
International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

6

Encryption using Network and Matrices through Signed
Graphs

Deepa Sinha
South Asian University,

Akbar Bhawan, Chanakyapuri,
New Delhi – 110 021.

Anshu Sethi
Center for Mathematical Sciences,

Banasthali University, Banasthali – 304 022

ABSTRACT
Security of a network is important to all organizations,

personal computer users, and the military. With the invention

of the Internet, major concern is about the security and the

history of security allows a better understanding of the

emergence of security technology. One of the ways to secure

businesses from the Internet is through firewalls and

encryption mechanisms. A network can be designed as a

sigraph S where every sigraph will have its unique adjacency

matrix associated with it. A signed graph (or sigraph in

short) S is a graph G in which every edge x carries a value s(x)

∈ {-1, +1} called its sign denoted specially as S = (G, s).

Given a sigraph S, H = L(S) called the line sigraph of S is that

sigraph in which edges of S are represented as vertices, two of

these vertices are adjacent whenever the corresponding edges

in S have a vertex in common and any such edge ef is defined

to be negative whenever both e and f are negative edges in S.

Here S is called root sigraph of H. In this paper first we give

an algorithm to obtain a line sigraph [1] and line root sigraph

from a given sigraph [1], if it exists. This algorithm is an

extension of an algorithm given by Lehot [2] in the realm of

sigraphs. In the end we will propose a technique that will use

adjacency matrix of S as a parameter to encrypt and forward

the data in the form of adjacency matrix of L(S) and will

decrypt it by applying inverse matrix operations.

Keywords
Algorithm, sigraph, line sigraph, root sigraph, sign-

compatible, network, network security, encryption,

decryption.

1. INTRODUCTION
For notations in signed graphs, we refer to Zasalavsky [3]

and West [4] and for algorithms, refer to Golumbic [5] and

Coreman [6]. Throughout the text, we consider finite,

undirected graph with no loops or multiple edges. By a (n, e)

graph G we mean a graph having n vertices and e edges; n is

called the order and e is called the size of G. Any graph G can

be observed as a network where vertices are referred as nodes

and edges as links. For any network communication must be

secured because the communication signals are openly

available as they propagate.

By a signed graph (or sigraph) S [3, 7] we mean a graph G =

(V, E) called the underlying graph of S and denoted by Su, in

which each edge x carries a value s(x) ∈ {+1, −1} called its

sign; an edge x is positive or negative according to whether

s(x) = +1 or s(x) = −1. The set of positive edges of S is

denoted by E+(S) and E−(S) = E(G) − E+(S) is the set of

negative edges of S. In general, a subgraph S’ of a sigraph S is

said to be all-positive (all-negative) if all the edges of S’ are

positive (negative). A sigraph is said to be homogeneous if it

is either all-positive or all-negative and heterogeneous

otherwise.

For a sigraph S, Behzad and Chartrand [8] defines its line

sigraph, L(S) as the sigraph in which the edges of S are

represented as vertices, two of these vertices are defined

adjacent whenever the corresponding edges in S have a vertex

in common, any such edge ef is defined to be negative

whenever both e and f are negative edges in S. A given

sigraph S is a line sigraph if it is isomorphic to the line sigraph

L(T) of a sigraph T. Here T is called the line root of S.

An adjacency matrix for a network with „n‟ vertices and no

parallel edges is an n x n symmetric matrix such that

aij = 1 if (i, j) is a solid line

 −1 if (i, j) is a dotted line

 0 if (i = j)

When network security is considered, one must ensure that the

whole network is secured. Data Security is the major factor to

secure data transmission over unreliable network. Data

Security is a challenging issue of data communications today

that touches many areas including secure communication

channel, strong data encryption technique and trusted third

party to maintain the database. The conventional methods of

encryption can only maintain the data security. The

unauthorized user could access the information for malicious

purpose. Therefore, it is necessary to apply effective

encryption/decryption methods to enhance data security. In

this paper we are going to introduce a new method for

encoding and decoding of data using network as sigraph and

basic properties of matrices.

For the purpose of network security, adjacency matrix of S

will be considered as basis of information which is to be

encrypted to adjacency matrix of L(S) to assure

confidentiality, integrity and authentication of transmitted

data.

A sigraph S is sign-compatible [9] if there exists a marking μ

of its vertices such that the end vertices of every negative

edge receive „-‟ signs in μ and no positive edge in S has both

of its ends assigned „-‟ sign in μ. In other words, a sigraph is

sign-compatible if and only if its vertices can be partitioned

into two subsets V1 and V2 such that the all-negative

subsigraph of S is precisely the subsigraph induced by exactly

one of the subsets V1 and V2. Every line sigraph is sign-

compatible. However, not every sign-compatible sigraph need

be line sigraph.

Based on concept sign-compatible sigraphs[9],

characterization of line sigraphs [10] and algorithm to detect

a line graph and output its root graph by Lehot [2], we will

provide a computer-oriented characterization of line sigraph

that will output the root sigraph S of sigraph H (sometimes

called L(S)) whenever the latter is a line sigraph.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

7

Since, for a network we use nodes in case of vertices and link

for edges, so while giving algorithms for the characterization,

nodes and links are used.

2. CHARACTERIZATION OF LINE

SIGRAPHS
By a positive(negative) section of a subgraph S’ of a sigraph S

we mean a maximal edge-induced connected subsigraph in S’

consisting of only the positive(negative) edges of S; in

particular, a positive(negative) section in a heterogeneous

cycle of S is essentially a maximal all-positive(all-negative)

path in the cycle. Using the definition, following is a

characterization of line sigraphs by Acharya and Sinha [see

[10]].

Theorem 1. [10] The following statements are equivalent for

any sigraphS:

(i) S is a line sigraph ;

(ii) Su is a line graph and for any two vertices u, v ∈V (S) and

for any u − v path in S either u = v and the cycle so created is

not a triangle with exactly two negative edges or the u - v path

contains no positive section of length one unless one of its

ends is u or v;

(iii) S does not contain an induced subsigraph isomorphic to

either of the two sigraphs, S1 formed by taking the path P4 =

(x, u, v, y) with both the edges (x, u) and (v, y) negative and

the edge (u, v) positive and S2 formed by taking S1 and

identifying the vertices x and y as shown in Fig 1, or to any

sigraph on Beineke‟s nine forbidden subgraphs;

Fig 1: Condition to check sign-compatibility

 (iv) Su is a line graph and for any positive edge uv of S either

there is no negative edge at u or there is no negative edge at v;

(v) Su is a line graph and vertices of S can be assigned signs

„+‟ or „-‟ such that both the ends of every negative edge

receive „-‟ sign and the same is not true for any positive edge;

(vi) Su is a line graph and the vertex set V(S) of S can be

partitioned into two subsets V1 and V2, one of them possibly

empty, such that all the negative edges of S join vertices of

just one of the subsets.

3. ALGORITHM TO CONVERT A

SIGRAPH TO LINE SIGRAPH [1, 11]

3.1 Part – 1:
Here input matrix vertex[i][j] can be either upper triangular

matrix or lower triangular matrix with entry 0 if there is no

edge and 1 if edge exists. For each non-zero entry in

vertex[i][j], we define signver[i][j] to be either upper

triangular or lower triangular matrix with entries 0 and 1, 0

will represent negative edge and 1 represents positive edge.

Step1. Enter the number of vertices n of input sigraph S whose

line sigraph L(S) is required.

Step2. Input the lower triangular matrix (say) vertex[i][j] and

sign matrix signver[i][j] of sigraph S.

Step3. Instead of 1 assign distinct numbers at all those

positions of matrix where there is a non-zero entry.

Step4. Now search for non-zero entries in given matrix.

(i) Now, for each non zero entry of the given matrix, say (i,

j)th, search for non-zero entries in row i and column i. For

each such non-zero entry, say (i, k)th entry in ith row, there

corresponds an edge in L(S), in this case edges (i, ,j) and (i, k)

in S would be two adjacent vertices of L(S).

Fig 2: Example showing sigraph and its line sigraph

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

8

(ii) Now sign of this edge in L(S) depends on sign of edges (i,

j) and (i, k) in S. If both the entries in matrix signver are zero

then corresponding edge in L(S) would be negative otherwise

it would be positive.

Step5. The sigraph so produced is required line sigraph L(S)

of given sigraph S as shown in Fig 2.

Complexity of computation involved in above algorithm

In Step3 we have to assign distinct numbers to all the non-

zero entries in adjacency matrix. Since we have entered lower

triangular matrix, thus we need to check n(n − 1)/2 entries.

Hence complexity for this step is O(n2).

Then in Step4 first we have to search for non-zero entries in

lower triangular matrix and then corresponding to each such

entry, say (i, j)th entry, we have to search for non -zero entries

in row i and column i. Also we have to check signs of these

entries.

Thus complexity of this step = O(n2 × n) = O(n3).

Hence complexity of computation involved in above

algorithm is O(n3), where n is number of vertices in S.

3.2 Part – 2
Here input matrix vertex[i][j] can be either upper triangular

matrix or lower triangular matrix with entries 0, 1 and -1 for

no edge, positive edge and negative edge respectively.

Step1. Enter the number of vertices n of input sigraph S whose

line sigraph L(S) is required.

Step2. Input lower triangular matrix (say) vertex[i][j] with

entries 0, 1 and -1 for no edge, positive edge and negative

edge respectively of sigraph S.

Step3. Now search for non-zero entries in matrix.

(i) Now, for each non-zero entry of the matrix, say (i, j)th

entry, search for non zero entries in row i and column i. For

each such non zero entry, say (i, k)th entry in ith row, there

corresponds an edge in L(S), in this case edges (i, j) and (i, k)

in S would be two adjacent vertices of L(S). Now sign of this

edge in L(S) depends on sign of edges (i, j) and (i, k) in S. If

both the entries in matrix are -1 then corresponding edge in

L(S) would be negative otherwise it would be positive.

Step4. The sigraph so produced is required line sigraph L(S)

of given sigraph S as shown in Fig 2.

Complexity of computation involved in above algorithm

In Step3 we have to search for non-zero entries in lower

triangular matrix of order n x n and then corresponding to

each such entry, say (i, j)th entry, we have to search for non-

zero entries in row i and column i. Also we have to check

signs of these entries.

Hence complexity for this step is O(n2).

Hence complexity of computation involved in above

algorithm is O(n2), where n is number of vertices in S.

3.3 Conclusion
Since we can implement the line sigraph from a given sigraph

in two ways. First part takes input in the form of two matrices

and with complexity O(n3) whereas second part takes only

one matrix as input and with complexity O(n2). Thus we can

say PART - 2 is optimal in space and time complexity and

will be used as a parameter to encrypt and forward the data.

Encryption is applied at this step.

4. ALGORITHM TO DETECT A LINE

SIGRAPH AND OUTPUT ITS ROOT

SIGRAPH [1, 11]
The algorithm to detect a line sigraph and output its root

sigraph is an extension of a paper named “An Optimal

Algorithm to Detect a Line Graph and Output its Root Graph”

by Lehot [2].

To check whether a given sigraph is a root linesigraph or not

we have to check two conditions:

i. The underlying graph is a line graph.

ii. Given sigraph is sign-compatible.

If both the conditions are satisfied we say that root linesigraph

exists and will print the new root sigraph of S.

Newnode represents the node of the intermediate graph i.e.

Fig - b and lookup represents if current index is mapped to

which node. It shows the mapping between Fig - a and Fig -

b. Since each node represents 2 points, maximum amount of

numbers required is 2* Max where Max denotes maximum

value of n.

Newgraph denotes the adjacency matrix of required root

sigraph and corresponding to this matrix Fig - c is plot.

Find the first non-zero entry in adjacency matrix i.e.

graph[i][j]. For the first edge (i, j) create a new node (i, 1, 2)

→ Node i named as pair (1, 2) i.e. in Fig - b. Now start

traversing the graph from this node. Also populate the final

graph with this edge i.e. (1, 2).

Now traverse through the graph and name other nodes. For

each untraveled neighbor create a modified node for Fig - b.

Find an i1 for new node. We want to find j as the first index

i1, we look if j is assigned to any node, do we have any edge.

For e.g. if j = 2 and current nodes are (a, (1, 2)), (b, (2, 3)) and

(c, (1, 4)) we check if current node has edge from a to b. Once

we have find j we want to find k as second index. If j and k are

found we have found the naming of i1 and i2. Add i1 and i2 to

newnode. Make curidx minimum of (curidx, j, k). Record that

j and k have been assigned to current node (i).

If pairing of edges can be done as given by Lehot, then we say

that graph is a line graph otherwise not a line graph and hence

not a root linesigraph.

This pair would represent an edge in newgraph. If this node

has negative edge anywhere, set this edge as negative else

positive. Also add this node to the queue as we want to travel

its neighbor.

Next step we will check whether a given sigraph is sign-

compatible or not. If it is sign-compatible, root line sigraph

exists and print the new modified graph otherwise root line

sigraph does not exists.

Step wise procedure is shown in Fig 3.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

9

Fig 3: Stepwise procedure to find root line sigraph

Following algorithmis used as a decryption technique to

recover the original information. It uses following functions:

MAX denotes maximum number of vertices

Structure of Node :idx; // Primary and i1, i2; // The pair

isTraversed is a function which represents whether node is

travelled or not.

Lookup defines if the current index is mapped to which node.

Now, since each node is given 2 numbers, the maximum

amount of numbers required is 2*MAX.

newGraph represents required root sigraph.

Step1. Input a sigraph H with entries 0, 1 and -1 whose root

sigraphS is required.

Step2. Find the first edge i.e repeat step for i= 0 to MAX and

j= 0 to MAX and till queue is not empty.

(i) Check if (graph[i][j] ! = 0) if yes then create a new node (

i, 1, 2). This node i is named as pair(1, 2). If no Go to Step3.

(ii) Again start traversing the graph from this node.

(iii) Initialize weight = 1.

(iv) Repeat for l=0 to MAX and weight=1 If true assign

weight = -1 else weight= 1.

(v) Populate the final graph with this edge i.e (1 ,2)

newGraph[newNodes[i].i1][newNodes[i].i2] = wieght;

newGraph[newNodes[i].i2][newNodes[i].i1] = wieght;

Step3. Now traverse through the graph and name other nodes.

Traverse till queue is not empty.

3.1 Set current node to queue.front

3.2 Repeat for i = 0 to MAX For each untravelled neighbor

3.2.1 create new node

3.2.2 set newnode.idx = current node i.ei

3.2.3 Choose i1 and i2 such that newGraph (adjacency matrix

= lookup) and graph are consistent. First loop – Try with the

indices tried until now

3.2.3.1 Look for i1 such that if (i1, l) is an edge, then

(curNode, l) should be an edge

3.2.3.2 Look for i2 such that if (i2, l) is an edge, then

(curNode, l) should be an edge

3.2.3.3 Set curIdx as the minimum of i1 and i2

3.2.3.4 Add edges to newGraph from i1 and i2 to i. This pair

would represent an edge in new graph. If this node has

negative edge anywhere, set this edge as negative else

positive.

3.2.3.5 Add the new node to the queue.

3.2.3.6 Set the current node as travelled. Second loop - If we

go inside this loop, it means we did not find any i1 and i2

<curIdx.

So we do an unbounded search. The steps are same, try with

indices not use until now.

Step4. Check if (curIdx> DIM) then print “Graph is not line

graph” and exit else Print “Graph is a line graph”.

Step5. Since sigraph is a line graph now we have to check

whether it is signcompatible.

5.1 Set for i = 1 to n all counts to 0.

5.2 Set for i = 1 to n and j = 1 to n and Count -1 in each row

and column.

5.3 Set for i = 1 to n and j = 1 to n

5.3.1 Search for first 1 and check if (row[i] ≥ 1 and (col[j] ≥

1) If yes, Print “Sigraph is not sign-compatible” and exit else

goto Step8.

Step6. Print sigraph is signed compatible and hence its root

line sigraph exists.

Step7. Print the newGraph(which is the required root

linesigraph).

Step8. Exit

Complexity of computation involved in above algorithm

In Step1 since we input a graph of order n x n, complexity of

this step = O(n2).

In Step2 we have to find first non-zero entry (i.e. first edge) in

adjacency matrix of order n x n and then corresponding to

each such entry, say (i, j)th entry, we again have to traverse the

graph to find its adjacent node and push the node in the queue.

Thus complexity of this step = O(n3).

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

10

In Step3 since we have to traverse the graph and name all

other nodes till queue is not empty. Queue contains the edges

that are adjacent to first edge.

This maximum number of edges is e = n(n − 1)/2.

Thus complexity of this step = O(e / n3).

In Step5 we detect whether the given sigraph is sign-

compatible or not. We count number of adjacent negative

edges in adjacency matrix of order n x n.

Maximum number of edges can be O(n2).

Thus complexity of this step = O(n2).

Total complexity = O(n2) + O(n3) + O(e / n3) + O(n2) = O(n3).

Hence complexity of computation involved in above

algorithm is O(n3), where n is number of vertices in S and e is

the number of edges.

5. CONCLUSION
Security of the data is the major concern in data transmission

over unreliable network. In this method of data transmission

in a network (say S), data is taken in the form of adjacency

matrix with entries as 0, 1 and -1. Then algorithm defined in

Section 3 is used as an encryption mechanism for transmitting

the data. We get L(S) as the data which is transmitted. Further

the decryption of this transmitted data to original data will be

implemented through algorithm defined in Section 4. There

exists several techniques on encryption and decryption, but

we have developed a new technique in which weak and strong

relationships among nodes in a network can be defined. The

following technique is proposed that will use adjacency

matrix of S as a parameter to encrypt and forward the data in

the form of L(S) and will decrypt it by applying inverse matrix

operations. Thus, we can say that, this is a new technique,

which can be used in encryption and decryption of a network.

For the purpose of security, we have used asymmetric key

cryptography.

5.1 System Model
Asymmetric cryptography is used in this model. Two different

keys, a secret key d and a public key e are defined. The public

key e is used for encryption i.e. for converting adjacency

matrix of S to adjacency matrix of L(S). Since we have a

unique method for encryption, therefore, it can be published.

Further, the secret private key d is used for decryption of

adjacency matrix of L(S) to adjacency matrix of S. Since we

have many line root sigraphs of a given sigraph and we have

to restrict our networks to obtain a unique line root sigraph,

therefore, private key is used. Also, if labelling of vertices can

be done by Lehot [2], then only we obtain unique line root

sigraph. The following model used as an application to above

algorithms is shown in Fig 4.

Given a network (or sigraph) with negative and positive edges

representing weak and strong relationships among nodes is

first encoded in the form of adjacency matrix with entries 0, 1

and -1 representing no edge, positive edge and negative edge

respectively. Adjacency matrix is the plain text. Encryption

uses an algorithm called a cipher key (defined in Section3) to

encrypt matrix into another matrix which can be decrypted

only using a special key (defined in Section 4). Encrypted

information is known as cipher text and the process of

obtaining the original information(plaintext) from the cipher

text is known as decryption.

Note:

For more security reasons, we can add one additional key

matrix

K =

1 111

1 11 0

1 1 0 0

1 0 00

This key is multiplied to the adjacency matrix of L(S) to

obtain the encrypted data. This encrypted data is send to the

receiver. Now again multiply this encrypted data with the

inverse of matrix K. Here

K−1 =

0 00 1

0 0 1 −1

0 1 −1 0

1 −1 0 0

and apply decryption algorithm to obtain the original

message.

Fig 4: System Model

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

11

5.2 Encoding Chart

For a network with „n‟ number of vertices, we have n x n

adjacency matrix encoded as shown in Fig 5.

0 1 0 −1

1 0 −1 −1

0 −1 0 1

−1 −1 1 0

Fig 5: Example showing how network is encoded in the form of adjacency matrix

5.3 Encryption Algorithm
 •Input the network which is to be encrypted. Then

encode this network into adjacency matrix of S.

• Populate edge list. Initially set number of edges to 0.

• Count number of non-zero entries in lower triangular

matrix. Name it as m.

• This count will represent number of rows or vertices for

the resultant matrix i.e. L(S).

• Apply algorithm defined in Section 3 to convert

adjacency matrix of S to adjacency matrix of L(S).

• Multiply adjacency matrix of L(S) with K to get higher

security to the data.

• The resultant matrix so produced is required line sigraph

L(S) of given sigraph S.

• The resultant matrix is the encrypted data.

• Now send the resultant matrix to the receiver in a linear

format (i.e., either column wise or row wise) with space

between elements.

nn < Resultant matrix data >mm

where,

n = number of vertices or nodes in the network

m = number of edges in the network.

5.4 Decryption Algorithm
• Read the encrypted data and form the required matrices

of order m x m.

• Multiply the obtained matrix with K−1.

• The matrix thus obtained is again the adjacency matrix of

L(S).

• Apply “Algorithm to detect a line sigraph and output its

root sigraph” defined in Section 4 to convert adjacency

matrix of L(S) to adjacency matrix of S.

• Decode the resultant matrix back to the network using

encoding chart.

• The network so produced is the original network.

Note:

The reading and writing of data can be done manually or by

using file operation of any programming language (eg. C,

C++....).

5.5 Example
In the example to be discussed here we have used C++

Program for all type of matrix operations.

Suppose we have a network. The network is represented by

dotted and solid lines representing weak and strong

relationships among the various nodes.

Consider a network in Fig 6:

We represent this network in the form matrix T of the

adjacency matrix of S.

Let

 T= 0 1 -1 0

 1 0 -1 0

 -1 −1 0 -1

 0 0 −1 0

be the adjacency matrix for the above network such that 1

represent solid line and -1 shows dashed line.

Populate edge list i.e. count number of non-zero entries in

matrix T. Let this number be „m‟. Then the resultant matrix

after encrypting will be of order m x m. Here in our example it

is 4. Thus the resultant matrix is of order 4 x 4 which is

adjacency matrix of L(S).

Fig 6: Network

Now, for each non zero entry of the matrix T, say (i, j)th entry,

search for non zero entries in row i and column i. For each

such non zero entry, say (i, k)th entry in ith row, there

corresponds an edge in L(S), in this case edges (i,j) and (i,k) in

S would be two adjacent vertices of L(S). Now sign of this

edge in L(S) depends on sign of edges (i ,j) and (i, k) in S. If

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

12

both the entries in matrix are -1 then corresponding edge in

L(S) would be negative otherwise it would be positive.

Thus the resultant matrix is adjacency matrix of L(S):

T‟= 0 1 1 0

 1 0 −1−1

 1 −1 0 −1

 0 −1 −1 0

The corresponding graph is shown in Fig 7:

If we decide to transmit the data row wise, the data to be send

is (the data are separated by space)

4 4 0 000 1 0 00 -1 -1 0 000 -1 0 4 4

Suppose the received data is

4 4 0 1 1 0 1 0 -1 -1 1 -1 0 -1 0 -1 -1 0 55

From the data we have received we get the following matrix:

 T‟= 0 1 1 0

 1 0 −1 −1

 1 −1 0 −1

 0 −1 −1 0

isomorphic to some sigraph.

Now applying the decryption algorithm for L(S) to S as

shown in example we get the matrix as

 0 1 −1 0

 1 0 −1 0

 −1 −1 0 −1

 0 0 −1 0

Which is equal to the matrix T

Fig 7: Encrypted Network

Thus the resulting sigraph after complete encryption and

decryption is shown in Fig 8:

Fig 8: Encrypted and Decrypted network

Note:

As defined above, one can easily obtained a more secured

network by multiplying T‟ by K. The matrix so produced is

the encrypted data which is to be transmit row-wise.

If we decide to transmit the data row wise, the data to be send

is (the data are separated by space)

4 4 0 1 -1 0 1 0 -1 0 -1 -1 0 -1 0 0 -1 0 4 4

Suppose the received data is

4 4 2 2 1 0 -1 0 1 1 -1 0 0 1 -2 -2 -1 0 5 5

Multiply this received data with K−1, we get,

T‟‟ =

0 1 1 0

1 0 -1 -1

1 -1 0 -1

0 -1 -1 0

isomorphic to some sigraph. This matrix is same as the matrix

of L(S).Follow the same decryption mechanism as above and

we get back the same original network. Thus, network is made

more secured due to additional secret key.

6. ACKNOWLEDGMENTS
The authors express gratitude to Mr. Dhananjay Kulkarni who

help in writing algorithms and finding complexity and to the

referees who made extensive and constructively critical

comments on the first version of the paper.

7. REFERENCES
[1] Sinha, D. andSethi. A 2015, An Algorithm to detect S-

Consistency in Line Sigraph, Journal of Combinatorics,

Information & System Sciences: Vol 40, No. 1-4 Comb.

(Jan-Dec 2015).

[2] Lehot, P.G.H. 1974. An optimal algorithm to detect a

line graph and output its root graph, Journal of the

Association for Computing Machinery, 21 (4), (1974),

569-575.

[3] Zasalavsky, T. 1982. Signed graphs, Discrete Appl.Math,

4 (1) (1982), 47-74.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.4, March 2016

13

[4] West, D.B. 1996. Introduction to Graph Theory,

Prentice-Hall of India Pvt. Ltd., 1996.

[5] Golumbic, M.C. 2004. Algorithmic Graph Theory and

Perfect Graphs, Fourth Edition.

[6] Cormen, T., Leiserson C., Rivest, R., Stein, C. 2011.

Introduction to algorithm, Third Edition, PHI Learning

Private Limited, 2011.

[7] Chartrand, G. T. 1977. Graphs as Mathematical Models,

Prindle, Weber and Schmidt, Inc., Boston,

Massachusetts, 1977.

[8] Behzad, M. and Chartrand, G. T. 1969. Line coloring of

signed graphs, Elem. Math., 24(3) (1969), 49-52.

[9] Sinha, D. and Sethi. A 2015, An Optimal Algorithm

toDetect Sign Compatibility of a given Sigraph, National

Academy of Science Letters, DOI 10.1007/s40009-014-

0317-5, 2015.

[10] Acharya, M. and Sinha, D. 2005. Characterizations of

Line sigraphs, Nat. Acad. Sci. –Letters., 28 (1 - 2)

(2005), 31-34. [Also, see Extended Abstract in:

Electronic Notes in Discrete Mathematics, 15 (2003).

[11] Sinha, D. and Sethi. A 2015, An Algorithmic

Characterization of sigraphs whose common

edgesigraphs and second iterated line sigraphs are

switching equivalent, Journal of Discrete Mathematical

Sciences &Cryptography DOI:

10.1080/09720529.2015,1013679,Vol. 18(2015), No. 5,

pp. 581-603.

IJCATM : www.ijcaonline.org

