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ABSTRACT 

Nathanson was the pioneer in introducing the concepts of 

Number Theory, particularly, the “Theory of Congruences” in 

Graph Theory. Thus he paved the way for the emergence of a 

new class of graphs, namely “Arithmetic Graphs”. Cayley 

graphs are another class of graphs associated with the 

elements of a group. If this group is associated with some 

arithmetic function then the Cayley graph becomes an 

Arithmetic graph. 

Graph product is a fundamental tool with rich applications in 

both graph theory and theoretical computer science. The 

extensive literature on products that has evolved over the 

years presents a wealth of profound and beautiful results. 

In this paper, results related to some properties of Cartesian 

product graphs of Euler totient Cayley graphs with Arithmetic 

𝑉𝑛  graphs are determined. 
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1. INTRODUCTION 
EULER TOTIENT CAYLEY GRAPH 𝑮 𝒁𝒏,𝝋  AND ITS 

PROPERTIES 

Madhavi [1] introduced the concept of  Euler totient Cayley  

graphs  and studied  some of its properties. She   gave 

methods of enumeration of disjoint Hamilton cycles and 

triangles in these graphs. Sujatha [2] studied some cyclic 

structures of Euler totient Cayley graphs.   

For any positive integer  𝑛, let 𝑍𝑛 =  0,1,2,… . .𝑛 − 1  be the 

residue classes modulo 𝑛 . Then  𝑍𝑛 ,⨁ ,  where, ⨁ is  

addition modulo 𝑛, is an abelian  group of order  𝑛. The 

number of  positive integers less than  n  and relatively prime 

to  𝑛  is denoted by 𝜑 𝑛  and is called Euler totient  function. 

Let 𝑆 denote the set of all positive integers less than 𝑛  and 

relatively prime to  𝑛 .   That is 𝑆 =   𝑟/ 1 ≤ 𝑟 <
𝑛  and  GCD   𝑟,𝑛  =  1  .  Then  𝑆 = 𝜑 𝑛 .  

Now define Euler totient Cayley graph as follows. 

For each positive integer  𝑛 , let 𝑍𝑛  be the additive group of 

integers modulo 𝑛 and let 𝑆 be the set of all integers less than 

𝑛 and relatively prime to 𝑛.  The Euler totient Cayley graph   

𝐺 𝑍𝑛 ,𝜑    is   defined as the graph whose vertex set V   is 

given   by 𝑍𝑛 =  0,1,2,… .𝑛 − 1    and the edge set is  

𝐸 =    𝑥,𝑦 𝑥 − 𝑦 ∈ 𝑆    or  𝑦 − 𝑥 ∈ 𝑆 .  

Clearly as proved by Madhavi, the Euler totient Cayley graph  

𝐺 𝑍𝑛 ,𝜑  is 

 

1. a connected, simple and undirected graph, 

2.  (𝑛) - regular and has    
𝑛 .𝜑(𝑛)

2
    edges,  

3. Hamiltonian, 

4. Eulerian   for   𝑛 ≥  3,    

5. bipartite if   𝑛 is even and complete graph if 𝑛  is  a 

prime. 

ARITHMETIC 𝑽𝒏 GRAPH   

Vasumathi [3] introduced the concept of Arithmetic 𝑉𝑛   graphs  

and studied some of its properties. 

Let 𝑛 be a positive integer such that 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 …… . . 𝑝𝑘
𝛼𝑘 . 

Then the Arithmetic 𝑉𝑛   graph is defined as the graph whose 

vertex set consists of the divisors of   𝑛  and two vertices  𝑢,𝑣 

are adjacent in 𝑉𝑛  graph if and only if GCD (𝑢, 𝑣) =  𝑝𝑖 , for 

some prime divisor 𝑝𝑖   of  𝑛.   

In this graph the vertex 1 becomes an isolated vertex. Hence 

consider the Arithmetic graph 𝑉𝑛    without vertex 1 because 

the contribution of this isolated vertex is nothing when the 

properties of these graphs and enumeration of some 

domination parameters are studied.  

Clearly,  𝑉𝑛   graph  is a connected graph. Because if  𝑛  is a 

prime, then  𝑉𝑛   graph consists of a single vertex. Hence it is a 

connected graph.   In other cases, by the definition of adjacent 

in  𝑉𝑛  ,  there exist edges between prime number vertices and 

their prime power vertices   and also to their   prime product 

vertices. Therefore, each vertex of   𝑉𝑛   is connected to some 

vertex in   𝑉𝑛 .  

CARTESIAN PRODUCT GRAPHS 

The Cartesian product of graphs is a straight forward and 

natural construction. According to Imrich and Klavzar [4] 

Cartesian products of graphs were defined in 1912 by 

Whitehead and Russell [5]. These products   were repeatedly 

rediscover later, notably by Sabidussi [6] in 1960.  

Cartesian product graphs can be recognized efficiently, in 

time 𝑂 𝑚 log𝑛  for a graph with m edges and n vertices [7]. 

For more details, refer [8] and [9].  

Let  𝐺1 and 𝐺2 be two simple graphs with their vertex sets as 

𝑉1 =   𝑢1,  𝑢2,……   and  𝑉2 =   𝑣1,  𝑣2,……    respectively. 

Then the Cartesian product of these two graphs denoted by  

𝐺1 𝐺2    is defined to be a graph whose vertex set is  𝑉1 ×
 𝑉2,  where 𝑉1 ×  𝑉2  is the Cartesian product of the sets  𝑉1  

and   𝑉2    and any two distinct vertices  𝑢1,𝑣1   and  𝑢2,𝑣2   
of  𝐺1 ×  𝐺2   are adjacent if  
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 (i)   𝑢1 = 𝑢2   and   𝑣1𝑣2 ∈ 𝐸(𝐺2)     or  

(ii)    𝑢1𝑢2 ∈  𝐸(𝐺1)    and    𝑣1 = 𝑣2.  

2. RESULTS 
Let 𝐺1 be an Euler Totient Cayley graph and 𝐺2  be an 

Arithmetic 𝑉𝑛   graph. Then 𝐺1 and  𝐺2  are simple graphs as 

they have no loops and multiple edges. Hence by the 

definition of adjacency in Cartesian product, 𝐺1 𝐺2 is also a 

simple graph. 

Now investigate some properties of 𝐺1 𝐺2. 

Theorem 2.1:  The degree of a vertex in the Cartesian product 

graph  𝐺1 𝐺2 is given by   

 𝑑𝑒𝑔𝐺1 𝐺2
 𝑢𝑖 , 𝑣𝑗  = 𝑑𝑒𝑔𝐺1

 𝑢𝑖   + 𝑑𝑒𝑔𝐺2
 𝑣𝑗                 

 where  𝑢𝑖 ∈ 𝑉1  and   𝑣𝑗 ∈ 𝑉2.     

Proof: By the definition of Cartesian product, vertex   𝑢𝑖 , 𝑣𝑗    

in   𝐺1 𝐺2  is   adjacent   to all   the vertices of   the   sets  

 𝑢𝑖  ×  𝑁𝐺2
 𝑣𝑗        and     𝑁𝐺1

 𝑢𝑖  ×  𝑣𝑗     where  𝑁𝐺1
 𝑢𝑖  

denotes the open neighbourhood set of 𝑢𝑖  in the graph  𝐺1 and 

𝑁𝐺2
 𝑣𝑗   denotes the open neighbourhood set of 𝑣𝑗  in 𝐺2.  

So 𝑁𝐺1 𝐺2   𝑢𝑖 , 𝑣𝑗  =   𝑢𝑖  ×  𝑁𝐺2
 𝑣𝑗      ∪   𝑁𝐺1

 𝑢𝑖  ×  𝑣𝑗     

Further       𝑁𝐺1
 𝑢𝑖  =  𝑑𝑒𝑔𝐺1

 𝑢𝑖   and  

                  𝑁𝐺2
 𝑣𝑗    =  𝑑𝑒𝑔𝐺2

 𝑣𝑗  .  

  𝑁𝐺1 𝐺2
 𝑢𝑖 , 𝑣𝑗    =  𝑑𝑒𝑔𝐺1 𝐺2

 𝑢𝑖 ,𝑣𝑗  .  

 Now  

 𝑁𝐺1 𝐺2
 𝑢𝑖 , 𝑣𝑗      =    𝑢𝑖  ×  𝑁𝐺2

 𝑣𝑗       +    𝑁𝐺1
 𝑢𝑖  ×  𝑣𝑗    

               =   𝑑𝑒𝑔𝐺2
 𝑣𝑗   + 𝑑𝑒𝑔𝐺1

 𝑢𝑖 . 

Hence    𝑑𝑒𝑔𝐺1 𝐺2
 𝑢𝑖 ,𝑣𝑗  = 𝑑𝑒𝑔𝐺1

 𝑢𝑖   + 𝑑𝑒𝑔𝐺2
 𝑣𝑗  . ∎ 

Remark:  Since graph 𝐺1  is a   𝜑(𝑛)- regular graph, we have 

𝑑𝑒𝑔𝐺1
 𝑢𝑖 =  𝜑(𝑛), for any i.  Hence we can write 

𝑑𝑒𝑔 𝑢𝑖 , 𝑣𝑗  =  𝜑  𝑛 + 𝑑𝑒𝑔 𝑣𝑗  . 

Theorem 2.2:  𝐺1 𝐺2 is a simple finite graph without 

isolated vertices. 

Proof:  Since 𝐺1 and  𝐺2 are simple finite graphs, by the 

definition of Cartesian product it follows that 𝐺1 𝐺2  is also a 

simple finite graph. 

Since 𝐺1 is a graph without isolated vertices for all values of n  

𝑑𝑒𝑔𝐺1
 𝑢𝑖  ≠ 0 for any 𝑖.  𝐺2  is a single vertex graph if  𝑛  is 

a prime.  Otherwise    𝐺2  is graph without isolated vertices. 

So  𝑑𝑒𝑔𝐺2
 𝑣𝑗  = 0  if  𝑛  is a prime and  𝑑𝑒𝑔𝐺2

 𝑣𝑗  ≠ 0  

otherwise. Hence by Theorem 2.1,  𝑑𝑒𝑔𝐺1 𝐺2
 𝑢𝑖 ,𝑣𝑗   ≠ 0  for 

any  𝑖, 𝑗. 

Thus 𝐺1 𝐺2 admits no isolated vertices.   ∎ 

Theorem 2.3:  The number of vertices and edges in 𝐺1 𝐺2 is 

given respectively by  

1.  𝑉 (𝐺1 𝐺2)  =   𝑉 (𝐺1)    𝑉 (𝐺2) . 

2. E (𝐺1 𝐺2) = 𝑉(𝐺1) 𝐸(𝐺2)  + 𝑉(𝐺2)  𝐸(𝐺1)       

Proof: Let 𝑝1, 𝑝2 , 𝑝  denote the number of vertices and 

 𝑞1, 𝑞2 , 𝑞  denote the number of edges of graphs 𝐺1,𝐺2 and 

 𝐺1 𝐺2 respectively. By the definition of Cartesian product, it 

follows that    𝑝 =  𝑝1. 𝑝2 .     

  i.e.,   𝑉 (𝐺1 𝐺2) =  𝑉 (𝐺1)  𝑉 (𝐺2).   

Also                  𝐸  𝐺1  =  𝑞1 =
1  

2
 𝑑𝑒𝑔  𝑢𝑖 𝑖∈𝑉1

 

 and                    𝐸  𝐺2  = 𝑞2 =  
1

2
  𝑑𝑒𝑔  𝑣𝑗  𝑗 ∈𝑉2

 

 Now   

 E (G1G2)  = 𝑞 =  
1

2
    deg  𝑢𝑖 , 𝑣𝑗  𝑖 ,𝑗  

        =  
1

2
     𝑑𝑒𝑔  𝑢𝑖 +  𝑑𝑒𝑔  𝑣𝑗   𝑖 ,𝑗       (By Theorem 2.1) 

        =  
1

2
     𝑑𝑒𝑔  𝑢𝑖 𝑖 ,𝑗  +   𝑑𝑒𝑔  𝑣𝑗  𝑖 ,𝑗     

=  
1

2
      𝑑𝑒𝑔  𝑢𝑖 

𝑖

 

𝑗

+     𝑑𝑒𝑔  𝑣𝑗  

𝑗

 

𝑖

  

        =  
1

2
     2𝑞1 𝑗 +   2𝑞2 𝑖   

        =  
1

2
   𝑝2 2𝑞1 + 𝑝1 2𝑞2                                                   

        =  𝑝1𝑞2  +  𝑝2𝑞1 

        =   𝑉 (𝐺1)    𝐸 (𝐺2)  +  𝑉 (𝐺2)   𝐸  𝐺1   ∎ 

Now examine the property of connectivity in Cartesian 

product of these graphs. 

It is proved by Wilfried Imrich and Sandi Klavzar [10] that 

the Cartesian product of two graphs is connected   if and only 

if both the graphs are connected. 

Since the graphs 𝐺1 and  𝐺2 are connected, the following 

result is an immediate consequence.    

Theorem 2.4: 𝐺1 𝐺2  is a connected graph. 

Theorem 2.5: 𝐺1 𝐺2 is a complete graph, if  𝑛  is a prime. 

Proof:  Suppose n is a prime. Then Euler totient Cayley graph 

𝐺1 is a complete graph   and Arithmetic Vn graph  𝐺2  is a 

single vertex graph  𝐾1 . Hence by the definition of Cartesian 

product,  𝐺1 𝐺2 becomes a complete graph.∎     

It is known that a graph is bipartite if and only if it contains no 

odd cycles. 

To examine the property of bipartite of  𝐺1 𝐺2, recall the 

following result given by Sabidussi. 

Result:  A Cartesian product graph is bipartite if and only if 

each of its factors is bipartite. 

Assume that 𝐺1 and 𝐺2  are bipartite. By the definition of 

Cartesian product, each cycle in 𝐺1 𝐺2 has edges either 

from 𝐺1 or from  𝐺2 (but not both). Since  𝐺1 and 𝐺2  are 

bipartite, these edges form an even cycle in 𝐺1 or an even 

cycle in 𝐺2 . So the number of edges of the cycle in 𝐺1 𝐺2  is 

even. Hence there is no odd cycles in 𝐺1 𝐺2. Hence 𝐺1 𝐺2 

is bipartite.  

Conversely if 𝐺1 𝐺2  is bipartite then there are no odd cycles 

in 𝐺1 𝐺2. Since both 𝐺1 and 𝐺2 are subgraphs of  𝐺1 𝐺2, it 

follows that there are no odd cycles in 𝐺1 and there are no odd 

cycles in 𝐺2. Hence they are bipartite. 

We now examine for what values of 𝑛, the Cartesian product  
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𝐺1 𝐺2  is  a bipartite graph? 

By the above result given by Sabidussi, bipartition of graph  

G1 G2 depends on the bipartition of both the graphs  G1and  
𝐺2. 

As proved by Madhavi, Euler Totient Cayley Graph 𝐺1 is not 

bipartite for odd values of  𝑛 and it is bipartite for even values 

of  𝑛.  This implies that Cartesian product graph 𝐺1 𝐺2 may 

bipartite only for even values of  𝑛 and not for its odd values. 

Theorem 2.6: Let 𝑛 be an even number such that 𝑛 > 2, 
𝑛 = 2𝛼   or  𝑛 = 2𝑝  where 𝑝 is a prime. Then the Cartesian 

product graph  𝐺1 𝐺2 is a bipartite graph.  

Proof:  Suppose 𝑛 is an even number such that  𝑛 > 2,   
𝑛 = 2𝛼   or  𝑛 = 2𝑝 where 𝑝 is a prime. Then Euler totient 

Cayley graph 𝐺1 is a bipartite graph.  

Now it has to be proved that  𝐺2 is also a bipartite graph by 

showing that  𝐺2 contains no odd cycles. The proof follows in 

two cases.  

Case 1: Suppose  𝑛 = 2𝛼 .   

In this case Arithmetic graph  𝐺2 contains the vertices 

2, 22, 23,…… . . , 2𝛼 . Since GCD  2𝑖 , 2𝑗   ≠ 2  for any 𝑖 , 𝑗 > 1, 

there exists no edge between any two powers of 2. The only 

edges are between 2 and its powers. Hence odd cycles cannot 

occur in  𝐺2.  

Case 2: Suppose 𝑛 = 2𝑝  where 𝑝 is a prime. 

In this case Arithmetic graph  𝐺2 has the vertices 2, 𝑝 and  2𝑝. 

Then by the definition of edges in 𝐺2, there are edges between 

2 and 2𝑝 since GCD  2, 2𝑝  = 2 and 𝑝 and 2𝑝 since 

GCD  𝑝, 2𝑝  = 𝑝. Since 𝑝 being an odd prime, we have 

GCD  2,𝑝  = 1. This implies that there is no edge between 

the vertices 2 and 𝑝 of  𝐺2. Thus  𝐺2 has no odd cycle.  

Thus in either of the cases,  𝐺2 has no odd cycle. And hence it 

is a bipartite graph. Therefore  𝐺1 and  𝐺2 are bipartite graphs 

if the  even number 𝑛 > 2 is of the form 2𝛼   or  2𝑝  which 

implies that the Cartesian product graph  𝐺1 𝐺2 is a bipartite 

graph. ∎   

Theorem 2.7:  𝐺1 𝐺2 is not a bipartite graph, if the even 

number  𝑛 is neither in the form 2𝛼  nor  2𝑝.   

Proof: Suppose 𝑛 is an even number such that 𝑛 ≠ 2𝛼    or   

𝑛 ≠ 2𝑝 where 𝑝 is a prime.  

Since 𝑛 being an even number, Euler totient Cayley graph 𝐺1 

is a bipartite graph. Since the even number 𝑛 is not in the 

form 2𝛼  and  2𝑝,  it can be written as  

  𝑛 = 2𝛼𝑝1
𝛼1  𝑝2

𝛼2 …… . . 𝑝𝑘
𝛼𝑘 , where 𝑝1, 𝑝2,… , 𝑝𝑘  are odd 

primes and  𝛼𝑖 ≥ 1. Then  𝐺2 contains three distinct vertices 

2, 2𝑝𝑖  , 2𝑝𝑗  with GCD  2, 2𝑝𝑖     = 2,  GCD  2 ,2𝑝𝑗     = 2,  

and GCD  2𝑝𝑖 , 2𝑝𝑗   = 2. This implies that these vertices are 

connected by edges. So,  𝐺2 contains an odd cycle and hence 

it is not bipartite. 

Now,  𝐺1 is a bipartite graph and  𝐺2 is not a bipartite graph 

implies that  𝐺1 𝐺2 is not a bipartite graph. ∎  

 

 

 

 

3. ILLUSTRATIONS 
Let  𝑛 = 4. 

 

Fig 1 

𝑮𝟏 = 𝑮 𝒁𝟒,𝝋  
 

Fig 2 

𝑮𝟐 = 𝑮 𝑽𝟒   

 

Fig 3 

                        𝑮𝟏 𝑮𝟐 

Let  𝒏 = 𝟔 

 
Fig 4 

𝑮𝟏 = 𝑮 𝒁𝟔,𝝋  
 

 
Fig 5 

                             𝑮𝟐 = 𝑮 𝑽𝟔  
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Fig 6,  𝑮𝟏 𝑮𝟐 
Let  𝒏 = 𝟏𝟏 

 

Fig 7 

 𝑮𝟏 = 𝑮 𝒁𝟏𝟏,𝝋  

 

Fig 8 

 

𝑮𝟐 = 𝑮 𝑽𝟏𝟏  

Fig 9,   𝑮𝟏 𝑮𝟐 

4. CONCLUSION 
Graph Theory is young but rapidly maturing subject. Its basic 

concepts are simple and can be used to express problems from 

many different subjects. The purpose of this work is to 

familiarize the reader with the Cartesian product graph of 

Euler Totient Cayley graph with Arithmetic Vn graph.   

It is useful other Researchers for further studies of other 

properties of these product graphs and their relevance in both 

combinatorial problems and classical algebraic problems. 
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