
International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.2, March 2016

44

A Brief Survey of Detection and Mitigation Techniques

for Clickjacking and Drive-by Download Attacks

Tatwadarshi P. Nagarhalli
P. G. Student

Shree L.R. Tiwari College of
Engineering

Mumbai, India

J.W. Bakal, PhD
Principal,

Shivajirao S. Jondhale College of
Engineering,

Mumbai, India

Neha Jain
Asst. Prof.

Shree L.R. Tiwari College of
Engineering

Mumbai, India

ABSTRACT
With the advent of the World Wide Web the whole world

became closure to each other. Further it has provided a

medium to socialise over long distances. This has further

abated the growth of many social media platforms. The social

media platforms have brought many, even the non tech-savvy

user on the internet. So, social media platform users have

become an easy targets of the attackers and hackers who

exploit the vulnerabilities of users, including the web

browsers. Clickjacking and drive-by downloads have become

a popular tools through which the attackers try to exploit the

users. This paper takes a look at the different systems that

have been proposed to detect, mitigate and prevent

clickjacking and drive-by download attacks.

Keywords
Clickjacking, Drive-by Download, Social Media Attacks.

1. INTRODUCTION
The rapid proliferation of internet usage has made interaction

between people, even living very far apart, possible on click

of a button. One of the most popular medium for interaction is

the social media. Social networking has become a popular

way for users to meet and interact online. Users spend a major

amount of time on different social network platforms such as

Facebook, Twitter, Google Plus, etc. Intentionally or

unintentionally sharing a significant amount of their private

and often sensitive information on the social network [9].

Because of this social networks have become a treasure chest

of private and sensitive data. Also, it has been seen that social

network users tend to have a very high level of blind trust

toward other social network users. They friend requests rather

easily, and also trust thing, attachments that their friends send

to them with closed eyes. This information of the blind faith

shown by the users on their social networks and the kind of

information that they share attracts the interest of

cybercriminals. Attackers uses a several modern attack

techniques on social networking sites like clickjacking,

malicious browser extensions via drive-by-downloads, URL

shorteners and socially engineered script injection.

In clickjacking an attacker uses transparent layers to trick the

user into clicking on a button or a link on another page when

in fact they wanted to click on a top level page which was not

supposed to be harmful. In Drive-by download attacks just by

visiting a malicious web site will lead to the download and

subsequent execution of malicious and harmful software on

the visitor‟s computer. After downloading, the application is

invoked and is free to perform its immoral purposes. URL

shortening services replaces long and difficult to remember

URLs with shorter ones, which can be easily remembered, and

subsequently redirects all requests for this short- ended URL

to the original long URL. On the internet there are number of

free and open source software‟s that provide this service. And,

source code for any software that is created under this license

is open for anyone to modify, hack or build upon. In Cross

Site Scripting (XSS) attack an attacker manages to inject Java

script code or sometimes other code into a website causing it

to execute the code.

Many solutions have been proposed to identify and mitigate

these kind of attacks.

2. DIFFERENT ATTACKS THROUGH

SOCIAL NETWORK

2.1 Clickjacking
Clickjacking is also known as UI-redressing. It is one of the

most popular attacks on the internet. In Clickjacking, the

attackers trick users to click on targets, this targets might to a

different page. The Users assume that they clicked on buttons

and they know then next intended actions, but they are

unaware that they have actually clicked on invisible buttons

which might be mapped to a remote page, set up by the

attacker. This is generally done by using some invisible

frames in overlaid frames in web page [1]. This is how the

attackers try to steal a genuine mouse clicks and utilize it to

perform some malicious tasks which are advantageous to them

but harmful to the user. It has been found out that the attackers

generally make use of the HTML Iframe element. An html

<iframe> tag helps in embedding another HTML page into the

current web page [2]. This property of the <iframe> tag is

exploited by the attacker for clickjacking.

2.2 Drive-by download and Malicious

Browser extensions

A drive-by download attacks one of the most easy and

common attack used to spread malware or malicious codes

over the internet. In drive-by download the malware is

downloaded from the Internet into the user‟s computer

without user‟s knowledge or alarm. Generally, in the recent

times, the drive-by download target the add-on or plugins

which are generally developed by any third party [4, 5]. One

of the reasons for taking advantages of these add-ons and

plugins might be that these third party softwares are less tested

against different type of attacks that might take place on the

said add-on and plugin. The attacker takes advantage of this

and targets these unsuspecting small softwares. In some cases

it is possible that the user, through ignorance, authorizes the

malicious downloads without fully understanding the

consequence of his actions.

2.3 URL Shorteners
URL shortening is a process of reducing the length of the

Uniform Resource Locator (URL) as many a times it becomes

difficult to keep in mind long URLs. In a very short time it

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.2, March 2016

45

has become a very popular way escape from the often long

URLs. URL shortening is technique through which the often

long URLs which are difficult to remember are made

substantially shorter, but still they redirect to the in intended

or required page [7]. But on the flip side for any users it is

difficult to determine where the URLs will eventually take the

users to. The attackers generate post which might be based on

some popular news or events, and then rather than using the

real link, they use the fake shortened URL. When the user

clicks on this link he is redirect to malicious web sited

triggering a chain of actions. Also, in the social network

people tend to blindly trust their co social network users. This

trust is also exploited by the attackers, by posting a shortened

URL on a friend‟s message board. This greatly increases the

chances of the malicious link being clicked.

2.4 Socially engineered XSS
Cross-site scripting (XSS) is one of the most popular

application layer attack techniques.

Generally a web page does not contain only a static page. A

static page will have full control over its contents and hence

not vulnerable to XSS attacks. To make the look and feel

better a web page in most cases will contain many dynamic

contents in it. If a web site contains dynamic pages the server

has no control as to how the information is interpreted by the

client‟s web browser.

With the help of the XSS the attacker will be able to inject

malicious client side scripts into the victims‟ browser. The can

further information about the client to the attacker, thus

compromising the user‟s computer.

When one user is infected with XSS it spread fast to other

users with the help of the web browser of the already infected

user itself. And since the social networks heavily depends on

the connectivity of the users the XSS virus have enough

options to spread itself exponentially like a chain from one

computer to another computer.

The Detection and Mitigation Techniques for Clickjacking

and Drive-by Download attacks are:

3. CLICK JACKING
Lin-Shung Huang et. al. [10], have classified clickjacking into

three type according to the type of integrity that has been

compromised. These include compromising target display,

compromising cursor integrity and compromising temporal

integrity.

Compromising target display: The target display is

compromised by misusing the feature of the <iframe> tag that

the HTML provides. The existence is completely made

invisible by making the div container opacity zero in the CSS.

It is also possible for the attacker to crop some part of the

genuine target element and embed the malicious code.

There many proposals to detect and mitigate attacks on target

displays. For blacklisted domains Facebook has introduced

conformation schemes for like buttons [11]. This technique

works well in the specified domain. But the problem with this

technique is that it is domain specific and it would have to be

repeated each and every website specifically, which is a

cumbersome job. Also, the user experience gets degraded and

this is still vulnerable to double click attacks.

B. Hill [12] has proposed a method where the user interface is

randomized. That is, the clickable areas in the web page will

be different every time the page loaded. The major drawback

of this approach is that the attacker may force the user to keep

on clicking till the desired result has been achieved.

H. J.Wang et. al. [13], developed a new web browser, the

Gazelle web browser. This web browser forces the opaque

rendering of all the cross-origin frames. The advantage of this

approach is that it makes all cross-origin frames to become

visible and the user will be aware of where he is clicking. On

the other hand the whole idea of <iframe> tag is defeated as

the invisibility of all the frames is snatched.

Rather than disallowing the working of the <iframe> tag

completely it is better to disable mouse click if the browser

detects any cross-origin invisible content. The same concept is

used by ClearClick, an extension available for Firefox

browser which was introduced into the NoScript plugin [14,

16]. It tries to detect any mouse click event redirects to any

invisible content or frame. If it does then the ClearClick

prompts a warning to the user whether he wants to continue or

not. Only after confirmation the invisible frame is rendered.

But was observed that ClearClick generated many false

positives, this is because ClearClick assumes that all cross-

origin frames are a Clickjacking attempts, which in most cases

are not. Thus making the user experience cumbersome.

To reduce the false positives Marco Balduzzi et. al. [15]

introduce a new plug-in called the ClickIDS. The idea behind

this plug-in is quite simple, this plugin checks whether there

exists two or more clickable elements where the user intends

to click or where the frames overlap on a particular page. For

detection purpose this plug-in checks all the clickable

elements, that is all the <a>, <embed>, menu, text fields,

checkbox and radio buttons are scanned.

In ClickIDS whenever a page is loaded a page-handler routine

is executed and it initiates a new routine to handle clicks

called the click-handler routine. And whenever in a page the

user clicks his click-handler routine registers the coordinates

of the mouse click. After registering the coordinates the web

page including the FRAME‟s are scanned and checked

whether there is another clickable element at the same

coordinates. If a clickable element is found at the same place

then an alert is generated.

The ClickIDS works very well when attacks are based on

overlapping elements. But, attacks based on partially

obstructed pages is not identified by ClickIDS, unlike

NoScript. Also, the number of false positives generated by is

plug-in is rather high. So the authors propose to use the

ClickIDS along with a slightly modified NoScript plugin. The

modification that has been is that rather than generating a

popup when an attack is detected the event is registered for

further use of ClickIDS. When used both ClickIDS and

NoScrip together the number false positives decreases

drastically. One flaw that still remains is that this technique

does not take into consideration the cursor spoofing attacks,

through which Clickjacking attacks can succeed. Also, the

system only checks for clickable elements; the attacker can

develop a transparent FRAME over a text field.

To counter the cursor spoofing attacks Lin-Shung Huang [10],

propose a new way called the InContext through which this

can be mitigated. In InContext like the ClearClick the systems

compares the bitmap image of the system. The only difference

is that the InContext compares the bitmap of the Operating

System lever screenshot with the screen shot after the click

when invisible FRAMS might start working. If the two

compared image differ then the user action is cancelled. This

system ensures visual integrity and also reduces the number of

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.2, March 2016

46

false positives. But this system enforces that at the host level

the CSS transforms are not applied. Due to this the visual

experience and the user flexibility is compromised.

Another system proposed by Krishna Chaitanya T. et. al. [3],

enforces a simple policy change in the ClearClick. The

ClearClick checks for clickjacking only when the IFRAMS

originate from a different place. But if the hacker used the

same space as the origin the ClearClick extension was not able

to detect the attack. So, to counter this problem a simple

policy change was proposed where even the same origin

IFRAMS are also supposed to be scanned for any probable

attacks. This simple policy change ensures that even if the

attacker used the same origin space it is scanned for any

malicious activities. This system improves the performance of

ClearClick but still the number of false positives do not reduce

that drastically. Also this will need extension specific

approval.

i. Compromising courser integrity: To mitigate attacks

which compromise the integrity of the courser

almost all the updated web browser enforce that all

the cross-origin customization of the coursers are

disallowed [10]. Further enforces a rule where, if

any sensitive elements are present than no

customization is allowed altogether. Also this

system disables any type of sound as it is believed

that any type of sound distracts the user. This

ensures the systems performance but the user

experience is hampered.

ii. Compromising temporal integrity: To ensure that

temporal integrity is maintained [10] enforce many

new policies like delaying the user interface,

delaying the user interface after the pointer entry,

ensuring that the pointer has to be reentered into the

sensitive space if any sensitive elements newly

become visible, padding the area around the

sensitive elements. The major impact of these

policies is that the memory overhead is large apart

from affecting the user experience.

4. DRIVE-BY DOWNLOAD
Generally the drive-by download involves the following steps

[6, 17].

i. The attacker compromises a legitimate web

application, add-ons, or plugins.

ii. The attacker inserts malicious codes into the

compromised legitimate web applications, thus

compromising the web server.

iii. Now when the user sends a request to the

compromised web server the web server send the

malicious code to the user.

iv. After download the malicious codes executes in the

user‟s computer, thus compromising the user‟s

computer. This might give the complete control of

the computer to the attacker

Many techniques have been proposed to detect, mitigate and

prevent drive by download attacks. At each stages of the

drive-by download attack many techniques have been

proposed. Detecting and mitigating drive-by downloads at has

its own challenges. Table 1 lists the challenges faced at each

stages.

Table 1: Challenges

Stages Challenges

i Even a legitimate web pages can be compromised

ii Cloaking, obfuscation

iii Availability of vulnerability, missing zero-day

attack, time consumption

iv Once the malicious code has been executed the

user may face exploitation including delay

exploitation, there is a possibility that user might

detect virtual environment, hooked function

might be detected.

Marco Cova et. al. [18], have proposed no less than ten

features that need to be included into the web browser to

detect the anomalies while download is taking place and

monitor those download closely to detect and prevent

malicious codes from getting downloaded onto the user

systems. The features include the tracking of different browser

components like the ActiveX controls and plugins, keeping

track of the parameters passed by the functions, also keeping

track of the number of times the browser has been redirected

to a different URLs. All these features does help in reducing

the number of drive-by download attacks but rather than using

a full-fledged browser the system has been tested on an

HtmlUnit emulator. The integration of all the said features

into a web browser seems a task and also the memory

requirements have not been mentioned considering the

amount of monitoring has is required.

Pratik Upadhya et. al. [19], extend the concept of Browser

Guard initially proposed by Fu-Hau Hsu et. al. [20], in 2009.

In the proposed solution to detect and mitigate drive-by

download the Browser Guard sets several check points on a

browser and the windows kernel. This helps in detecting a

download content and further blocking downloaded malicious

codes at runtime, without needing user prompting. The

blocking is done as the Browser Guard maintains a set of lists,

White list and Black List. All the download initiated by the

URLs present in the White list is allowed continue and all

downloads initiated by the URLs present in the Black list is

blocked, this is known as the filtration phase of the Browser

Guard. The next phase is the prohibition phase, here the hash

value of the executable file is calculated and all the Black

listed hash value files are blocked from executing. The kernel

component of the Browser Guard makes sure that the check

points are not bypassed by the multiple downloads initiated.

The system helps in detecting and mitigating drive-by

downloads attacks but, the system fails in the case of shadow

attacks.

Krishna Chaitanya T et. al. [3], observed that the web servers

have no say with regards to whether the users can or cannot

download any extensions or executable files. It was further

observed that if the web servers were given the authority to

say whether the user can download the extensions many drive-

by downloads can be mitigated. As, the web servers can detect

whether the download is initiated by itself or third malicious

party has initiated the download. So, it suggests that a

declarative security policy should be set where the web

servers have an option to allow or deny the download of any

extensions.

The declarative policy is implemented by the administrator or

developer of the web page. The Administrator or the

developer declares a new HTTP response header, „X-

Extension-Permit‟. When the browsers detect this „X-

Extension-Permit‟ HTTP header, they execute the requested

security policy, thus giving the web browser a say in the

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.2, March 2016

47

download extensions. But this verification from the source site

is also hinders the user experience and autonomy.

5. ANALYSIS
Table 2 provides a brief analysis of three clickjacking attack

detection and mitigating techniques that have been discussed.

Table 2: Analysis of Clickjacking Papers

Parameters Analysis and detection of

modern spam techniques

on social networking sites

[3]

A solution for the

automated detection

of clickjacking

attack [15]

Clickjacking: Attacks and Defenses

[10]

Input WebPages WebPages WebPages

Existing solution NoScript extension for

Clickjacking

NoScript extension

for Clickjacking

oScript extension for Clickjacking.

Proposed Solution Sample Chrome extension

for Clickjacking

Automated System Automated System that compares

operating system level screenshots

Limitations Extension specific approval Testing unit only

interacts with the

clickable elements.

Enforcement of not applying CSS

transforms

Output Checks transparent Iframes

from cross origin as well as

from same origin

Generate report

which contains pages

having clickjacking

attempts and

transparent Iframes.

Checks transparent Iframes by

comparing the screenshots taken at

the operating system level and after

the invisible frames have initiated.

Also prevents courser spoofing.

Table 3 provides a brief analysis of three drive-by download

attack detection and mitigation techniques that have been

discussed.

Table 3: Analysis of Drive-By Download Papers

Parameters Analysis and detection of

modern spam techniques on

social networking sites [3]

Detection and Analysis of Drive-

by-Download Attacks and

Malicious JavaScript Code [18]

Runtime Solution for

Minimizing Drive-By-Download

Attacks [19]

Input WebPages WebPages WebPages

Existing

solution

Machine learning algorithms

for malicious browser

extensions

Machine learning algorithms for

malicious browser extensions

Tools like Patch Exe, NOP sleds

and Shell code, IMC.

Proposed

Solution

Extension GateKeeper for

malicious browser extension.

Ten features to monitor and

mitigate drive by download attacks

BrowserGuard

Limitations Verification from source sites Tested on HtmlUnit emulator.

Memory requirements are unknown

Not applicable in case of shadow

attacks

Output Execute the requested

security policy against

malicious browser

extensions.

Mitigate threats which arise from

drive by download attacks

Mitigate threats which arise from

drive by download attacks

6. CONCLUSION
With popularization of the social media many not to tech-

savvy users have been added into the World Wide Web. Also,

the attackers have been innovating and inventing newer

techniques to fool the user into diverging their secrets which

can be exploited. And, clickjacking and drive-by downloads

attack have become popular tools through which the attackers

exploit the vulnerabilities of the user.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.2, March 2016

48

Due to these reasons it is very important that extensive

research is conducted and automated systems are developed in

from time to time that can cope with eminent and ever

emerging threats from clickjacking and drive-by download

attacks. The future systems should be easily integrated into the

web browsers, it should be easy to use and its working should

be transparent to the user, it should be of capable handling

shadow attacks and should not enforce unreasonable

restrictions on the user. The future systems should ensure that

the vulnerabilities that exists in the whole process of web

interaction are not exploited by the attackers.

7. REFERENCES
[1] Clickjacking Attack Lab, Laboratory for Computer

Security Education,

http://www.cis.syr.edu/~wedu/seed/Labs/Vulnerability/C

lickJacking/ClickJacking.pdf

[2] https://developer.mozilla.org/en/docs/Web/HTML/Eleme

nt /iframe. Last accessed 16th, Dec, 2015

[3] Chaitanya, K. T., Ponnapalli, H., Herts D. and Pablo, J.

2012. “Analysis and detection of modern spam

techniques on social networking sites”, Third

International Conference on Services in Emerging

Markets, pp. 147-152

[4] Provos, N., Mavrommatis, P., Rajab, M. A., and

Monrose, F. 2008. “All your iframes point to us”,

USENIX Security Symposium.

[5] Provos, N., McNamee, D., Mavrommatis, P., Wang, K.,

and Modadugu, N. 2007. “The Ghost In The Browser

Analysis of Web-based Malware”, First Workshop on

Hot Topics in Understanding Botnets (HotBots ‟07).

[6] Egele, M., Wurzinger, P., Kruegel, C., and Kirda, E.,

“Defending Browsers against Drive-by Downloads:

Mitigating Heap-spraying Code Injection Attacks”,

https://www.iseclab.org/papers/driveby.pdf

[7] https://en.wikipedia.org/wiki/URL_shortening. Last

accessed 16th, Dec, 2015

[8] http://www.acunetix.com/websitesecurity/cross-site-

scripting/. Last accessed 16th, Dec, 2015

[9] Gunatilaka, D. “A Survey of Privacy and Security Issues

in Social Networks”,

http://www.cse.wustl.edu/~jain/cse571-11/ftp/social.pdf

[10] Huang, L., Moshchuk, A., Wang, H. J., Schechter, S. and

Jackson, C. 2012. “Clickjacking: Attacks and Defenses”,

21th USENIX (The Advanced Computing Systems

Association) Security Symposium.

[11] Wisniewski, C. 2011 “Facebook adds speed bump to

slow down likejackers”.

http://nakedsecurity.sophos.com/2011/03/30/facebook-

adds-speed-bump-to-slow-down-likejackers/.

[12] Hill, B. “Adaptive user interface randomization as an

anti-clickjacking strategy”.

http://www.thesecuritypractice.com/the_security_practic

e/papers/AdaptiveUserInterfaceRandomization.pdf

[13] Wang, H. J., Grier, C., Moshchuk, A., King, S. T.,

Choudhury, P. and Venter H. 2009. “The Multi-Principal

OS Construction of the Gazelle Web Browser”. In

Proceedings of the 18th Conference on USENIX Security

Symposium.

[14] Maone G. 2008. “Hello ClearClick, Goodbye

Clickjacking!” http://hackademix.net/2008/10/08/hello-

clearclick-goodbye-clickjacking/. Last accessed 16th,

Dec, 2015

[15] Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D. and

Kruegel, C. 2010. “A solution for the automated

detection of clickjacking attack”, Proceedings of the 5th

ACM Symposium on Information, Computer and

Communications Security.

[16] Narayanan, A. S. 2012. “Clickjacking Vulnerability and

Countermeasures”, International Journal of Applied

Information Systems (IJAIS) Foundation of Computer

Science FCS, New York, USA Volume 4– No.7,

December 2012, pp. 7-10.

[17] Le, V. L., Welch, I., Gao X. and Komisarczuk, P. 2013.

“Anatomy of Drive-by Download Attack”, Australian

Computer Society, Inc. This paper appeared at the 11th

Australasian Information Security Conference (AISC

2013), Adelaide, South Australia, January-February

2013, pp. 49-58.

[18] Cova, M., Kruegel, C. and Vigna, G. 2010. “Detection

and Analysis of Drive-by-Download Attacks and

Malicious JavaScript Code”, International World Wide

Web Conference Committee (IW3C2), Raleigh, North

Carolina, USA WWW 2010, April 26–30.

[19] Upadhya, P., Meer, F., Dmello, A. and Dmello, N. 2013.

“Runtime Solution for Minimizing Drive-By-Download

Attacks”, International Journal of Modern Engineering

Research (IJMER) Vol.3, Issue.2, March-April. 2013 pp-

1019-1021

[20] Hsu, F., Tso, C., Yeh, Y., Wang, W. and Chen, L. 2011.

“Browser Guard: A Behavior-Based Solution to Drive-

by-Download Attacks”, Ieee Journal On Selected Areas

In Communications, Vol. 29, No. 7, August 2011

IJCATM : www.ijcaonline.org

