
International Journal of Computer Applications (0975 - 8887)
Volume 138 - No.4, March 2016

Campus Network using Software Defined Networking

Dependra Dhakal
SMIT

CSE Department
Rangpo, Majitar, Sikkim

Bishal Pradhan
SMIT

CA Department
Rangpo, Majitar, Sikkim

Sunil Dhimal
SMIT

CSE Department
Rangpo, Majitar, Sikkim

ABSTRACT
Software Defined Networking (SDN) is a paradigm where a soft-
ware based controller governs the overall network behavior. SDN
promotes centralization of network by separating the networks con-
trol plane from its data plane. OpenFlow, one of the techniques of
SDN technology, is a new approach to networking. This paper dis-
cusses application aware routing and traffic engineering in the con-
text of Software Defined Networking (SDN). This paper demon-
strates the use of an Open Flow controller to implement application
processing logic. With the use of Open Flow switches it is possible
to provision the network to treat the packet flows for video, audio
and web differently based on user needs and requirements. The idea
is to provide a better network efficiency, low bandwidth wastage.

Keywords
SDN, Firewall, OpenFlow

1. INTRODUCTION
SDN is an advent to networking in which the control plane is de-
coupled from the forwarding plane [7]. Thus, network switches get
to be straight- forward sending devices and the control rationale
is executed in a consistently incorporated controller disentangling
approach authorization and system (re)configuration and advance-
ment. SDN provides various advantages including load balancing,
on-interest provisioning, bandwidth management and also, the ca-
pacity to scale network resources. The simplified architecture of
SDN is shown in figure1.

Fig. 1. sdn architecture[20]

The partition of the control plane and the sending plane can
be known by method for a programming interface between the
switches and the SDN controller. OpenFlow is the communication
protocol used as an intermediary between the control and forward-
ing layer of the SDN construction modeling. OpenFlow allows the
direct access of the forwarding plane of network devices such as
switches and routers, both physical and virtual (hypervisor based)
[1][8]. OpenFlow is the standard protocols for moving the network
control from switches to central controller [4]. POX [2] is a python
based open source SDN controller which is used in tour work while
Mininet [3] is a network emulator. It executes a collection of end-
hosts, routers, switches and links on a Linux kernel. Traditional
network architectures are gradually getting ill-suited to meet the re-
quirements of today’s enterprises, carriers, and end users .Campus
networks are fast and difficult to manage which leads to flexibility
and reliability issues. Network changes are liable to extensive pro-
visioning times and setup mistakes. The system devices from few
top sellers are firmly coupled and have exclusive CLIs and APIs for
arrangement and administration of devices. Software Defined Net-
working (SDN) acquaints huge perceptibility and adaptability with
networking utilizing Open flow controller. But one of the funda-
mental challenges in SDN is to build robust firewalls for protecting
OpenFlow-based networks where network states and traffic are fre-
quently changed. A traditional firewall deployed in a network ex-
amines all the incoming and outgoing packets to defend against at-
tacks and unauthorised access [12][13]. However, all the insiders in
a network are trusted and not monitored. Internal traffic is not seen
and cannot be filtered by the firewall. Therefore any person having
access to the network can launch attack on authenticated devices
inside the network. Also in an OpenFlow network, network states
change dynamically. Along these lines, it needs a firewall in which
the tenets of the firewall are additionally redesigned continuously.
The main aim of this work is to implement a firewall application by
writing code for a SDN controller POX in python. The SDN fire-
wall monitors all the internal traffic in the network and allows se-
lective blocking of host-to-host communication based on network
state and time of the day. When a connection between a switch and
a controller is up, the application installs flow entries to disable
the traffic between each pair of the MAC addresses in the list. The
firewall rules can be installed on all switches in the network. and
to optimize the available bandwidth in software defined network
to meet the requirements of various applications running on top of
it. An Open Flow controller is used to implement application pro-
cessing logic. With the use of Open Flow switches it is possible to
provision the network to treat the packet flows for video, audio and

1

International Journal of Computer Applications (0975 - 8887)
Volume 138 - No.4, March 2016

web differently based on user needs and requirements. The idea is
to provide a better network efficiency, low bandwidth wastage.

2. LITERATURE REVIEW
[1] OpenFlow is an open standard which help researchers to run
experimental protocols in the campus environment. Notwithstand-
ing permitting analysts to assess their thoughts in true, the objec-
tive is to urge organizing merchants not to uncover the inner work-
ing of their products. So, it needs a firewall in which the princi-
ples of the firewall are additionally upgraded continuously. The
future aspects can allow adding OpenFlow to their products and
deploying them in campus network. Furthermore, allowing them
to re-use the controllers and experiment on the works build by
others. [1][15]Main concepts of software defined networking and
how it differs from traditional networking is explained along with a
broad range of existing solutions and future directions for the con-
cept and idea of SDN. The architecture of SDN is the introduc-
tion of dynamic programmability in forwarding devices through
open south- bound interfaces, the decoupling of the control and
data plane, and the global view of the network by logical central-
ization of the network brain. Ongoing research, challenges, threat
vectors of SDN architecture and countermeasures for the same in
open flow networks is discussed. POX [2] is a Python based open
source OpenFlow/Software Defined Networking Controller. POX
is used for faster development and prototyping of new network ap-
plications. POX controller is pre-installed along with mininet. The
POX controller can be passed different parameters according to
real or experimental topologies, thus allowing running experiments
on real hardware, testbeds or in mininet emulator. POX controller
can be used to convert cheap, dumb merchant silicon devices into
hub, switch, router or middle boxes such as firewall, load balancer.
[3][14]A technique to streamline the data transfer capacity of the
system by characterizing certain arrangement of rules in the POX
controller. Amid the transmission of information packets the Eth-
ernet switch takes suitable choice by tuning in. The experiment is
conducted using Iperf tool and the results show that the utilization
of bandwidth increases and the average Round-Trip Time (RTT)
time decreases for the POX controller.

3. DESIGN AND IMPLEMENTATION
In Open Flow switch the ingress packet matched against the flow
table and sent to the controller if no match is found. The controller
chooses what to do with the packet and sends it back to the switch.
The switch then executes the activity which the controller charac-
terized. In the event that the packet in the flow table matches the
table then the activity is execute as shown in the figure 2.
Two types of scenario are implemented that includes firewall man-
agement based on some criteria and bandwidth management which
are discussed in the following sub sections.

3.1 SDN Firewall Implementation
It is a firewall application implemented in a software defined net-
work, using mininet and python based on the custom topology as
shown in the figure 3.
In figure 3, a small network is set up on the virtual machine, with
mininet installed. This network contains a remote controller, six
switches; each with a host. This topology is utilized to test different
principles and strategies characterized in the firewall design.
Algorithm: firewall.py: The code actualizes a firewall application
in a SDN to block particular host-to-host correspondence based on
the time of the day. It recognises the ip addresses to be blocked

Fig. 2. open flow switch algorithm[9]

Fig. 3. Custom topology for firewall

from certain other ip addresses and also directs the controller to
add specific flow-entries in the flow tables of the switches, so that
packets from these blocked ip addresses are independently handled
by the switches in future.
Steps:

(1) Get the current time.
(2) Define the firewall policies based on time of the day.
(3) Place the OpenFlow socket in a state in which it is listening for

approaching associations.
(4) Define a function ”sendRule()” to install flows for allowing and

dropping packets between hosts.
(5) Define a function ”addRule ()” that allows adding firewall rules

into the firewall table.
(6) Define a function ”DeleteRule ()” that allows deleting firewall

rules from the firewall table.
(7) The function ”launch()” launches the firewall module.

Function: sendRule()
Steps:

(1) Begin.

2

International Journal of Computer Applications (0975 - 8887)
Volume 138 - No.4, March 2016

(2) Extricate the IP location of the source attempting to impart by
means of the ARP protocol.

(3) Get the destination address.
(4) Check if the source and the destination match any rule in the

firewall table.
(5) On the off chance that there is a rule in the firewall table to

hinder the communication, then drop the packet else insert a
entry in the firewall table.

(6) Perform the appropriate action that is forward/drop the packet.

Function: addRule ()
Steps:

(1) Extract the source and destination address.
(2) Check if the standard for the pair is as of now present in the

firewall table.
(3) Call sendRule()
(4) If rule not already present, then add the rule in the firewall

table.

Function: DeleteRule()
Steps:

(1) Take the source and destination pair.
(2) Delete the rule from the firewall table if there exists any be-

tween the pair.

Function: launch()
Steps:

(1) Start the firewall module.
(2) End.

With the POX controller running up, the topology is created using
using the following code:
sudo mn ?custom topology.py –topo mytopo –mac –
controller=remote, ip=127.0.0.1, port=6633
The firewallpolicies.csv specifies which ip addresses have to be
blocked. This file is being called and used by firewall.py code,
which is another python code that recognises the ip addresses to
be blocked from certain other IP addresses and also directs the con-
troller to add specific flow-entries in the flow tables of the switches,
so that packets from these blocked ip addresses are independently
handled by the switches in future.
The learning algorithm runs along with the POX controller that
forces the switches to behave as normal switches that have learning
capabilities. When a new packet reaches a switch, the switch acts
according to the OpenFlow protocol, in which it sends the packet
to the controller, as the switch is unaware of the action, it needs to
perform. The controller informs the switch the required action and
hence the switch ’learns’ the source address and its corresponding
action. The specific flow entries are added in the flow tables of the
switches. The following snapshot in figure 4 shows how firewall
rules are installed.
After the firewall are installed in node 1, ping test is carried out
between node 1 and node 6, the packets are dropped because the
rules installed that is shown in the figure 5 below.

3.2 Bandwidth Management
Similarly Bandwidth Management technique were used based on
the custom topology as shown in the figure 6 and is implemented
on some bandwidth management policies. The flowchart for the
bandwidth management is shown in the figure 7.

Fig. 4. Firewall rules installed

Fig. 5. Ping statistics

Fig. 6. Custom topology for Bandwidth Management

The POX application programming interface has been used to tailor
traffic dynamically based on requirements and access to bandwidth
on demand. The path of the packet flow in the circuit is decided
in real time based on the application/service requirement. For in-
stance, a VOIP call would require the packets to pass through a low
latency path. Another example is of video traffic in which low jitter
is more important than low latency. So it will be beneficial if the
traffic is engineered to take a path which is efficient for different
applications/services running in the network.
The applications have been prioritized for the available bandwidth
use. For instance, if a video streaming session of high priority is on

3

International Journal of Computer Applications (0975 - 8887)
Volume 138 - No.4, March 2016

Fig. 7. Bandwidth Management

and only UDP packets are required to flow through the network to
achieve low jitter, the TCP communication is blocked entirely.
sudo mn –custom /path/topology.py –topo mytopo –mac –switch
ovsk –controller remote
Custom TCP packets are generated using the hping3 command. It
was observe that only the ip pairs which match a firewall rule in the
configuration file are allowed to pass TCP packets between them.
TCP communications between all the other hosts are blocked,
while the ICMP and ARP packets can flow. Its analysed by using
ping command.
Bandwidth Optimization
Steps:

(1) Start
(2) Connect the remote controller.
(3) Add-hoc hosts.
(4) Add links.
(5) Set up default routes and paths.
(6) Tailor the assigned bandwidth and delay for various paths.
(7) The bandwidth delay for packet flow between communicating

ip pairs is decided based on active applications.
(8) End

Firewall
When a switch connects to the controller, the code initializes the
connection to the switch as well as adding low-priority flow en-
tries to allow certain types of packets to pass through (i.e. ICMP,
IP, ARP), but block all TCP packets that are not specified by a rule
in the firewall configuration file. It pushes medium priority flow en-
tries for rules from the configuration file. When it receives a packet,
it checks the configuration rules to ensure that there is a match,
then pushes flow entries from the packet specifics. If there is not
a match, it pushes a flow entry with null action, so the switch will
drop packets from that flow.
Steps:
1. Launch the firewall module.

2. The controller reads the configuration rules specified on the com-
mand line into memory and listens for a switch to connect on the
default port 6633.
3. Once a switch has connected, the controller loads rules onto the
switch to allow ICMP and ARP packets to pass through. It also
installs rules that instruct the switch to forward packets matching
the configuration file rules to the controller. These rules should be
of the form:
(ip) [/ (netmask)] (port) (ip) [/ (netmask)] (port)
Where, any of the IP or port fields may be replaced with the term
’any’.
4. The final rule installed to the switch on the initial phase instructs
the switch to drop all TCP packets that do not match the previous
rules.
5. After all the rules has been sent to the switch, the switch waits
for incoming connections that match its rule set and forwards those
matching packets to the controller as appropriate.
6. When the controller receives encapsulated packets from the
switch, these packets are compared against the rule set. These pack-
ets should be allowed flows since they have already been allowed to
flow via the switch. Packets are matched with a configuration rule
and a flow entry is added to the flow tables to allow TCP traffic be-
tween the originating source host and its intended destination host.
If the encapsulated packet does not match the rule set, it is dropped.
Snapshot for port blocking is shown in fig 8 below.

Fig. 8. Connection failed as HTTP ports are blocked

4. RESULTS AND DISCUSSION
The following graphs Figure 9 , Figure 10 and Figure 11 are ob-
tained by initiating a communication between various hosts using
Iperf tool. Here, a TCP server runs on host h4 and host h1 and h2
are the clients. The graphs show the comparison based on different
parameters such as bandwidth, jitter and Round Trip Time (RTT).
As seen in the results, the controller decides the flow priority and
path based on the communicating IP pairs. Here the communica-
tion between server h4 and client h1 is given priority by the con-
troller when both connections are established simultaneously.The
communication between h4 and h1 is routed via higher bandwidth
path as the communicating IP pair has the highest priority.

5. CONCLUSION
The practical virtual systems was created, running genuine por-
tion, switch and application code, on a solitary machine utilizing
Mininet.Firewall Policies were defined and rules added to the fire-
wall table which changes progressively taking into account neces-
sity and time of the day.Selective obstructing of packets in view
of source and destination IP address was carried out. Application
processing logic implemented using the pox OpenFlow Controller.
Network was tailored to treat the packet flows for video, audio and

4

International Journal of Computer Applications (0975 - 8887)
Volume 138 - No.4, March 2016

Fig. 9. Bandwidth result of client h1 and h2

Fig. 10. Jitter result of client h1 and h2

Fig. 11. RTT result of client h1 and h2

web differently based on user needs and requirements.In future, it
can be implemented in real time network. The implementation done
in the emulated environment can be deployed in campus and home
networks but more evaluation based on performance and scalabil-
ity is required. The functionalities which were deployed in a single
controller can be distributed across multiple OpenFlow controllers
for better efficiency, link state and controller based load balancing.
Real applications can be tested if OpenvSwitches are used. Various
applications can be deployed on the network to test the performance
of each.

6. REFERENCES
[1] Abhishek Bagewadi, Dr. K N Rama Mohan Babu, ?Towards an

Ethernet Learning Switch and Bandwidth Optimization using
POX Controller, ?International Journal of Advanced Research
in Computer and Communication Engineering, vol. 3, Issue 7,
July 2014.

[2] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy
(2014)Network Innovation using OpenFlow:A Survey?, IEEE
Communications Surveys and Tutorials, VOL. 16, No. 1, pp
493-512.

[3] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, ?A survey of software-defined networking: Past,
present, and future of programmable networks,? Communica-
tions Surveys Tutorials, IEEE, vol. 16, no. 3, pp. 1617?1634,
Third 2014.

[4] Kreutz, D.; Ramos, F.M.V.; Esteves Verissimo, P.; Esteve
Rothenberg, C.Azodolmolky, S.; Uhlig, S., ”Software-Defined
Networking: A Comprehensive Survey,” Proceedings of the
IEEE, vol.103, no.1, pp.14,76, Jan. 2015.

[5] Kuldeep K. Sharma, Manu Sood ,?Mininet as a Container
Based Emulator for Software Defined Networks,? International
Journal of Advanced Research in Computer Science and Soft-
ware Engineering, vol. 4, issue 12, December 2014.

[6] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker, ?NOX: towards an operating system for
networks,? Comp. Comm. Rev., 2008.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, ?OpenFlow:
enabling innovation in campus networks,? SIGCOMM Com-
put. Commun. Rev., vol. 38, no. 2, pp. 69?74, Mar. 2008.

[8] ONF, ?Open networking foundation,? 2014. [Online]. Avail-
able: https://www.opennetworking.org

[9] Open Networking Foundation, ”OpenFlow Switch Specifica-
tion Version 1.3.0,” June 25, 2012

[10] OpenDaylight, ?OpenDaylight: A Linux Founda-
tion Collaborative Project,? 2013. [Online]. Available:
http://www.opendaylight.org

[11] Saro Velrajan, ? Application Aware Routing in Software de-
fined Networks? , March 12, 2015.

[12] Sean Wilkins, ?A Guide to choosing a next- generation Fire-
wall?, December 2014.

[13] Software-Defined Networking: The New Norm for Networks,
Open Networking Foundation, White Paper [Online]. Avail-
able: https://www.opennetworking.org.

[14] Sukhveer Kaur, Japinder Singh and Navtej Singh Ghumman-
Network Programmability Using POX Controller, Interna-
tional Conference on Communication, Computing and systems
(ICCCS-2014), Department of Computer Science and Engi-
neering, SBS State Technical Campus, Ferozepur, India.

[15] Thomas A. Limoncelli, ”OpenFlow: A Radical New Idea in
Networking,” Communications of the ACM, August 2012.

[16] Varun S. Moruse1, Miss. A. A. Manjrekar - ?Software De-
fined Network Based Firewall Technique?, International Jour-
nal of Computer Engineering and Technology Volume 4, Issue
2, pp. 598-606, March ? April (2013).

[17] William Stallings, ?Software-Defined Networks and Open-
Flow,? The Internet Protocol Journal, vol. 16, no.1, March
2013.

[18] Retrieved: http://mininet.org/overview/

5

	Introduction
	Literature Review
	Design and Implementation
	SDN Firewall Implementation
	Bandwidth Management

	Results and Discussion
	Conclusion
	References

