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ABSTRACT 
Security of a network is important to all organizations, 

personal computer users, and the military. With the invention 

of the Internet, major concern is about the security and the 

history of security allows a better understanding of the 

emergence of security technology. One of the ways to secure 

businesses from the Internet is through firewalls and 

encryption mechanisms. A network can be designed as a 

sigraph S where every sigraph will have its unique adjacency 

matrix associated with it.  A signed graph (or sigraph in 

short) S is a graph G in which every edge x carries a value s(x) 

∈ {-1, +1} called its sign denoted specially as S = (G, s). 

Given a sigraph S, H = L(S) called the line sigraph of S is that 

sigraph in which edges of S are represented as vertices, two of 

these vertices are adjacent whenever the corresponding edges 

in S have a vertex in common and any such edge ef is defined 

to be negative whenever both e and f are negative edges in S. 

Here S is called root sigraph of H. In this paper first we give 

an algorithm to obtain a line sigraph [1] and line root sigraph 

from a given sigraph [1], if it exists. This algorithm is an 

extension of an algorithm given by Lehot [2] in the realm of 

sigraphs. In the end we will propose a technique that will use 

adjacency matrix of S as a parameter to encrypt and forward 

the data in the form of adjacency matrix of L(S) and will 

decrypt it by applying inverse matrix operations. 

Keywords 
Algorithm, sigraph, line sigraph, root sigraph, sign-

compatible, network, network security, encryption, 

decryption. 

1. INTRODUCTION 
For notations in signed graphs, we refer to Zasalavsky [3] 

and West [4] and for algorithms, refer to Golumbic [5] and 

Coreman [6]. Throughout the text, we consider finite, 

undirected graph with no loops or multiple edges. By a (n, e) 

graph G we mean a graph having n vertices and e edges; n is 

called the order and e is called the size of G. Any graph G can 

be observed as a network where vertices are referred as nodes 

and edges as links. For any network communication must be 

secured because the communication signals are openly 

available as they propagate. 

By a signed graph (or sigraph) S [3, 7] we mean a graph G = 

(V, E) called the underlying graph of S and denoted by Su, in 

which each edge x carries a value s(x) ∈ {+1, −1} called its 

sign; an edge x is positive or negative according to whether 

s(x) = +1 or s(x) = −1. The set of positive edges of S is 

denoted by E+(S) and E−(S) = E(G) − E+(S) is the set of 

negative edges of S. In general, a subgraph S’ of a sigraph S is 

said to be all-positive (all-negative) if all the edges of S’ are 

positive (negative). A sigraph is said to be homogeneous if it 

is either all-positive or all-negative and heterogeneous 

otherwise.  

For a sigraph S, Behzad and Chartrand [8] defines its line 

sigraph, L(S) as the sigraph in which the edges of S are 

represented as vertices, two of these vertices are defined 

adjacent whenever the corresponding edges in S have a vertex 

in common, any such edge ef is defined to be negative 

whenever both e and f are negative edges in S. A given 

sigraph S is a line sigraph if it is isomorphic to the line sigraph 

L(T) of a sigraph T. Here T is called the line root of S. 

An adjacency matrix for a network with „n‟ vertices and no 

parallel edges is an n x n symmetric matrix such that 

aij =       1             if (i, j) is a solid line 

            −1            if (i, j) is a dotted line 

             0            if (i = j) 

When network security is considered, one must ensure that the 

whole network is secured. Data Security is the major factor to 

secure data transmission over unreliable network. Data 

Security is a challenging issue of data communications today 

that touches many areas including secure communication 

channel, strong data encryption technique and trusted third 

party to maintain the database. The conventional methods of 

encryption can only maintain the data security. The 

unauthorized user could access the information for malicious 

purpose. Therefore, it is necessary to apply effective 

encryption/decryption methods to enhance data security. In 

this paper we are going to introduce a new method for 

encoding and decoding of data using network as sigraph and 

basic properties of matrices. 

For the purpose of network security, adjacency matrix of S 

will be considered as basis of information which is to be 

encrypted to adjacency matrix of L(S) to assure 

confidentiality, integrity and authentication of transmitted 

data. 

A sigraph S is sign-compatible [9] if there exists a marking μ 

of its vertices such that the end vertices of every negative 

edge receive „-‟ signs in μ and no positive edge in S has both 

of its ends assigned „-‟ sign in μ. In other words, a sigraph is 

sign-compatible if and only if its vertices can be partitioned 

into two subsets V1 and V2 such that the all-negative 

subsigraph of S is precisely the subsigraph induced by exactly 

one of the subsets V1 and V2. Every line sigraph is sign-

compatible. However, not every sign-compatible sigraph need 

be line sigraph. 

Based on concept sign-compatible sigraphs[9], 

characterization of line sigraphs [10] and algorithm to detect 

a line graph and output its root graph by Lehot [2], we will 

provide a computer-oriented characterization of line sigraph 

that will output the root sigraph S of sigraph H (sometimes 

called L(S)) whenever the latter is a line sigraph. 
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Since, for a network we use nodes in case of vertices and link 

for edges, so while giving algorithms for the characterization, 

nodes and links are used. 

2. CHARACTERIZATION OF LINE 

SIGRAPHS 
By a positive(negative) section of a subgraph S’ of a sigraph S 

we mean a maximal edge-induced connected subsigraph in S’ 

consisting of only the positive(negative) edges of S; in 

particular, a positive(negative) section in a heterogeneous 

cycle of S is essentially a maximal all-positive(all-negative) 

path in the cycle. Using the definition, following is a 

characterization of line sigraphs by Acharya and Sinha [see 

[10]]. 

Theorem 1. [10] The following statements are equivalent for 

any sigraphS:  

(i) S is a line sigraph ; 

(ii) Su is a line graph and for any two vertices u, v ∈V (S) and 

for any u − v path in S either u = v and the cycle so created is 

not a triangle with exactly two negative edges or the u - v path 

contains no positive section of length one unless one of its 

ends is u or v; 

(iii) S does not contain an induced subsigraph isomorphic to 

either of the two sigraphs, S1 formed by taking the path P4 = 

(x, u, v, y) with both the edges (x, u) and (v, y) negative and 

the edge (u, v) positive and S2 formed by taking S1 and 

identifying the vertices x and y as shown in Fig 1, or to any 

sigraph on Beineke‟s nine forbidden subgraphs; 

 

 

Fig 1: Condition to check sign-compatibility 

 (iv) Su is a line graph and for any positive edge uv of S either 

there is no negative edge at u or there is no negative edge at v; 

(v) Su is a line graph and vertices of S can be assigned signs 

„+‟ or „-‟ such that both the ends of every negative edge 

receive „-‟ sign and the same is not true for any positive edge; 

(vi)  Su is a line graph and the vertex set V(S) of S can be 

partitioned into two subsets V1 and V2, one of them possibly 

empty, such that all the negative edges of S join vertices of 

just one of the subsets. 

3. ALGORITHM TO CONVERT A 

SIGRAPH TO LINE SIGRAPH [1, 11] 

3.1 Part – 1: 
Here input matrix vertex[i][j] can be either upper triangular 

matrix or lower triangular matrix with entry 0 if there is no 

edge and 1 if edge exists. For each non-zero entry in  

 

vertex[i][j], we define signver[i][j] to be either upper 

triangular or lower triangular matrix with entries 0 and 1, 0 

will represent negative edge and 1 represents positive edge. 

Step1. Enter the number of vertices n of input sigraph S whose 

line sigraph L(S) is required. 

Step2. Input the lower triangular matrix (say) vertex[i][j] and 

sign matrix signver[i][j] of sigraph S. 

Step3. Instead of 1 assign distinct numbers at all those 

positions of matrix where there is a non-zero entry. 

Step4. Now search for non-zero entries in given matrix. 

(i) Now, for each non zero entry of the given matrix, say (i, 

j)th, search for non-zero entries in row i and column i. For 

each such non-zero entry, say (i, k)th entry in ith row, there 

corresponds an edge in L(S), in this case edges (i,  ,j) and (i, k) 

in S would be two adjacent vertices of L(S). 

 

Fig 2: Example showing sigraph and its line sigraph 
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(ii) Now sign of this edge in L(S) depends on sign of edges (i, 

j) and (i, k) in S. If both the entries in matrix signver are zero 

then corresponding edge in L(S) would be negative otherwise 

it would be positive. 

Step5. The sigraph so produced is required line sigraph L(S) 

of given sigraph S as shown in Fig 2. 

Complexity of computation involved in above algorithm 

In Step3 we have to assign distinct numbers to all the non-

zero entries in adjacency matrix. Since we have entered lower 

triangular matrix, thus we need to check n(n − 1)/2 entries. 

Hence complexity for this step is O(n2). 

Then in Step4 first we have to search for non-zero entries in 

lower triangular matrix and then corresponding to each such  

entry, say (i, j)th entry, we have to search for non -zero entries 

in row i and column  i. Also we have to check signs of these 

entries. 

Thus complexity of this step = O(n2 × n) = O(n3). 

Hence complexity of computation involved in above 

algorithm is O(n3), where n is number of vertices in S. 

3.2 Part – 2 
Here input matrix vertex[i][j] can be either upper triangular 

matrix or lower triangular matrix with entries 0, 1 and -1 for 

no edge, positive edge and negative edge respectively. 

Step1. Enter the number of vertices n of input sigraph S whose 

line sigraph L(S) is required. 

Step2. Input lower triangular matrix (say) vertex[i][j] with 

entries 0, 1 and -1 for no edge, positive edge and negative 

edge respectively of sigraph S. 

Step3. Now search for non-zero entries in matrix. 

(i) Now, for each non-zero entry of the matrix, say (i, j)th 

entry, search for non zero entries in row i and column i. For 

each such non zero entry, say (i, k)th entry in ith row, there 

corresponds an edge in L(S), in this case edges (i, j) and (i, k) 

in S would be two adjacent vertices of L(S). Now sign of this 

edge in L(S) depends on sign of edges (i, j) and (i, k) in S. If 

both the entries in matrix are -1 then corresponding edge in 

L(S) would be negative otherwise it would be positive. 

Step4. The sigraph so produced is required line sigraph L(S) 

of given sigraph S as shown in Fig 2. 

Complexity of computation involved in above algorithm 

In Step3 we have to search for non-zero entries in lower 

triangular matrix of order n x n and then corresponding to 

each such entry, say (i, j)th entry, we have to search for non- 

zero entries in row i and column i. Also we have to check 

signs of these entries. 

Hence complexity for this step is O(n2). 

Hence complexity of computation involved in above 

algorithm is O(n2), where n is number of vertices in S. 

3.3 Conclusion 
Since  we can implement the line sigraph from a given sigraph 

in two ways. First part takes input in the form of two matrices 

and with complexity O(n3) whereas second part takes only 

one matrix as input and with complexity O(n2). Thus we can 

say PART - 2 is optimal in space and time complexity and 

will be used as a parameter to encrypt and forward the data. 

Encryption is applied at this step. 

4. ALGORITHM TO DETECT A LINE 

SIGRAPH AND OUTPUT ITS ROOT 

SIGRAPH  [1, 11] 
The algorithm to detect a line sigraph and output its root 

sigraph is an extension of a paper named “An Optimal 

Algorithm to Detect a Line Graph and Output its Root Graph” 

by Lehot [2]. 

To check whether a given sigraph is a root linesigraph or not 

we have to check two conditions: 

i. The underlying graph is a line graph. 

ii. Given sigraph is sign-compatible.  

If both the conditions are satisfied we say that root linesigraph 

exists and will print the new root sigraph of S.  

Newnode represents the node of the intermediate graph i.e. 

Fig - b and lookup represents if current index is mapped to 

which node. It shows the mapping between Fig - a  and Fig - 

b. Since each node represents 2 points, maximum amount of 

numbers required is 2* Max where Max denotes maximum 

value of n.  

Newgraph denotes the adjacency matrix of required root 

sigraph and corresponding to this matrix Fig - c is plot. 

Find the first non-zero entry in adjacency matrix i.e. 

graph[i][j]. For the first edge (i, j) create a new node (i, 1, 2)  

→ Node i named as pair (1, 2) i.e. in Fig - b. Now start 

traversing the graph from this node. Also populate the final 

graph with this edge i.e. (1, 2). 

Now traverse through the graph and name other nodes. For 

each untraveled neighbor create a modified node for Fig - b. 

Find an i1 for new node. We want to find j as the first index 

i1, we look if j is assigned to any node, do we have any edge. 

For e.g. if j = 2 and current nodes are (a, (1, 2)), (b, (2, 3)) and 

(c, (1, 4)) we check if current node has edge from a to b. Once 

we have find j we want to find k as second index. If j and k are 

found we have found the naming of i1 and i2. Add i1 and i2 to 

newnode. Make curidx minimum of (curidx, j, k). Record that 

j and k have been assigned to current node (i).  

If pairing of edges can be done as given by Lehot, then we say 

that graph is a line graph otherwise not a line graph and hence 

not a root linesigraph. 

This pair would represent an edge in newgraph. If this node 

has negative edge anywhere, set this edge as negative else 

positive. Also add this node to the queue as we want to travel 

its neighbor. 

Next step we will check whether a given sigraph is sign-

compatible or not. If it is sign-compatible, root line sigraph 

exists and print the new modified graph otherwise root line 

sigraph does not exists. 

Step wise procedure is shown in Fig 3. 
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Fig 3: Stepwise procedure to find root line sigraph 

Following  algorithmis used as a decryption technique to 

recover the original information. It uses following functions: 

MAX denotes maximum number of vertices 

Structure of Node :idx; // Primary and i1, i2; // The pair 

isTraversed is a function which represents whether node is 

travelled or not. 

Lookup defines if the current index is mapped to which node. 

Now, since each node is given 2 numbers, the maximum 

amount of numbers required is 2*MAX. 

newGraph represents required root sigraph. 

Step1. Input a sigraph H with entries 0, 1 and -1 whose root 

sigraphS is required. 

Step2. Find the first edge i.e repeat step for i= 0 to MAX and 

j= 0 to MAX and till queue is not empty. 

(i) Check if (graph[i][j] ! = 0) if yes then create a new node ( 

i, 1, 2). This node i is named as pair(1, 2). If no Go to Step3. 

(ii) Again start traversing the graph from this node. 

(iii) Initialize weight = 1. 

(iv) Repeat for l=0 to MAX and weight=1 If true assign 

weight = -1 else weight= 1. 

(v) Populate the final graph with this edge i.e (1 ,2) 

newGraph[newNodes[i].i1][newNodes[i].i2] = wieght; 

newGraph[newNodes[i].i2][newNodes[i].i1] = wieght; 

Step3. Now traverse through the graph and name other nodes. 

Traverse till queue is not empty. 

3.1 Set current node to queue.front 

3.2 Repeat for i = 0 to MAX For each untravelled neighbor 

3.2.1 create new node 

3.2.2 set newnode.idx = current node i.ei 

3.2.3 Choose i1 and i2 such that newGraph (adjacency matrix 

= lookup) and graph are consistent. First loop – Try with the 

indices tried until now 

3.2.3.1 Look for i1 such that if (i1, l) is an edge, then 

(curNode, l) should be an edge 

3.2.3.2 Look for i2 such that if (i2, l) is an edge, then 

(curNode, l) should be an edge 

3.2.3.3 Set curIdx as the minimum of  i1 and i2 

3.2.3.4 Add edges to newGraph from i1 and i2 to i. This pair 

would represent an edge in new graph. If this node has 

negative edge anywhere, set this edge as negative else 

positive. 

3.2.3.5 Add the new node to the queue. 

3.2.3.6 Set the current node as travelled. Second loop - If we 

go inside this loop, it means we did not find any i1 and i2 

<curIdx. 

So we do an unbounded search. The steps are same, try with 

indices not use until now. 

Step4. Check if (curIdx> DIM) then print “Graph is not line 

graph” and exit else Print “Graph is a line graph”. 

Step5. Since sigraph is a line graph now we have to check 

whether it is signcompatible. 

5.1 Set for i = 1 to n all counts to 0. 

5.2 Set for i = 1 to n and j = 1 to n and Count -1 in each row 

and column. 

5.3 Set for i = 1 to n and j = 1 to n 

5.3.1 Search for first 1 and check if (row[i] ≥ 1 and (col[j] ≥ 

1) If yes, Print “Sigraph is not sign-compatible” and exit else 

goto Step8. 

Step6. Print sigraph is signed compatible and hence its root 

line sigraph exists. 

Step7. Print the newGraph(which is the required root 

linesigraph). 

Step8. Exit 

Complexity of computation involved in above algorithm 

In Step1 since we input a graph of order n x n, complexity of 

this step = O(n2). 

In Step2 we have to find first non-zero entry (i.e. first edge) in 

adjacency matrix of order n x n and then corresponding to 

each such entry, say (i, j)th entry, we again have to traverse the 

graph to find its adjacent node and push the node in the queue. 

Thus complexity of this step = O(n3). 
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In Step3 since we have to traverse the graph and name all 

other nodes till queue is not empty. Queue contains the edges 

that are adjacent to first edge. 

This maximum number of edges is e = n(n − 1)/2. 

Thus complexity of this step = O(e / n3). 

In Step5 we detect whether the given sigraph is sign-

compatible or not. We count number of adjacent negative 

edges in adjacency matrix of order n x n. 

Maximum number of edges can be O(n2). 

Thus complexity of this step = O(n2). 

Total complexity = O(n2) + O(n3) + O(e / n3) + O(n2) = O(n3). 

Hence complexity of computation involved in above 

algorithm is O(n3), where n is number of vertices in S and e is 

the number of edges. 

5. CONCLUSION 
Security of the data is the major concern in data transmission 

over unreliable network. In this method of data transmission 

in a network (say S), data is taken in the form of adjacency 

matrix with entries as 0, 1 and -1. Then algorithm defined in 

Section 3 is used as an encryption mechanism for transmitting 

the data. We get L(S) as the data which is transmitted. Further 

the decryption of this transmitted data to original data will be 

implemented through algorithm defined in Section 4. There 

exists several techniques on encryption and decryption, but 

we have developed a new technique in which weak and strong 

relationships among nodes in a network can be defined. The 

following technique is proposed that will use adjacency 

matrix of S as a parameter to encrypt and forward the data in 

the form of L(S) and will decrypt it by applying inverse matrix 

operations. Thus, we can say that, this is a new technique, 

which can be used in encryption and decryption of a network. 

For the purpose of security, we have used asymmetric key 

cryptography. 

5.1 System Model 
Asymmetric cryptography is used in this model. Two different 

keys, a secret key d and a public key e are defined. The public 

key e is used for encryption i.e. for converting adjacency 

matrix of S to adjacency matrix of L(S). Since we have a 

unique method for encryption, therefore, it can be published. 

Further, the secret private key d is used for decryption of 

adjacency matrix of L(S) to adjacency matrix of S. Since we 

have many line root sigraphs of a given sigraph and we have 

to restrict our networks to obtain a unique line root sigraph, 

therefore, private key is used. Also, if labelling of vertices can 

be done by Lehot [2], then only we obtain unique line root 

sigraph. The following model used as an application to above 

algorithms is shown in Fig 4. 

Given a network (or sigraph) with negative and positive edges 

representing weak and strong relationships among nodes is 

first encoded in the form of adjacency matrix with entries 0, 1 

and -1 representing no edge, positive edge and negative edge 

respectively. Adjacency matrix is the plain text. Encryption 

uses an algorithm called a cipher key (defined in Section3) to 

encrypt matrix into another matrix which can be decrypted 

only using a special key (defined in Section 4). Encrypted 

information is known as cipher text and the process of 

obtaining the original information(plaintext) from the cipher 

text is known as decryption. 

Note: 

For more security reasons, we can add one additional key 

matrix 

K = 

1 111 

1 11 0 

1 1 0 0 

1 0 00 

This key is multiplied to the adjacency matrix of L(S) to 

obtain the encrypted data. This encrypted data is send to the 

receiver. Now again multiply this encrypted data with the 

inverse of matrix K. Here 

K−1 = 

0 00 1 

0 0 1 −1 

0 1 −1 0 

1 −1 0 0 

and apply decryption algorithm to obtain the original 

message. 

 

Fig 4: System Model 
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5.2 Encoding Chart 

For a network with „n‟ number of vertices, we have n x n 

adjacency matrix encoded as shown in Fig 5. 

 

 

0   1   0 −1 

1   0 −1 −1 

0 −1   0   1 

−1 −1   1   0 

Fig 5: Example showing how network is encoded in the form of adjacency matrix 

5.3 Encryption Algorithm 
 •Input the network which is to be encrypted. Then 

encode this network into adjacency matrix of S. 

• Populate edge list. Initially set number of edges to 0. 

• Count number of non-zero entries in lower triangular 

matrix. Name it as m. 

• This count will represent number of rows or vertices for 

the resultant matrix i.e.  L(S). 

• Apply algorithm defined in Section 3 to convert 

adjacency matrix of S to adjacency matrix of L(S). 

• Multiply adjacency matrix of L(S) with K to get higher 

security to the data. 

• The resultant matrix so produced is required line sigraph 

L(S) of given sigraph S. 

• The resultant matrix is the encrypted data. 

• Now send the resultant matrix to the receiver in a linear 

format (i.e., either column wise or row wise) with space 

between elements. 

nn < Resultant matrix data >mm 

where, 

n = number of vertices or nodes in the network 

m = number of edges in the network. 

5.4 Decryption Algorithm 
• Read the encrypted data and form the required matrices 

of order m x m. 

• Multiply the obtained matrix with K−1. 

• The matrix thus obtained is again the adjacency matrix of 

L(S). 

• Apply “Algorithm to detect a line sigraph and output its 

root sigraph” defined in Section 4 to convert adjacency 

matrix of L(S) to adjacency matrix of S. 

• Decode the resultant matrix back to the network using 

encoding chart. 

• The network so produced is the original network. 

Note: 

The reading and writing of data can be done manually or by 

using file operation of any programming language (eg. C, 

C++....). 

5.5 Example 
In the example to be discussed here we have used C++ 

Program for all type of matrix operations. 

Suppose we have a network. The network is represented by 

dotted and solid lines representing weak and strong 

relationships among the various nodes.  

Consider a network in Fig 6: 

We represent this network in the form matrix T of the 

adjacency matrix of S.  

Let  

 T=   0   1   -1  0 

        1   0    -1  0 

       -1 −1    0  -1 

        0   0  −1  0 

be the adjacency matrix for the above network such that 1 

represent solid line and -1 shows dashed line. 

Populate edge list i.e. count number of non-zero entries in 

matrix T. Let this number be „m‟. Then the resultant matrix 

after encrypting will be of order m x m. Here in our example it 

is 4. Thus the resultant matrix is of order 4 x 4 which is 

adjacency matrix of  L(S). 

 
Fig 6: Network 

Now, for each non zero entry of the matrix T, say (i, j)th entry, 

search for non zero entries in row i and column i. For each 

such non zero entry, say (i, k)th entry in ith row, there 

corresponds an edge in L(S), in this case edges (i,j) and (i,k) in 

S would be two adjacent vertices of L(S). Now sign of this 

edge in L(S) depends on sign of edges (i  ,j) and (i, k) in S. If 
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both the entries in matrix are -1 then corresponding edge in 

L(S) would be negative otherwise it would be positive. 

Thus the resultant matrix is adjacency matrix of L(S): 

T‟=      0  1   1  0 

            1 0  −1−1 

            1 −1  0  −1 

            0 −1 −1 0 

The corresponding graph is shown in Fig 7: 

If we decide to transmit the data row wise, the data to be send 

is (the data are separated by space) 

4 4 0 000 1 0 00 -1 -1 0 000 -1 0 4 4 

Suppose the received data is 

4 4 0 1 1 0 1 0 -1 -1 1 -1 0 -1 0 -1 -1 0 55 

From the data we have received we get the following matrix: 

       T‟=  0  1   1 0 

               1  0 −1 −1 

               1 −1  0 −1 

               0 −1 −1 0 

isomorphic to some sigraph. 

Now applying the decryption algorithm for L(S) to S  as 

shown in example we get the matrix as   

         0    1   −1   0 

        1    0   −1   0 

       −1  −1     0 −1 

         0   0   −1   0  

Which is equal to the matrix T 

 

Fig 7: Encrypted Network 

Thus the resulting sigraph after complete encryption and 

decryption is shown in Fig 8: 

 

Fig 8: Encrypted and Decrypted network

Note: 

As defined above, one can easily obtained a more secured 

network by multiplying T‟ by K. The matrix so produced is 

the encrypted data which is to be transmit row-wise. 

 

If we decide to transmit the data row wise, the data to be send 

is ( the data are separated by space) 

4 4 0 1 -1 0 1 0 -1 0 -1 -1 0 -1 0 0 -1 0 4 4 

Suppose the received data is 

4 4 2 2 1 0 -1 0 1 1 -1 0 0 1 -2 -2 -1 0 5 5 

Multiply this received data with K−1, we get, 

T‟‟ = 

0 1 1 0 

1 0 -1 -1 

1 -1 0 -1 

0 -1 -1 0 

isomorphic to some sigraph. This matrix is same as the matrix 

of L(S).Follow the same decryption mechanism as above and 

we get back the same original network. Thus, network is made 

more secured due to additional secret key. 
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