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ABSTRACT 

Redundant basis multipliers over Galois Field have gained 

huge popularity in elliptic curve cryptography mainly because 

of their negligible hardware cost for squaring and modular 

reduction. Different techniques used so far for the 

implementation of redundant basis multipliers over Galois 

Field are explored here. Based on review the Word Level 

Redundant Basis multiplier is the most efficient among all 

multipliers in terms of hardware utilization. Digit serial 

Redundant Basis multiplication in a bit level matrix vector 

form is most efficient in terms of area-time complexities. 
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1. INTRODUCTION 
Multiplication over GF (2𝑚 ) is a basic operation frequently 

came across in modern cryptographic systems such as the 

Elliptic Curve Cryptography(ECC) and error control coding 

[1]–[3]. Also multiplication over a Galois field can be used to 

perform other field operations, e.g. division, exponentiation, 

and inversion [4]–[6]. Arithmetic operations in the GF (2𝑚 ) 

have several applications in computer algebra and theory of 

coding. Multiplication over GF (2𝑚 ) can be implemented on a 

general purpose machine, but it is expensive to use a general 

purpose machine to implement cryptographic systems in cost-

sensitive consumer products. As compared to the order of GF 

(2𝑚 ) the word length of low end microprocessors used in 

cryptographic systems is too small, therefore, they cannot 

meet the real time requirements of different applications. 

Most of the real-time applications, therefore, need hardware 

implementation of GF (2𝑚 ) arithmetic operations for the 

benefits like low-cost and high-throughput rate. There are 

different types of bases to represent field elements, those are 

polynomial basis, normal basis, triangular basis and RB, and 

the choice of representation of field elements has a major 

impact on the performance of the arithmetic circuits [7]–[9], 

[15]. Several algorithms for basic arithmetic operations in GF 

(2𝑚 ) are suitable for both hardware and software 

implementations have been recently developed. Because of 

several advantages of the RB based multipliers [6], [10] they 

have gained significant attention in recent years. Like normal 

basis multipliers, RB multipliers offer free squaring, they also 

involve lower computational complexity and can be 

implemented in highly regular computing structures [10]–

[14]. Several digit-level serial/parallel structures for RB 

multiplier over GF (2𝑚 ) have been reported in the last few 

years [10]–[14]. An efficient serial/parallel multiplier using 

redundant representation has been presented [10]. A bit-serial 

word-parallel (BSWP) architecture for RB multiplier has then 

been reported [11]. Several other RB multipliers have also 

been developed for reducing the complexity of 

implementation and for high-speed realization [12]–[14].   

2. LITERATURE REVIEW 
Multiplication is more complicated, whereas division or 

inversion can be broken down into a series of consecutive 

multiplication operations. Therefore in practice, a binary field 

(Galois field of characteristic two) multiplier becomes the key 

arithmetic unit and VLSI design core for the hardware 

systems, based on Galois field computations. The way in 

which GF (2𝑚 ) multiplication is performed is dependent on 

the representation bases in a binary field. Efficiency of Galois 

field multiplication depends on the choice of the basis to 

represent field elements. Bases that have been used for 

efficiently realizing Galois field multipliers include 

polynomial basis, normal basis (NB), dual basis, triangular 

basis, and redundant representation or redundant. Among 

these, redundant basis representation is especially interesting, 

because likewise normal basis multiplier it offers almost free 

squaring and also eliminates modular operation for 

multiplication. RB representation has high modularity and 

exhibits carry-free addition, which can be used to design high 

performance multipliers. The main idea of multiplication 

using redundant representation is to perform multiplication by 

embedding the field in a larger ring. The ring used here is a 

cyclotomic ring and has a very simple structure, such that the 

modular operation can be saved in a multiplication operation. 

The main drawback for redundant representation is that it uses 

more bits to represent an element as compared to other 

representation basis. The number of representation bits 

depends on the size of the cyclotomic ring. However, for the 

class of fields GF (2𝑚 ) for which there exists a type I optimal 

normal bases (ONB), the number of bits required for a 

redundant representation of a field element is slightly higher 

for large m—(m+1) bits compared to m bits used for the other 

bases. The work done in the field of redundant representation 

and RB multipliers over GF (2𝑚 ) in all these years is depicted 

in Table 1. 
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Table 1.  RB multipliers over GF (2
m

) and their features 

Reference 

Number 

Year Scheme Remarks 

[6] 1998 Redundant representation introduction Time and area complexities reduced as compared to 

normal and other bases 

[18] 2001 Redundant basis multiplication introduction Low power computation 

[10] Nov. 

2002 

Smallest value of GF variable is defined for 

practical uses 

Bit serial and bit parallel architectures for 

multipliers 

Time and space complexities reduced 

[17] Dec. 

2002 

Optimal representation on Redundant basis Representation and corresponding application’s results 

improved 

[19] 2003 Elements of GF are represented as elements in a 

ring 

Time efficient multiplier with little increase in number of 

gates(XOR and AND gates) 

[12] 2008 SIPO multiplier  architecture and algorithm All complexities are reduced 

[13] 2009 Word level RB multiplication algorithm Reduced delay 

[14] 2012 New word level RB multiplication algorithm Hardware utilization efficiency increased, and this 

multiplier is faster as compared to previous word level RB 

multiplier. Critical path delay independent of the size of 

the field (m in GF (2m)) and word (w). 

[16] 2015 Lesser number of partial products are generated 

using bit matrix form 

Number of registers and adders is reduced, also calculation 

time is reduced 

 

3. REDUNDANT BASIS   

REPRESENTATION  

3.1 Polynomial Ring Representation 
Polynomial Ring Representation is the first redundant 

representation of GF (2𝑚 ) [6] 

Consider the residue polynomial ring 𝐹2(x)/ (𝑥𝑛  +1), where 

gcd (n, 2) = 1, and let h(x) be an irreducible factor of 𝑥𝑛  +1 in 

𝐹2(x), deg [h(x)] = m. The polynomial g(x) = (𝑥𝑛  +1)/h(x) 

generates a minimal ideal (binary irreducible cyclic code) in 

𝐹2(x)/ ( 𝑥𝑛  +1), denoted by g(x). The irreducible cyclic code 

has block length of n, dimension m, and parity check 

polynomial h(x). It is well known that g(x), together with 

addition and multiplication modulo 𝑥𝑛  +1, is isomorphic to 

the field 𝐹2𝑚 = 𝐹2(α), where 𝛼−1 is a root of h(x). In 

particular, the following are field isomorphism: 

Ψ: {g(x)}       𝐹2𝑚 =  𝐹2(α) 

Ψ: α(x)       α (α-1) 

Φ: 𝐹2𝑚 =  𝐹2(α)       {g(x)} 

Φ:     ρ             Tr(𝜌𝛼i)𝑥in−1
i=0    

Where Tr denotes the GF (2𝑚 ) linear trace mapping from 

𝐹2𝑚 =  𝐹2(α) onto 𝐹2. Ψ and Φ are easily seen to be inverses of 

each other. The identity in the field {g(x)} is the primitive 

idempotent e(x) ϵ g(x).  

Under the isomorphism Ψ and Φ, the elements of 𝐹2𝑚  are 

written as polynomials in x of degree n − 1 or less lying in 

g(x). The representation is called polynomial ring 

representation. 

The elements of 𝐹2𝑚  take the form 𝑎0 + 𝑎1x + …. +  

𝑎𝑛−1𝑥
𝑛−1 where 𝑎𝑖  ϵ 𝐹2. The representation is redundant 

because it uses n components, instead of m < n components as 

in conventional representations. 

3.2 Optimal redundant Representation 
The optimal redundant representation of GF (2𝑚 ) [17], [18] is 

useful when implementing GF (2𝑚 ) arithmetic on hardware. 

The smallest n ϵ IN with GF (2) [x]/ ( 𝑥𝑛  +1) containing an 

isomorphic copy of GF (2𝑚 ), m>1, is n: min {k ϵ IN: 𝑥𝑘  +1 

has an irreducible divisor in GF (2) [x] of degree d ϵ IN such 

that m|d} 

n is odd because, for n=2.n’, 𝑥𝑛  +1= (𝑥𝑛′  +1)2. Hence, in 

contradiction to the minimality of n, the polynomial xn’+1 

would contain an irreducible divisor of the required degree. 

The polynomial xn+1 are square-free because 𝑥𝑛  +1 has no 

multiple roots. Thus, from the Chinese Remainder Theorem, 

we know that GF (2) [x]/ ( 𝑥𝑛  +1) is isomorphic to a direct 

product of fields:  

GF(2)[x]/(𝑥𝑛  +1)  𝑘1X……X𝑘𝑠 .; where 𝑘𝑖  =GF(2)[x]/(𝑓𝑖(x)) 

for some irreducible factor 𝑓𝑖(x) of 𝑥𝑛  +1 (1 ≤ i ≤ s). If m|deg 

(𝑓𝑖) for some irreducible factor 𝑓𝑖(x) of 𝑥𝑛  +1, then GF (2𝑚 ) is 

a subfield of 𝑘𝑖  and consequently contained in GF (2) [x]/ ( 𝑥𝑛  

+1). 

Conversely, let F: =GF (2m) be contained in GF (2) [x]/ (𝑥𝑛  

+1) Š  

For each 1 ≤ i ≤ s, let 𝛱𝑖  be the projection  

 𝛱𝑖  : F      GF (2) [x]/ ( 𝑥𝑛  +1) ≅ 𝑘1 X …. X 𝑘𝑠     𝑘𝑖 : Each 𝛱𝑖  

is either the zero map or injective since F and 𝑘𝑖  are fields. 

But, they cannot all be the zero maps since F injects into the 
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product 𝑘1 X …. X𝑘𝑠. Therefore, at least one  𝛱𝑖  is injective, 

so F is a subfield of some 𝑘𝑖  

3.3 New Ring Representation 
The new ring representation of RB representation of GF (2𝑚 ) 

[19] when used to implement multipliers, increases hardware 

but makes them faster. 

In cryptographic applications, fields based on low weight 

irreducible polynomials are desired. The weight of a 

polynomial is the number of terms in it. For example, the 

weight of (x7 + x3 + x+1) is 4. About half the irreducible, 

minimum weight polynomials of degree less than 10,000 have 

weight 3 (these are called trinomials) and the rest have weight 

5 (these are called pentanomials).  

The new rings are  

GF (2) [x]/ (𝑥𝑛  +𝑥𝑘+1) and GF (2) [x]/ ( 𝑥𝑛  +𝑥𝑘1 +𝑥𝑘2 +1).  

In each of these rings, there is an isomorphic copy of the field 

defined by pentanomials. Multiplication in the rings is faster 

than multiplication in a field defined by pentanomials because 

the new rings are based on 3 and 4-term polynomials.  

Let f2(x) be an irreducible polynomial of degree m. In what 

follows, there are polynomials, f2(x) such that either 𝑥𝑛  

+𝑥𝑘+1 = 𝑓1(x) X 𝑓2 (x) or  𝑥𝑛  +𝑥𝑘1 +𝑥𝑘2 +1 = 𝑓1(x) X 𝑓2 (x) 

is satisfied. In both cases, the degree of 𝑓1(x) must be as low 

as possible in order to make multiplication in rings based on 

3-term and 4-term polynomials faster than multiplication in 

fields based on pentanomials. The two new rings satisfy the 

following: 

GF (2) [x]/ ( 𝑥𝑛  +𝑥𝑘+1) = GF (2) [x]/ 𝑓1(x) xor GF (2) [x]/ 

𝑓2(x) 

Or 

GF (2) [x]/ ( 𝑥𝑛  +𝑥𝑘1 +𝑥𝑘2 +1) = GF (2) [x]/f1(x) xor GF (2) 

[x]/𝑓2(x) 

Note that, in each of the above equations, 𝑓1(x) is different. 

Therefore, the procedure to find a ring which contains an 

isomorphic copy of a field, GF (2𝑚 ), in which multiplication 

must be done, is as follows: Assume that no irreducible 

trinomial exists of degree m. 

1. If an irreducible All One Polynomials of degree m exists, 

then perform the multiplication in GF (2) [x]/ ( 𝑥𝑛+1), where 

n =m + 1.  

2. If no ring GF(2)[x]/( 𝑥𝑛+1) can be found such that 

n=(m+1), then find a ring GF(2)[x]/( 𝑥𝑛  +𝑥𝑘+1) such that 𝑥𝑛  

+𝑥𝑘+1 =  𝑓1(x)X𝑓2(x) for some irreducible 𝑓2(x) of degree m. 

Note that n should be as small as possible.  

3. Find a ring GF (2) [x]/ ( 𝑥𝑛  +𝑥𝑘1 +𝑥𝑘2 +1) such that 𝑥𝑛  

+𝑥𝑘1 +𝑥𝑘2 +1 = 𝑓1(x) X𝑓2(x) for some irreducible 𝑓2(x) of 

degree m. 

4. Perform multiplication of elements in a field, GF (2𝑚 ), 

defined by a pentanomial.  

5. Choose one of the representations from Steps 2, 3, or 4 

above for which the multiplier complexity is minimal. 

A polynomial of the form 𝑓2(x) = 𝑐0 + 𝑐1x + 𝑐2𝑥2 +…. +𝑐𝑚𝑥m 

is written as (𝑐𝑚 ,𝑐𝑚−1,….,  𝑐1, 𝑐0). The coefficients ci are in 

GF (2).  

To satisfy 𝑥𝑛+𝑥𝑘+1 = 𝑓1(x)X𝑓2(x), where 𝑓1(x)=x2 +x+1, 𝑓2(x) 

must be one of the following two forms: 

(1;101;101;...;101;1;101;101;...;101;1) (call this type A) or 

(1;101;101;...;101;10;101;101;...;101;1) (call this type B). 

These forms have the pattern (1, 0 or more 101s, 1 or 10, 0 or 

more 101s, 1). If 𝑓2(x) is of the form (type A) (1, x repetitions 

of 101, 1, y repetitions of 101, 1), then it follows that k=n-3x-

2 or 3y+2. If 𝑓2(x) is of the form (type B) (1, p repetitions of 

101, 10, q repetitions of 101, 1), then it follows that k =n-3p-4 

or 3q+1. 

To satisfy 𝑥𝑛  +𝑥𝑘1 +𝑥𝑘2 +1=  𝑓1(x)X𝑓2(x), where  𝑓1(x)=x+1, 

𝑓2(x) must be of the form (1;1;1;1;...1 ;0;0;0;...0 ;1;1;...;1).  

If 𝑓2(x) is of the form (p repetitions of 1, q repetitions of 0, r 

repetitions of 1), then it follows that k1=n-p and k2=r. 

4. MATHEMATICAL FORMULATIONS 
Redundant Basis Multipliers offers negligible hardware cost 

for squaring, provides lower computational complexities, and 

also can be implemented in highly regular computing 

structures. 

4.1 Digit Serial RB Multiplier 
In Digit serial RB multiplier [12],[16] digit wise partial 

products for the digit serial multiplication where operands A 

and B are decomposed into a number of digits, and then the 

addition of those partial products is done to compute the 

product word. 

Assuming x to be a primitive nth root of unity, elements in GF 

(2𝑚 ) can be represented in the form: 

         A= 𝑎0 + 𝑎1x + …. +  𝑎𝑛−1𝑥
𝑛−1                                   (1) 

Where 𝑎𝑖   ϵ GF (2), for 0≤ i ≤ n-1, such that the set {1, 

x,𝑥2,….., 𝑥𝑛−1} is defined as the RB for GF (2𝑚 ) elements, 

where n is a positive integer not less than m [6], [10]. 

For a GF (2𝑚 ), when (m+1) is prime and 2 is a primitive root 

modulo (m+1), there exists a type I optimal normal basis 

(ONB) [10], where x is an element of GF (2𝑚 ), and n=m+1. 

Let A, B ϵ GF (2) be expressed in RB representation as  

                                A=  𝑎𝑖𝑥
𝑖𝑛−1

𝑖=0                                          (2) 

                                B=  𝑏𝑖𝑥
𝑖𝑛−1

𝑖=0                                          (3) 

where 𝑎𝑖 , 𝑏𝑖   ϵ GF (2). Let C be the product of A and B, which 

can be expressed as follows 

                         C= A·B =  (𝑥𝑖𝑏𝑖)
𝑛−1
𝑖=0 ·A 

                            =  (𝑛−1
𝑖=0  𝑏𝑖𝑥

(𝑖+𝑗 ))𝑎𝑗
𝑛−1
𝑗=0  

                            =  (𝑛−1
𝑗=0  𝑏(𝑖−𝑗 )𝑛𝑥

𝑖)𝑎𝑗
𝑛−1
𝑖=0  

                            =  (𝑛−1
𝑖=0  𝑏(𝑖−𝑗 )𝑛  𝑎𝑗 )𝑥𝑖𝑛−1

𝑗=0                        (4) 

where (i-j)n denotes modulo n reduction. Define C= 𝑐𝑖𝑥
𝑖𝑛−1

𝑖=0  

where 𝑐𝑖  ϵ GF (2), then 

                            𝑐𝑖  =  𝑏 𝑖−𝑗  𝑛  𝑎𝑗
𝑛−1
𝑖=0                                    (5) 

4.2  Word Level RB Multiplier  
In Word Level RB Multiplier [13], both the operand A and B 

are decomposed into number of blocks to achieve digit serial 

multiplication, and after that the partial products 

corresponding to these blocks are added together to obtain the 

desired product word.  

Considering equations (1) to (5) of Digit Serial RB Multiplier 

(3.1)  
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Let w denotes the word size. Then the operand A in RB 

representation in k= [n/w] words 

     A= 𝑎0 …𝑎𝑤−1       
𝐴0

𝑎𝑤 …𝑎2𝑤−1       
𝐴1

𝑎2𝑤 …  𝑎 𝑘−1 𝑤 …𝑎𝑛−10…0             
𝐴𝑘−1

 

Note that 𝑎𝑗=0 if j > n-1 

Replace j in (5) with hw+l 

𝑐𝑖  =   𝑎ℎ𝑤+𝑙𝑏𝑖−ℎ𝑤−𝑙
𝑘−1
ℎ=0

𝑤−1
𝑙=0       ;   i =0,1,…..,n-1             (6) 

Define new signal 𝑑ℎ ,𝑖
(−1)

 as follows: 

𝑑ℎ ,𝑖
(−1)

 =0 and 

𝑑ℎ ,𝑖
(𝑙)

 = 𝑑ℎ ,𝑖
(𝑙−1)

 + 𝑎ℎ𝑤+𝑙𝑏𝑖−ℎ𝑤−𝑙     ; for l=0,1,……,w-1           (7) 

then it follows from (7) 

𝑑ℎ ,𝑖
(𝑤−1)

=  𝑎ℎ𝑤+𝑙𝑏𝑖−ℎ𝑤−𝑙
𝑤−1
𝑙=0                                                 (8) 

comparing (6) with (8), it follows: 

𝑐𝑖  =  𝑑ℎ ,𝑖
(𝑤−1)𝑘−1

ℎ=0                                                                                              (6) 

This multiplier is faster than previous defined multipliers, but 

has larger area complexities. 

4.3 Digit serial RB Multiplier using Bit         

        level matrix vector form 
In Digit serial RB Multiplier in a bit level matrix vector form 

[16], both the operands are decomposed into a number of 

blocks to achieve digit serial multiplication and after that the 

partial products corresponding to these blocks are added 

together to obtain desired product word. 

Considering equations (1) to (4) of Digit Serial RB Multiplier 

(III.A) 

Where (i-j)n denotes modulo n reduction. Define C in a bit 

level matrix vector form as: 

            

c0

c1

⋮
cn−1

 =  

b0

b1

     bn−1

   b0
⋯

b1

b2

⋮                 ⋮ ⋱ ⋮
bn−1 bn−2 ⋯ b0

  

a0

a1

⋮
an−1

                  (5) 

Looking at the structure of bit matrix in (5), n bit shifted 

(reduced) forms of operand B can be defined as follows 

           𝐵0 =  𝑏𝑖
0𝑥𝑖𝑛−1

𝑖=0  = 𝑏0 + 𝑏1x + …. +  𝑏𝑛−1𝑥
𝑛−1 

           𝐵1 =  𝑏𝑖
1𝑥𝑖𝑛−1

𝑖=0  = 𝑏𝑛−1 + 𝑏0x + …. +  𝑏𝑛−2𝑥
𝑛−1      (6)                                       

                      ……………………………………………… 

            𝐵𝑛−1 =  𝑏𝑖
𝑛−1𝑥𝑖𝑛−1

𝑖=0  = 𝑏1 + 𝑏2x + …. +  𝑏0𝑥
𝑛−1 

where 

           𝑏0
𝑖+1 = 𝑏𝑛−1

𝑖  

           𝑏𝑗
𝑖+1 = 𝑏𝑗−1

𝑖   ; for 1 ≤ j ≤ n-2                                       (7)                                                     

The recursions on (7) can be extended further to have  

           𝑏𝑗
𝑖+𝑠  =  

bn−s+j
i for 0 ≤ j ≤ s − 1

bj−s
i                   otherwise

                            (8)                                                

where 1 ≤ s ≤ n-1. 

Let Q and P be two integers such that n = QP + r,              

where 0 ≤ r < P. for simplicity of discussion, it is assumed that 

r=0, and decompose the input operand A into Q number of bit 

vectors 𝐴𝑢  for u = 0,1,….., Q-1, as follows: 

           𝐴0 = [𝑎0 𝑎𝑄 …. 𝑎𝑛−𝑄] 

           𝐴1 = [𝑎1 𝑎𝑄+1 …. 𝑎𝑛−𝑄+1] 

                    ……………………….                                      (9) 

           𝐴𝑄−1 = [𝑎𝑄−1 𝑎2𝑄−1 …. 𝑎𝑛−1]  

Similarly, Q number of shifted operand vector 𝐵𝑢  can be 

generated, for u = 0,1,…., Q-1 

           𝐵0 = [𝐵0  𝐵𝑄  …. 𝐵𝑛−𝑄] 

           𝐵1 = [𝐵1 𝐵𝑄+1 …. 𝐵𝑛−𝑄+1] 

                    ……………………….                                    (10)                                                               

           𝐵𝑄−1 = [𝐵𝑄−1 𝐵2𝑄−1 …. 𝐵𝑛−1]  

The product C=A·B given by the bit level matrix vector 

product in (5) can be decomposed into Q inner products of 

vectors 𝐴𝑢   and 𝐵𝑢   for u = 0,1,…., Q-1 as: 

           C=A·B = 𝐵0𝐴0
𝑇  + 𝐵1𝐴1

𝑇  + …. + 𝐵𝑄−1𝐴𝑄−1
𝑇   

           C =  𝐵𝑢
𝑄−1
𝑢=0 𝐴𝑢

𝑇   =  𝐶𝑢   
𝑄−1
𝑢=0                                      (11)   

Where 𝐶𝑢    = 𝐵𝑢𝐴𝑢
𝑇                                                      

Note that each 𝐴𝑢  for u = 0,1,….,Q-1 is a P point bit vector 

and each 𝐵𝑢  for u = 0,1,….,Q-1 is a P point bit shifted forms 

of operand B. From (11) and (12) it can find that the desired 

multiplication can be performed by Q cycles of successive 

accumulation of 𝐶𝑢   for u = 0,1….,Q-1 while each  𝐶𝑢    can be 

computed as  𝐶𝑢    =  𝐵𝑢+𝑣𝑄𝑎𝑢+𝑣𝑄
𝑃−1
𝑣=0  . 

The partial products generated in this multiplier are lesser in 

numbers than those generated in above multipliers, which 

reduces the computation time, and also reduces register and 

adder complexities of RB multipliers. 

5. COMPARISON OF MULTIPLIERS 
In order to compare the hardware requirements of the above 

discussed multipliers some notations need to be considered. 

Let R be the number of multiplication nodes, S be the number 

of parallel arrays, n be the integer and n=m+1 in GF (2𝑚 ). 

The hardware requirements are compared on the number of 

AND gates, XOR gates and Registers required implementing 

the multiplication and it is represented in Table 2.  

 

Table 2. Comparison of Hardware Requirements 

Multipliers Registers AND Gates XOR Gates 

4.1 n Rn R(n-1) 

4.2 (R+1)n Rn (2R-1)n 

4.3 Rn+2n Rn Rn 

According to (11), the RB multiplication can be represented 

by the 2 dimensional Signal Flow Graph (SFG), in which it is 

considered that 𝑻𝑨 and 𝑻𝑿 are the delay of an AND gate and 

an XOR gate respectively. The time duration of critical path is 

calculated from SFG represented by 𝑻𝒄𝒑, and with this 

Average Computation Time (ACT) is calculated for above 

discussed multipliers shown in Table 3. 
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Table 3. Comparison of Critical Path and ACT 

Multipliers Critical Path ACT 

4.1 𝑻𝑨 + [log2n] 𝑻𝑿 S𝑻𝒄𝒑 

4.2 𝑻𝑨 + 𝑻𝑿 S𝑻𝒄𝒑+ [log2R] 𝑻𝑿 

4.3 𝑻𝑨 + 𝑻𝑿 S𝑻𝒄𝒑 

6. CONCLUSION 
RB multipliers over GF (2𝑚 ) are very popular in Elliptic 

Curve Cryptography because of their negligible hardware cost 

for squaring and modular reduction. Word Level RB 

multiplier is the most efficient among all multipliers in terms 

of hardware utilization. Digit serial RB multiplication in a bit 

level matrix vector form is most efficient in terms of area-time 

complexities. Future works can be done to find out new 

methods to obtain partial products in lesser time and with less 

hardware requirements. 
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