets of length k. An entry in

a set table contains two attributes. The first attribute holds an

itemset and the second attibute holds an integer value

representing frequency count of that itemset. Frequency count

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

2

of all itemsets in set table is set to zero initially . Array of set

tables is created in following three steps.

1) An array of size n is created to hold n set tables. Where n

is count of distinct items present in database. Map Data

structure is used for this purpose as every entry in set table

has two attributes.

2) From the given list of items in the database all possible

itemsets are generated and an itemset of length i is

assigned to an array element B[i].

 Frequency of all item sets is initialized to zero.

For example all itemsets of length one is allocated to set table

contained at array index one i.e. BT[1], and their frequency

count is initialized to zero. For item list having items {p,q,r,s}

our set tables are shown below.

Table 1: Set Tables

p 0 pq 0 pqr 0 pqrs 0

q 0 pr 0 pqs 0

r 0 ps 0 prs 0

s 0 qr 0 qrs 0

 qs 0

 rs 0
BT[1] BT[2] BT[3] BT[4]

Step2: Build transaction table

The transaction table as shown in table 2 contains the

frequency count of various transactions.

Building transaction table can be described as follows.

1) A textual database is used for building transaction table.

In this textual database, items in a itemset are kept in a

lexicographical order. i.e. if a transaction contains items

“yzx” then the transaction is kept in the textual database

as “xyz”.

2) Every entry in transactional database is traversed in order

to create a table holding the frequency count of each

transaction.

Suppose the transactional database contains following

transactions {pq, prs, qs, pq, rs, pqs, prs, qs}. Transaction

table built using given transactions is shown in Table2.

Table 2: Transaction Table

pq 2

qs 2

rs 1

prs 2

pqs 1

Step 3: Binary search

Apriori builds maximal frequent set by generating frequent

sets in a bottom-up fashion. In the proposed algorithm

however the frequent set formed at any stage is determined by

a binary search procedure which is used on the array

containing set tables. Lower limit low in binary search is

initialized to 1 while upper limit upper is initialized to n count

of items in itemlist. A variable mid is used to hold middle

value between lower and upper limit. i.e. mid=(low+upper)/2.

The variable max in the end will contain length of maximal

frequent itemset

Low=1, upper=n

While low < upper

Mid= (upper+lower)/2

if (check(mid))

 Low=mid+1;

 If(mid>max)

 Max=mid;

 else

 Upper=mid-1;

Maximal frequent itemset can be found at table BT[max] .

To check whether a table at B[mid] has a frequent itemset

following procedure is adopted.

BT[mid,i] denotes
thi itemset in set table at BT[mid]

BT[mid,i,f] denotes frequency count of
thi itemset in table

BT[mid].

TT[t] is the
tht transaction in transaction table

TT[t,f] is frequency count
tht transaction in transaction table.

|s| denotes length of a string. For e.g.|abcd|=4.

T is size transaction table TT

Boolean CHECK (mid)

{

k=mid;

For i=1 to C(n,k)

{

For t=1 to T

 {

 If (|LCS(BT[mid,i],TT[t])| = = |BT[mid,i]|)

 BT[mid,i,f] += TT[t,f]

 If(BT[mid,i,f] >=support)

 Return true

}

 Return false

}

Procedure CHECK returns a true if frequency count of any of

the itemsets at BT[mid] is found greater than or equal to

support value. To calculate the frequency count of ith itemset

BT[mid,i], the length of Longest common subsequence (LCS)

between it and every transaction in TT is evaluated one by

one and if the length of longest common subsequence is

equal to the length of itemset itself frequency count is

incremented by the frequency count of transaction. The

procedure is explained with the help of an example.

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

3

Binary search is implemented as follows:-

1) Suppose the item list contains four elements {a,b,c,d} .

2) Therefore initially low=1, upper =4 and mid = 2, so

procedure check () with mid=2 is called to check if BT [2]

has any frequent itemset.

Table 3: BT[2]

Itemset Frequency

pq 0

pr 0

ps 0

qr 0

qs 0

cs 0

3) Now Procedure CHECK computes length Longest

common subsequence (LCS) between itemsets in table

BT[2] and every element in transaction table TT. The first

element of BT [2] is BT[2,1] and for our example it is

“ab”. Hence here |BT[2,1]| is 2 . First iteration in the

procedure make following calculations.

|LCS(BT[2,1]),TT[1])|=2 (1)

|LCS(BT[2,1]),TT[2])|=1 (2)

|LCS(BT[2,1]),TT[3])|=0 (3)

|LCS(BT[2,1]),TT[4])|=1 (4)

|LCS(BT[2,1]),TT[5])|=2 (5)

The condition if(|LCS(BT[mid,i],TT[j])| = = |BT[mid,i]|)

is true for (1) and (5)

 Therefore BT[mid,i,f] + = TT[j,f] is executed for t=1

and t=5.

Frequencies of transaction at TT[1] and TT[5] are added

to the frequency count of BT[2,1] in set table. Hence we

have BT[2,1,f]=BT[2,1,f]+TT[1,f]+TT[5,f]

BT[2,1,f]=0+2+1=3

Which is equal to the value of support hence BT[2,1] is a

frequent itemset and the procedure CHECK terminates

by returning true.

 For our example BT[2] gets modified as shown below :-

Table 4: Modified Set Table

pq 3

pr 0

ps 0

qr 0

qs 0

rs 0

As frequency count of “pq” and “pqs” in transaction table

is 2 and 1 respectively. These frequency counts are added

to frequency count of “pq” in set table.

4) The procedure above is repeated for all elements in the

set table at BT [mid] till an element in set table whose

frequency count is more than specified support is not

found. As an element in set table whose frequency is more

than specified support is found, next iteration of binary

search is executed, and the set table is scanned at array

index given by new value of mid.

5) Apriori property states that any subset of frequent itemset

is frequent. Hence if any frequent itemset is not found at

BT[mid] then a maximal frequent itemset would

definitely be of length lesser than mid. Binary search is

hence resumed to search the lower half of the array i.e.

BT[low…..mid-1] . And conversely if a frequent itemset

is found at BT[mid] then maximal frequent itemset has

length greater than or equal to mid. Binary search now

searches maximal frequent set in upper half of the array

BT i.e. BT[mid+1…..upper]. For example if our item set

contains ten elements then our binary search operation has

low=1 and upper=10. Now initial value of mid is 5 if we

find any frequent itemset at set table BT[5] we resume

binary search with value of mid is 8(low=6,upper=10) but

if we do not find any such itemset in table then we

resume binary search with value of mid equal to

2(low=1,upper=4).

6) Using Binary search reduces run time complexity of

apriori .

4. EXPERIMENTAL RESULTS
To study the performance of our algorithm we have

implemented it using c++ programming language. The

programme was executed on an intel core i5 machine. We

used a large data set consisting of 1 million transactions and

item set consists of 15 items. The experimental study

compares the time consumed to find maximal frequent itemset

in Apriori and proposed algorithm for various values of

minimum support. The results are shown in Fig.1 and Fig 2.

The results show that proposed algorithm takes lesser time to

discover maximal frequent itemset as compare to Apriori

algorithm.

Fig : 1 Time (Y-axis) (secs) vs Support (X-axis)

Table 5: Comparison of time taken (in secs) and time

reduction rate on various values of minimum support

Support Classical

Apriori

Proposed

Method

Reduction

Rate

10 53 28 47.16%

20 48 22 54.16%

30 43 20 53.48%

40 34 18 47.05%

50 22 15 31.81%

0

10

20

30

40

50

60

10 20 30 40 50

classical
apriori

Proposed
method

International Journal of Computer Applications (0975 – 8887)

Volume 137 – No.9, March 2016

4

Fig : 2 Time (Y-axis) (secs) vs Support (X-axis)

Table 6: Comparison of time taken (in secs) and time

reduction rate on various values of minimum support

Support Classical

apriori

Proposed

method

Reduction

rate

0 0 0 0%

1 312 134 57.05%

2 267 119 55.43%

5. CONCLUSIONS
This paper presented an associative rule mining algorithm for

generating maximal frequent itemset. Experimental study

shows that proposed algorithm performs better than Apriori

algorithm by taking lesser time to compute maximal frequent

itemset. Apriori algorithm applies iterative procedures to

search frequent item-sets therefore it is very slow as it

requires many database scans before generating a maximal

frequent itemset. In the proposed algorithm database is

scanned only once to create a transaction table having 2n

entries (where n is number of items). The transaction table

contains frequency count of every possible transaction on

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining

Association Rules between Sets of Items in Large

Database,” Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, Vol.

22, Issue 2, 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules,” Proceedings of the 20th International

Conference on Very Large Data Bases, 1994, pp. 487-

499.

[3] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns

without Candidate Generation,” Proceedings of the 2000

ACM SIGMOD International Conference on

Management of Data, 2000, pp. 1-12.

[4] Hidber, C. (1999). Online association rule

mining (Vol. 28, No. 2, pp. 145-156). ACM.

[5] J Das, A., Ng, W. K., & Woon, Y. K. (2001, October).

“Rapid association rule mining” In Proceedings of the

tenth international conference on Information and

knowledge management (pp. 474-481). ACM.

[6] J. S. Park, M. S. Chen, and P. S. Yu, "Using a Hash-

Based Method with Transaction Trimming for Mining

Association Rules," IEEE Trans. on Knowledge and Data

Engineering, Vol. 9, No.5, Sep/Oct 1997, pp. 813-825.

[7] NCSA Computational Resources, Retrieved May

14,2006 from http:// www.ncsa.uiuc.edu/UserInfo/

[8] Longest Common Subsequence problem . Available at :

wikipedia.org.

0

50

100

150

200

250

300

350

0 1 2

classical
apriori

Proposed
method

IJCATM : www.ijcaonline.org

