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ABSTRACT 

Extreme learning machine (ELM) is a biologically inspired 

feed-forward machine learning algorithm that offers a 

significant training speed. Typically, ELM is used in 

classification applications, where achieving highly accurate 

results depend on raising the number of ELM hidden layer 

neurons, which are randomly weighted independently of the 

training data and the environment. To this end, determining 

the rational number of hidden layer neurons in the extreme 

learning machine (ELM) is an approach that can be adapted to 

maintain the balance between the classification accuracy and 

the overall physical network resources. This paper proposes a 

software based method that uses gradient descent algorithm to 

determine the rational number of hidden neurons to realize an 

application specific ELM network in hardware. The proposed 

method was validated with MNIST standard database of hand-

written digits and human faces database (LFW). Classification 

accuracy of 93.4% has been achieved using MNIST and 

90.86% for LFW database. 
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1. INTRODUCTION 
Inspired by the sophisticated capabilities of the biological 

human brain, the extreme learning machine is introduced by 

Huang el al [1,2,3], as a machine learning algorithm that 

overcomes the main challenges faced in other machine 

learning techniques, such as low learning speed and human 

intervention during the learning process. Unlike other 

machine learning algorithms, extreme learning machine offers 

a significant training speed. This is achieved by confining the 

neurons weights tuning to the output layer only and leaving 

the hidden layer(s) neurons weights un-tuned after initializing 

them randomly and independently on the training data and 

environment. This is based on the conjecture that there are 

neurons in the live brain randomly parametrized 

independently of the environment and this has been evidently 

proved in [4]. Having such network structure reduces ELM 

complexity and makes it more suitable for hardware mapping 

especially in classification applications. 

Fundamentally, the ELM neural network consists of three 

layers: Input, hidden, and output layer. The input layer is 

utilized to introduce the input data, training or testing 

examples, to the network. These data are transferred to N-

dimensional space in the next layer, which is also called 

(hidden layer or feature mapping layer [5]), where the input 

features are represented in a more meaningful way [6]. The 

hidden layer output is relayed to the last layer in the network 

(output layer), where it gets evaluated. Determining the 

number of neural units in each layer depends on the task being 

performed by that layer. The input layer units are set 

depending on the number of features represented by input 

examples, while the number of classes that need to be 

classified determine the number of output layer units. 

Selecting the number of hidden layer units depends on data 

variance. The more variance in input data, the larger network 

is required to improve performance. Typically, the ELM 

algorithm comes either with or without a kernel. In the kernel 

model version, which is unlike the basic version (without a 

kernel), there is no need to set the number of hidden layer 

neurons. Also, it is hardware dependent, i.e., when the 

database is large, a computer with a massive memory unit is 

required to run the algorithm, as will be shown in the 

experimental results section. For the above reasons, the basic 

version is recommended to be used when it comes to the 

normal computer users. The main issue in the basic version, is 

that the number of hidden layer neurons is set manually, and it 

is computationally extensive especially when the training data 

has a large number of features.  

The main contribution of this work is to develop a software 

based method that determines the network architecture 

parameters, such as the number of hidden neurons and the 

activation function in a way that keeps the balance between 

the accuracy and the size of the network. The proposed 

method, which is based on the classification accuracy curve, 

exploits the logarithmic rise of curve to precisely predict the 

future network performance. This can be used to select the 

network architecture parameters that minimize the used 

hardware resources and produces high classification accuracy. 

This paper is organized as follows: section 2 reviews the ELM 

algorithm, section 3 presents the proposed approach to 

determine rational number of hidden layer neurons in ELM. 

The validation database and the obtained results are discussed 

in section 4, while section 5 concludes the paper. 

2. REVIEW OF ELM 
The ELM is a promising learning algorithm that can be used 

as an effective technique in classification applications. It is 

resulted from combining the support vector machine (SVM) 

and the feed-forward neural networks. This section reviews 

two types of ELM which are categorized based on the 

structure of the network.  

2.1 Single Layer ELM 
The single layer ELM has a single hidden layer and it is also 

known as a single layer feed-forward network (SLFN). The 

general architecture of this network is composed of an input 

layer where the data is fetched to the network, a feature 

mapping layer that effectively extracts the most important and 
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relevant features out of the presented data, and an output layer 

where the output of the network gets evaluated. Unlike other 

neural networks, the weights of the ELM hidden layer neurons 

need not to be tuned during the learning stage. The training 

process in the ELM is confined to the output layer weights. 

The training starts by randomly initializing the hidden layer 

weights independently of the training data. The feed-forward 

of the network is then computed by finding the activation 

function output of the hidden units and the output units as 

well. Tuning the output layer weights is the step followed to 

achieve the generalization feature of the network. 

 

Fig. 1. Single layer feed-forward network. It is composed 

of three layers: input layer (has no activation function), 

feature mapping layer (hidden layer), and output layer. 

The training process begins by presenting the training 

examples as a pair composes a training example xi and class 

label ti, (xi, ti), where xi  Rn, ti  Rm, and (i=1, 2, ...., NH). 

Assuming that the number of hidden units NH, and gi, fi are 

hidden and output layer activation functions, respectively. 

From Figure 1, the feed-forward output of the network can be 

computed using Equation 1. 

                          ti=gi(  𝑁𝐻
𝑖=1  ßi fi (X,b))                         (1) 

 

One approach to compute the optimal network parameters is 

based on using the normal equation as stated in [6]. The 

output weight is computed using Equation 2, where ß denotes 

the output layer weight, H refers to the hidden layer output, 

and T is output layer vector. 

                                 ß = H-1 * T                                      (2) 

 

As in Equation 2, the output layer weight vector is resulted 

from multiplying the Moore-Penrose generalized inverse of 

the hidden layer output matrix H by the final network output 

vector T. Efficiently, the inverse of the matrix H can be found 

using the orthogonal projection method where H-1 = (HT H)-1 

HT [7]. As a result, the output weight can be computed as in 

equation Equation 3. 

                      ß = (HT H)-1 HT T                            (3) 

 

 

This works perfectly when there are a small number (can not 

be guaranteed) of hidden neurons. Finding the inverse of this 

term, (HT H)-1 is a computationally extensive, since this 

matrix is going to be very large in size as the number of 

hidden neurons grows up and the number of classes needed to 

be classified increases. In terms of software, a workstation 

with a massive memory is required to set the ELM network 

parameters as being used in [7]. When it comes to hardware, 

finding the inverse of a matrix requires a large number of 

resources as in [8, 9]. An alternative to compute the 

parameters of the ELM machine without finding the matrix 

inversion is using gradient descent. Although the gradient 

descent is an iterative based algorithm, in the sense that it 

takes a decent amount of time to set the network parameters, it 

is efficient in terms of hardware. Therefore, it can be 

employed to specify the general network architecture such as 

the number of hidden neurons and layers prior to implement 

the network in hardware. 

 
Fig. 2. Multi layer feed-forward network. It is structured 

from a single input layer, two hiddens and single output 

layers. 

2.2 Multi-Layer ELM 
The ELM architecture can be further extended to form a more 

complex architecture that may improve the general network 

performance. This is accomplished by raising the number of 

hidden layers while fixing hidden neurons count in each layer. 

Similar to the SLFN, the weights of hidden layer neurons are 

not tuned during the learning process and the output of each 

hidden layer is computed analytically as in Equation 4 [6]. 

Determining the number of hidden layers that may improve 

the network performance is still hard to guess, as there is no 

particular mathematical model or method can be employed for 

this purpose. To this end, exploiting the iterative increment in 

the network accuracy offered by the gradient descent 

algorithm can be used to guess the number of hidden layers 

which offer best network performance. 

                                 Hn = f [(ßn)T Hn-1]                              (4) 

3. ELM AND OPTIMIZATION 

METHOD 

3.1 Gradient Descent ELM Algorithm  
In this paper, it is suggested to use gradient descent based 

ELM algorithm to specify several network architecture 

parameters such as the number of hidden units, layers, and 

activation function that shape the general architecture of the 

ELM application specific algorithm targeting hardware 

platforms. The reason behind using the gradient descent 

instead of the normal equation, is attributed to that the 
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gradient descent work iteratively unlike the normal equation 

which works analytically. This facilitates observing the 

accuracy of training and testing classification results which 

increase in each iteration logarithmically. The preliminary 

results of the classification accuracy curve can be exploited to 

predict the future network performance and to determine the 

network architecture parameters that gives high accuracy and 

minimizes the used physical resources. 

In the ELM that works based on the gradient descent, the 

weight is updated iteratively. This is performed after 

computing the network output in each iteration by propagating 

the input through the network as in Equation 1. Then, the 

output layer weights are updated for learning as in Equation 5 

[10]. In this way, the weights converge to a value which 

yields high network accuracy. 

                  ∆ß(p)=∂xi
(p) (t(p) – t`(p))                      (5)                                                  

where t(p) and t`(p) represent the expected and achieved outputs 

respectively; ∂ represents the learning rate; xi
(p) represents the 

input feature, and p refers to the number of training/testing 

example. 

 

Fig. 3. Classification accuracy for a single hidden layer 

ELM with NH=220 (Blue) and NH=100 (Red). The 

classification accuracy curves are fitted using a 6th order 

polynomial curve that its slope at region (1) being 

determined by a tangent line touching the curve at the 

early stage of the training process. 

3.2 Optimization Method 
In order to set the final network architecture, the following 

algorithm is used: 

Input: TestAccuracy   Rn, polynomial equation order rd 

Output: AccuracyCurveSlope   Rn 

1. e = 1:20 

2. f = PloyParameters(e, TestAccuracy, rd) 

3. y = (f.p1) * erd + (f.p2) * erd-1 + (f.p3) * erd-2 + …. 

4. ∆y = ∆y / ∆e  

5. k = 5 

6. tangentLine = (e – e(k)) * ∆y(k) + y(k) 

7. AccuracyCurveSlope = Slope(tangentLine) 

 

This algorithm facilitates the process of setting network 

architecture via finding the predicted network accuracy based 

on computed AccuracyCurveSlope vector (region (1)). Based 

on the slope value (shown in Figure 3) which indicates the 

high accuracy as it goes up, the number of neurons in the 

hidden layers is determined. Typically, the algorithm starts 

with a small number of hidden neurons that increases by a 

certain amount specified by the user in every iteration. After a 

particular set of iterations, the change in accuracy is evaluated 

to see whether a significant change in the accuracy has 

occurred. The same strategy is followed to set the rest of 

network parameters. 

4. VERIFICATION DATASET AND THE 

EXPERIMENTAL RESULTS 

4.1 Training and Testing Sets 
To verify the validity of the proposed method in setting the 

ELM network architecture parameters prior to the hardware 

realization MNIST [11] standard database of hand-written 

digits and labeled faces in the wild (LFW) [12] are used to 

train and test the network 

4.1.1 MNIST Standard Database 
It is composed of 60,000 training and 10,000 testing 

examples. Each example is presented to the network as an 

image pixel vector that has 784 pixels. This can be reshaped 

to restore the original image which has 28x28 pixels as shown 

in Figure 4. Prior to fetching these images to the network, all 

image pixels are preprocessed to be ranged between [-1,1]. 

This is to optimize the network performance and achieve a 

faster convergence. 

             

(a)                                          (b)    

Fig. 4. A part of MNIST (a) and LFW images (b) arranged 

in an array. Each cell in the array represents a training or 

testing example. 

4.1.2 LFW Database 
Cross validation with the labeled faces in the wild (LFW), 

Figure 4, is performed to validate the network performance. 

The LFW is a database of face photographs designed to 

recognize the unconstrained faces. This database contains 

13,000 images of human faces collected from the web. Prior 

to using this database for training and testing the ELM 

network, these images are preprocessed by cropping the 

images to have the face region only (remove the background). 

Then, as in MNIST database, all images’ pixels are 

preprocessed to be ranged between [-1,1]. 

4.2 Experimental Results 

4.2.1 Classification Accuracy 
One of the main challenges in the ELM-kernel is that, it 

requires a computer with a massive memory unit to set the 

network parameters. This is the case when the proposed 

database is too large as MNIST. This has been proved by 

running the ELM-kernel MATLAB code provided in [13] on 
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a FUJITSU laptop with Intel(R) Core(TM) i5-2450M 

2.50GHz CPU, 4.0GB RAM, Windows 8.1 Enterprise using 

MATLAB R2015a which shows "Out of Memory" error, 

mentioning that a computer with at least 26GB of memory is 

needed to run this algorithm. This explains the reason behind 

using HP z820 workstation in [7] and here it comes the merit 

of the gradient descent based ELM. 

 

Fig. 5. MNIST classification accuracy of the gradient 

descent based ELM for a single hidden layer ELM with 

different number of hidden neurons. 

Figure 5 demonstrates the classification accuracy of a single 

layer ELM with various numbers of hidden layer neurons. As 

can be seen, the classification accuracy is increasing 

logarithmically as the number of epochs raises. This is 

attributed to the fact that the network generalizes better as it is 

exposed to more training examples. Observing the 

classification curve reflects that there are two main regions 

close to be linear. The first region has a sharp rise in the 

classification accuracy in vertical horizon, whereas the second 

region changes are limited to horizontal horizon which tends 

to be unuseful compared to the first region, since the changes 

in accuracy tend to be negligible. By finding the fitting curve 

with a high order polynomial equation (4-6 orders) and the 

slope of its tangent line at early epochs as in Figure 3, the 

final accuracy of the network can be predicted. 

Exploiting this curve shape in predicting the final accuracy of 

the network and eventually setting the network architecture 

parameters at early stage of hardware realization can save a 

reasonable amount of physical resources. The results illustrate 

that the classification accuracy goes up as the network 

expands in size in terms of hidden neurons and layers, but this 

is not always the case, especially when it comes to the number 

of hidden layers. Increasing the number of hidden layers may 

or may not improve the network classification accuracy and 

this depends on the feature extraction adapted technique as it 

has been already proved in [14]. 

4.2.2 Performance Evaluation 
The proposed ELM is evaluated with respect to the ELM-

Basic algorithm proposed in [13] and state-of-art support 

vector machine (SVM) for both MNIST and LFW dataset. It 

has been found that, although these algorithms are much faster 

than the proposed method, the classification accuracy tends to 

be very close (as shown in Figure 7), and the predicted 

hardware resources that are used, are much less relative to the 

original ELM since there are no extensive computations in the 

gradient descent based ELM. 

 

Fig. 6. LFW classification accuracy of the gradient descent 

based ELM for a single hidden layer ELM with different 

number of hidden neurons. 

5. CONCLUSION 
The main contribution of this paper is to propose a software 

based method that utilizes the gradient descent algorithm to 

choose the rational number of hidden neuron units and layers 

that improve the network performance and keep the hardware 

resources to a minimum. The suggested technique is verified 

with MNIST and LFW standard databases and the 

experimental results demonstrate the effectiveness of the 

proposed method. This work can be extended in the future to 

include optimization techniques such as the genetic algorithm 

and compare it with the gradient descent in terms of speed and 

performance. 

 

Fig. 7. Classification Accuracy for MNIST and LFW 

databases using the state-of-art SVM, ELM-Basic model, 

and the proposed version. 
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