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ABSTRACT
In this paper, the approximation of asymptotic expansion for the
wavelet is obtained and the approximation of asymptotic
expansions for generalized Mexican hat wavelet and the wavelet
corresponding to mth order cardinal B−spline are obtained.
Estimates of present investigations are based on Wong’s method.

General Terms
Wavelet, Approximation, Basic wavelet

Keywords

First order cardinal B−spline, asymptotic approximation, mth

order cardinal B−spline, asymptotic expansion, wavelet
transform, generalized mexican hat wavelet, Mellin transform

1. INTRODUCTION
At first in 1989, Wong [1] studied the asymptotic approximation of
certain integrals.Wavelet approximation plays an important role in
Mathematics, Computer science and Technology . Approximation
of asymptotic expansion of wavelet has been studied by Sweldens
and Piessens [2],Pathak and Pathak [3],Wong [4] and Ashurov and
Butaev [5] etc. But till now no work seems to have been done to
obtain the approximation of asymptotic expansion of
generalized Mexican hat wavelet and wavelet corresponding to
mth order cardinal B-spline. In an attempt to make an advance
study in this direction, in this paper, the estimates for asymptotic
expansion of generalized Mexican hat wavelet and mth order
cardinal B-spline wavelets are determined. These estimates are
new, better and sharper than all previously known estimates.

2. DEFINITIONS
If a function ψ ∈ L2(R) satisfies the “admissibility” condition:

Cψ =:

∫ ∞

−∞

∣∣ψ̂(ω)
∣∣2

|ω|
dω <∞, (1)

then ψ is called a “basic wavelet”. Relative to every basic wavelet
ψ, the integral wavelet transform (IWT) of a function f ∈ L2(R)

is defined by

(Wψf)(b, a) =: |a|−
1
2

∫ ∞

−∞
f(t)ψ

(
t− b
a

)
dt (2)

where a, b ∈ R with a 6= 0, (Chui [6]).
By setting

ψb;a =: |a|−
1
2 ψ

(
t− b
a

)
(3)

the IWT defined in (2) can be written as

(Wψf)(b, a) = 〈f, ψb;a〉 . (4)

Using Parsewall identity, it can also be written as

(Wψf) (b, a) =
1

2π

〈
f̂ , ψ̂b;a

〉
=

a |a|−
1
2

2π

∫ ∞

−∞
f̂(ω)e−ibωψ̂(aω)dω

=
a |a|−

1
2

2π

∫ ∞

−∞
f̂(ω)eibωψ̂(aω)dω, (5)

Approximation of asymptotic expansion for the general integral

I(x) =

∫ ∞

0

F (t)h(xt)dt, (6)

was discussed by Wong [1]. Considering the basic idea of Wong
[1] related to approximation of asymptotic expansion of general
integral, the derivation for the approximation of asymptotic
expansion of a wavelet may be obtained.

Suppose that F (t) has an asymptotic expansion as

F (t) ∼
n−1∑
k=0

ckt
k+σ−1 + Fn(t), as t→ 0+, (7)

where 0 < σ ≤ 1, Fn(t) =

∞∑
k=n

ckt
k+σ−1.
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The generalized Mellin transform of h, denoted by M [h; z], is
defined by

M [h; z] = lim
ε→0+

∫ ∞

0

tz−1h(t)e−εt
p
dt. (8)

By equation (7) and [Wong [1], p.216],

I(x) =

n−1∑
k=0

ckM [h; k + σ]x−(k+σ) + δn(x), (9)

where approximation or error bound δn is given by

δn(x) = lim
ε→0+

∫ ∞

0

Fn(t)h(xt)e−εt
p
dt. (10)

The condition for satisfying the result (9) is already given by Wong
([1], theorem 6, p.217).

3. APPROXIMATION OF ASYMPTOTIC
EXPANSION FOR A WAVELET

The approximation of asymptotic expansion of (Wψf) (b, a) for
fixed b and |a| , has been derived. Estimates of present
investigations are based on Wong’s method.

(Wψf) (b, a) =
a |a|−

1
2

2π

∫ ∞

−∞
f̂(ω)eibω

¯̂
ψ(aω)dω

=
a |a|−

1
2

2π

∫ ∞

0

f̂(ω)eibω
¯̂
ψ(aω)dω

+
a |a|−

1
2

2π

∫ ∞

0

f̂(−ω)e−ibω
¯̂
ψ(−aω)dω. (11)

Assume that f̂(ω) has expansion of the form

f̂(ω) =

∞∑
k=0

ckω
k+σ−1 as ω → 0+, (12)

where 0 < σ ≤ 1.
Next,

F (ω) = f̂(ω)eibω

=

(
∞∑
k=0

ckω
k+σ−1

)(
∞∑
r=0

(ibω)r

r!

)

=

∞∑
k=0

dkω
k+σ−1; as ω → 0+

=

n−1∑
k=0

dkω
k+σ−1 + Fn(ω) as ω → 0+, (13)

where

Fn(ω) =

∞∑
k=n

dkω
k+σ−1. (14)

and

dk =

k∑
r=0

(ib)r

r!
ck−r. (15)

Further assuming that

¯̂
ψ(ω) ∼ eiτωp

∞∑
r=0

brω
−r−α; α > 0, p ≥ 1, ω → +∞, τ 6= 0

(16)
and

¯̂
ψ(ω) = O(ωρ); ω → 0+, ρ+ σ > 0. (17)

By equations(9) and (11),∫ ∞

0

eibω f̂(ω)
¯̂
ψ(aω)dω =

n−1∑
k=0

dkM [
¯̂
ψ(ω); k+σ]a−k−σ+δ(1)n (a),

(18)
where

δ(1)n (a) = lim
ε→0+

∫ ∞

0

Fn(ω)
¯̂
ψ(aω)e−εωdω. (19)

Similarly,

∫ ∞

0

e−ibω f̂(−ω)
¯̂
ψ(−aω)dω =

n−1∑
k=0

dk(−1)k+σ+1

M [
¯̂
ψ(ω); k + σ]a−k−σ + δ(2)n (a),

(20)

where

δ(2)n (a) = lim
ε→0+

∫ ∞

0

Fn(−ω)
¯̂
ψ(−aω)e−εωdω. (21)

By equations (11), (18) and (19), (Wψf) has been obtained as
follows

(Wψf) (b, a) =
a |a|−

1
2

2π

n−1∑
k=0

dk ×M
[

¯̂
ψ(ω); k + σ

]
+ (−1)k+σ+1M

[
¯̂
ψ(−ω); k + σ

]
× a−k−σ

+ δn(a); as n→ +∞, (22)

where approximation or error bound δn is given by

δn(a) = lim
ε→0+

∫ ∞

0

Fn(ω)
¯̂
ψ(aω)e−εωdω. (23)

The existence theorem for the formula ([1], theorem 6, p.217) has
been obtained in the following form:

3.1 Theorem
If

(i) f̂ (l)(ω) is continuous on (−∞,∞),
(ii) for 0 < σ ≤ 1,

f̂(ω) =
∑∞

k=0
ckω

k+σ−1 as ω → 0+;

(iii) ¯̂
ψ(ω) ∼ eiτω

p∑∞
r=0

brω
−r−α; α > 0, ω → +∞, τ 6=

0, p ≥ 1;
and

(iv) ω−αf̂ (j)(ω) = O(ω−1−ε), as ω →∞, for j = 0, 1, 2, · · · , l,
l being a non negative integer, ε > 0.
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then,

(Wψf) (b; a) =
a |a|−

1
2

2π

n−1∑
k=0

dk ×M
[

¯̂
ψ(ω); k + σ

]
+ (−1)k+σ+1M

[
¯̂
ψ(−ω); k + σ

]
× a−k−σ

+ δn(a); as n→ +∞, (24)

holds with approximation or error bound δn given by

δn(a) =
(−1)l

al

∫ ∞

−∞
F (l)
n (ω)

(
¯̂
ψ(aω)

)(−l)
dω (25)

and σ + n > l.

3.2 Lemmas

For the proof of the Theorem 3.1 following lemmas are required.
Lemma 1 If the integral

∫ ∞
0
f(t)dt exists as an improper Riemann

integral then,

lim
ε→0+

∫ ∞

0

e−(ε−x)tf(t)dt =

∫ ∞

0

f(t)dt,

(Wong [1], p. 197).

Lemma 2 For x > 0 and Reλ > 0,

lim
ε→0+

∫ ∞

0

tλ−1e−(ε−ix)tdt =
eλπi/2Γ(λ)

xλ
,

(Wong [1], p. 198).

Example 1 Let f(t) be absolutely integrable on [0, δ] for some
δ > 0, and be bounded for t ≥ δ. Then for any p ≥ 1,

lim
ε→0+

ε

∫ ∞

0

f(t)e−εt
p
dt = 0,

(Wong [1], p. 233).

3.3 Proof of Theorem 3.1

Integration by parts,∫ ∞

0

Fn(ω)
¯̂
ψ(aω)e−εω

p
dω =

[(∫
¯̂
ψ(aω)dω

)
Fn(ω)e−εω

p

]∞
0

− 1

a

∫ ∞

0

¯̂
ψ

(−1)
(aω)

× d

dω
Fn(ω)e−εω

p
dω. (26)

By condition (iv) of Theorem 3.1 ,[(∫
¯̂
ψ(aω)dω

)
Fn(ω)e−εω

p

]∞
0

= 0.

Then, ∫ ∞

0

Fn(ω)
¯̂
ψ(aω)e−εω

p
dω = −1

a

∫ ∞

0

¯̂
ψ

(−1)
(aω)

× F (1)
n (ω)e−εω

p
dω

+
εp

a

∫ ∞

0

¯̂
ψ

(−1)
(aω)

× Fn(ω)ωp−1e−εω
p
dω. (27)

By Lemmas (1), (2) and example (1)

limε→0+
εp

a

∞∫
0

¯̂
ψ

(−1)
(aω)Fn(ω)ωp−1e−εω

p
dω = 0

Thus,

δ(1)n = −1

a
lim
ε→0+

∫ ∞

0

¯̂
ψ

(−1)
(aω)F (1)

n (ω)e−εω
p
dω. (28)

Repeating this process l times,

δ(1)n =
(−1)l

(a)l
lim
ε→0+

∫ ∞

0

¯̂
ψ

(−l)
(aω)F (l)

n (ω)e−εω
p
dω

=
(−1)l

(a)l

∫ ∞

0

¯̂
ψ

(−l)
(aω)F (l)

n (ω)dω

by Lemma 1. (29)

Similarly∫ ∞

0

Fn(−ω)
¯̂
ψ(−aω)e−εω

p
dω = − 1

(a)

∫ ∞

0

¯̂
ψ

(−1)
(−aω)

× d

dω

(
Fn(−ω)e−εω

p)
dω.

=
1

−a

∫ ∞

0

¯̂
ψ

(−1)
(−aω)

× F (1)
n (−ω)e−εω

p
dω

+
εp

a

∫ ∞

0

¯̂
ψ

(−1)
(−aω)

× Fn(−ω)ωp−1e−εω
p
dω.(30)

Since,

limε→0+
εp

a

∞∫
0

¯̂
ψ

(−1)
(aω)Fn(−ω)ωp−1e−εω

p
dω = 0,

therefore

δ(2)n =
(−1)l

(a)l
lim
ε→0+

∫ ∞

0

¯̂
ψ

(−l)
(−aω)F (l)

n (−ω)e−εω
p
dω

=
(−1)l

(a)l

∫ ∞

0

¯̂
ψ

(−l)
(−aω)F (l)

n (−ω)dω. (31)

Combining equations 29 and 31

δn(a) = δ(1)n (a) + δ(2)n (a)

=
(−1)l

(a)l
lim
ε→0+

∫ ∞

0

¯̂
ψ

(−l)
(aω)F (l)

n (ω)e−εω
p
dω

+
(−1)l

(a)l
lim
ε→0+

∫ ∞

0

¯̂
ψ

(−l)
(−aω)F (l)

n (−ω)e−εω
p
dω

=
(−1)l

(a)l

∫ ∞

0

¯̂
ψ

(−l)
(aω)F (l)

n (ω)dω

+
(−1)l

(a)l

∫ ∞

0

¯̂
ψ

(−l)
(−aω)F (l)

n (−ω)dω

=
(−1)l

(a)l

∫ ∞

−∞

¯̂
ψ

(−l)
(aω)F (l)

n (ω)dω.

Thus, Theorem 3.1 is completely established.
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4. GENERALIZED MEXICAN HAT WAVELET

In this section the approximation of asymptotic expansions for
generalised Mexican hat wavelet has been determined in the
following form

4.1 Theorem
If f̂(ω) satisfies conditions of Theorem 3.1 then

(Wψf) (b, a) = −a|a|
− 1

2

2π

n−1∑
k=0

dk
1

2α
k+σ+2

2

× Γ

(
k + σ + 2

2

)
(1 + (−1)k+σ−1)a−k−σ

+ δn(a), (32)

holds with approximation

δn(a) =
(−1)l+1|a|− 1

2

al−12π

∫ ∞

−∞
F (l)
n

(
(aω)2e−α(aω)

2
)(−l)

dω

= O

(∫ ∞

−∞
F (l)
n

(
(aω)2e−α(aω)

2
)(−l)

dω.

)
. (33)

Proof:. The Gaussian function, denoted by gα, is defined by

gα(t) =
1

2
√
πα

e−
t2

4α , α > 0, (34)

(Chui [6], pg. 50).

The generalized Mexican hat wavelet is defined by

ψ(t) = − d2

dt2
(gα(t)) = − 1

8α2
√
πα

(t2 − 2α)e−
t2

4α . (35)

The Fourier transform of Gaussian function is given as

ĝα(ω) = e−αω
2
.

Using the well known result f̂ (n)(ω) = (iω)nf̂(ω),

ψ̂(ω) = ω2e−αω
2

= O(ω2), as→ 0+. (36)

Since

f̂(ω) = O(eδω
2
), ω →∞ for some δ > 0 (37)

therefore,

F (ω) = eibω f̂(ω) = O(eδω
2
), ω →∞. (38)

Thus,∫ ∞

0

f̂(ω)eibω
¯̂
ψ(aω)dω =

n−1∑
k=0

dkM [−ω2e−αω
2
; k + σ]a−k−σ

+ δ(1)n (a), (39)

where

M [ω2e−αω
2
; k + σ] =

∫ ∞

0

ωk+σ+1e−αω
2
dω

=
1

2α
k+σ+2

2

Γ

(
k + σ + 2

2

)
(40)

and

δ(1)n = lim
ε→0+

∫ ∞

0

Fn(ω)(−(aω)2e−α(aω)
2
)e−εωdω. (41)

From equations (39) and (40),∫ ∞

0

f̂(ω)eibω
¯̂
ψ(aω)dω =

n−1∑
k=0

dk
1

2α
k+σ+2

2

Γ

(
k + σ + 2

2

)
× a−k−σ + δ(1)n (a). (42)

Similarly,∫ ∞

0

f̂(−ω)e−ibω
¯̂
ψ(−aω)dω =

n−1∑
k=0

(−1)k+σ−1dk
1

2α
k+σ+2

2

× Γ

(
k + σ + 2

2

)
a−k−σ + δ(2)n (a)

(43)

where

δ(2)n = lim
ε→0+

∫ ∞

0

Fn(−ω)(−(aω)2e−α(aω)
2
)e−εωdω. (44)

By equations (1), (42) and (43),

(Wψf) (b, a) =
a|a|− 1

2

2π

n−1∑
k=0

dk
1

2α
k+σ+2

2

× Γ

(
k + σ + 2

2

)
(1 + (−1)k+σ−1)a−k−σ

+ δn(a), (45)

where

δn(a) = δ(1)n (a) + δ(2)n (a)

= lim
ε→0+

∫ ∞

0

Fn(ω)(aω)2e−α(aω)
2
e−εωdω

+ lim
ε→0+

∫ ∞

0

Fn(−ω)(aω)2e−α(aω)
2
e−εωdω

=

∫ ∞

0

Fn(ω)(aω)2e−α(aω)
2
)dω

+

∫ ∞

0

Fn(−ω)(aω)2e−α(aω)
2
dω

=

∫ ∞

−∞
Fn(ω)(aω)2e−α(aω)

2
dω. (46)

Considering above steps and the proof of the Theorem (3.1) the
result has been completely established.

5. THE WAVELET CORRESPONDING TO MTH

ORDER CARDINAL B − SPLINE

In this section the approximation of asymptotic expansions formth

Order Cardinal B − spline has been determined in the
following form:
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5.1 Theorem
If f̂(ω) satisfies conditions of Theorem 3.1 then,

(Wψf) (b, a) =
|a|− 1

2

2πam−1
img(b)

+
a|a|− 1

2

2π

m∑
r=1

n−1∑
k=1

im+2rCmr dk(1 + (−1)k+σ+1)

× ei
k+σ−m

2 Γ(k + σ −m)(ar)−(k+σ−m) + δn(a),

(47)

holds with approximation

δn(a) =
im(−1)l|a|− 1

2

2πam+l

∫ ∞

−∞
F (l)
n (ω)

(
eiraω

(ω)m

)(−l)

dω

= O

(∫ ∞

−∞
F (l)
n (ω)

(
eiraω

(ω)m

)(−l)

dω

)
where n is the smallest positive integer such that σ + n > l.
Proof: The mth order cardinal B-spline

Nm(t) = N1 ∗N1 ∗N1 ∗ ...N1

(N1 convolutes itself m times)

=

∫ 1

0

Nm−1(t− x)dx, m = 2, 3, · · · ., (48)

where

N1(x) =

{
1, x ∈ [0, 1);
0, otherwise,

Chui ([6], p.56)

Then

¯̂
Nm(ω) =

(
1− e−iω

iω

)m
=
(
i

ω

)m (
1− eiω

)m
=
(
i

ω

)m m∑
r=0

(−1)rCmr e
iωr

=
(
i

ω

)m
+ (i)m

m∑
r=1

(−1)rCmr
eiωr

ωm

=
(
i

ω

)m
+

m∑
r=1

im+2rCmr
eiωr

ωm
. (49)

Since,

lim
ω→0+

¯̂
Nm(ω) = lim

ω→0+
eim

ω
2

(
sinω

2
ω
2

)m
= 1,

therefore
¯̂
Nm(ω) = O(1) as ω → 0+. (50)

By equations.(6), (2) and (49),

(Wψf) (b, a) =
a |a|−

1
2

2π

∫ ∞

−∞
f̂(ω)eibω

×

((
i

aω

)m
+

m∑
r=1

im+2rCmr
eiaωr

amωm

)
dω

=
|a|− 1

2

2πam−1
im
∫ ∞

−∞

f̂(ω)eibω

ωm
dω

+
a|a|− 1

2

2π

m∑
r=1

im+2rCmr

∫ ∞

−∞
f̂(ω)eibω

eiaωr

amωm
dω

=
|a|− 1

2

2πam−1
img(b) +

a|a|− 1
2

2π

m∑
r=1

im+2rCmr

×
∫ ∞

0

f̂(ω)eibω
eiarω

amωm
dω

+

∫ ∞

0

f̂(−ω)e−ibω
e−aiωr

(−a)mωm
dω, (51)

where

g(b) =

∫ ∞

−∞

f̂(ω)eibω

ωm
dω.

The generalized Mellin transform formula of eit is given by

M [eit; z] = lim
ε→0+

∫ ∞

0

tz−1eite−εtdt

= lim
ε→0+

∫ ∞

0

tz−1e−t(ε−i)dt

= lim
ε→0+

∫ ∞

0

(
x

ε− i

)z−1
e−x

1

(ε− i)
dx,

= lim
ε→0+

1

(ε− i)z

∫ ∞

0

xz−1e−xdx

= lim
ε→0+

1

(ε− i)z
Γz

=
1

(−i)z
Γz

= eiπ
z
2 Γz, i = e

iπ
2 .

(52)

By (Wong [1], p.192,)

M [
eirω

ωm
; k + σ] = ei

π
2 (k+σ−m)Γ(k + σ −m)r−(k+σ−m). (53)

By equation (7),∫ ∞

0

f̂(ω)eibω
(
eiaωr

aωm

)
=

n−1∑
k=0

dkM [
eiaωr

amωm
; k + σ −m]

× a−(k+σ−m)

+ lim
ε→0+

∫ ∞

0

Fn(ω)
eiaωr

amωm
e−εωdω

=

n−1∑
k=0

dke
i
(k+σ−m)

2

× Γ(k + σ −m)(ar)−(k+σ−m)

+ lim
ε→0+

∫ ∞

0

Fn(ω)
eiaωr

amωm
e−εωdω

5
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. (54)

Similarly,∫ ∞

0

f̂(−ω)e−ibω
(

e−iaωr

(−a)mωm

)
=

n−1∑
k=0

(−1)k+σ+1dke
i
(k+σ−m)

2

× Γ(k + σ −m)(ar)−(k+σ−m)

+ lim
ε→0+

∫ ∞

0

Fn(−ω)

× e−iaωr

(−a)mωm
e−εωdω

. (55)

By equations (51), (54) and (55),

(Wψf) (b, a) =
|a|− 1

2

2πam−1
img(b)

+
a|a|− 1

2

2π

m∑
r=1

n−1∑
k=1

im+2rCmr dk(1 + (−1)k+σ+1)

× ei
k+σ−m

2 Γ(k + σ −m)(ar)−(k+σ−m)

+ δn(a), (56)

where

δn(a) = lim
ε→0+

∫ ∞

0

Fn(ω)
eiaωr

amωm
e−εωdω

+ lim
ε→0+

∫ ∞

0

Fn(−ω)
e−iaωr

(−a)mωm
e−εωdω

=

∫ ∞

0

Fn(ω)
eiaωr

amωm
dω +

∫ ∞

0

Fn(−ω)
¯̂

e−iaωr

−amωm
dω

=

∫ ∞

−∞
Fn(ω)

(
eiaωr

amωm
dω

)
. (57)

By the help of above mentioned steps and the proof of the Theorem
(3.1),this result has been proved.

6. CONCLUSION

(i) Estimates for the asymptotic expansion of generalized
Mexican hat wavelet and mth order cardinal B−spline have
been obtained.

(ii) The result of Pathak and Pathak ([3] Theorem(4)) is a particu-
lar case of Theorem(4.1) in this paper if α = 1

2
.

(iii) If m = 2, then estimate for the asymptotic expansion of 2nd

order cardinal B−spline satisfies

δn(a) = O

 ∞∫
−∞

F (l)
n (ω)e−iralωωmldω

 ,

where n is the smallest positive integer such that σ + n > l.
This estimate may be developed independently as similar to
Theorem 5.1 taking m=2.

(iv) For m = 1,mth order B−spline reduced to

N1(x) =

{
1, x ∈ [0, 1);
0, otherwise,

This is the first order B−spline.

N̂1(ω) = e−i
ω
2

sin ω
2

ω
2

N̂1(0) = lim
ω→0

(
e−i

ω
2

sin ω
2

ω
2

)
= 1

N1(t) is a scaling function. It is not a wavelet.The Theorem 5.1
is not applicable. Thus, the estimate for mth order B−spline
has been obtained for m ≥ 2.

.
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