
International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.7, March 2016

49

Software based Method to Specify the Extreme Learning

Machine Network Architecture Targeting Hardware

Platforms

Alaa M. Abdul-Hadi
Department of Computer

Engineering
University of Baghdad

Abdullah M. Zyarah
Department of Electrical

Engineering
University of Baghdad

Haider M. Abdul-Hadi
Department of Computer

Science
University of Baghdad

ABSTRACT

Extreme learning machine (ELM) is a biologically inspired

feed-forward machine learning algorithm that offers a

significant training speed. Typically, ELM is used in

classification applications, where achieving highly accurate

results depend on raising the number of ELM hidden layer

neurons, which are randomly weighted independently of the

training data and the environment. To this end, determining

the rational number of hidden layer neurons in the extreme

learning machine (ELM) is an approach that can be adapted to

maintain the balance between the classification accuracy and

the overall physical network resources. This paper proposes a

software based method that uses gradient descent algorithm to

determine the rational number of hidden neurons to realize an

application specific ELM network in hardware. The proposed

method was validated with MNIST standard database of hand-

written digits and human faces database (LFW). Classification

accuracy of 93.4% has been achieved using MNIST and

90.86% for LFW database.

General Terms

Neural Networks, Classification Applications

Keywords

Extreme Learning Machine, Gradient Descent, Random

feature mapping

1. INTRODUCTION
Inspired by the sophisticated capabilities of the biological

human brain, the extreme learning machine is introduced by

Huang el al [1,2,3], as a machine learning algorithm that

overcomes the main challenges faced in other machine

learning techniques, such as low learning speed and human

intervention during the learning process. Unlike other

machine learning algorithms, extreme learning machine offers

a significant training speed. This is achieved by confining the

neurons weights tuning to the output layer only and leaving

the hidden layer(s) neurons weights un-tuned after initializing

them randomly and independently on the training data and

environment. This is based on the conjecture that there are

neurons in the live brain randomly parametrized

independently of the environment and this has been evidently

proved in [4]. Having such network structure reduces ELM

complexity and makes it more suitable for hardware mapping

especially in classification applications.

Fundamentally, the ELM neural network consists of three

layers: Input, hidden, and output layer. The input layer is

utilized to introduce the input data, training or testing

examples, to the network. These data are transferred to N-

dimensional space in the next layer, which is also called

(hidden layer or feature mapping layer [5]), where the input

features are represented in a more meaningful way [6]. The

hidden layer output is relayed to the last layer in the network

(output layer), where it gets evaluated. Determining the

number of neural units in each layer depends on the task being

performed by that layer. The input layer units are set

depending on the number of features represented by input

examples, while the number of classes that need to be

classified determine the number of output layer units.

Selecting the number of hidden layer units depends on data

variance. The more variance in input data, the larger network

is required to improve performance. Typically, the ELM

algorithm comes either with or without a kernel. In the kernel

model version, which is unlike the basic version (without a

kernel), there is no need to set the number of hidden layer

neurons. Also, it is hardware dependent, i.e., when the

database is large, a computer with a massive memory unit is

required to run the algorithm, as will be shown in the

experimental results section. For the above reasons, the basic

version is recommended to be used when it comes to the

normal computer users. The main issue in the basic version, is

that the number of hidden layer neurons is set manually, and it

is computationally extensive especially when the training data

has a large number of features.

The main contribution of this work is to develop a software

based method that determines the network architecture

parameters, such as the number of hidden neurons and the

activation function in a way that keeps the balance between

the accuracy and the size of the network. The proposed

method, which is based on the classification accuracy curve,

exploits the logarithmic rise of curve to precisely predict the

future network performance. This can be used to select the

network architecture parameters that minimize the used

hardware resources and produces high classification accuracy.

This paper is organized as follows: section 2 reviews the ELM

algorithm, section 3 presents the proposed approach to

determine rational number of hidden layer neurons in ELM.

The validation database and the obtained results are discussed

in section 4, while section 5 concludes the paper.

2. REVIEW OF ELM
The ELM is a promising learning algorithm that can be used

as an effective technique in classification applications. It is

resulted from combining the support vector machine (SVM)

and the feed-forward neural networks. This section reviews

two types of ELM which are categorized based on the

structure of the network.

2.1 Single Layer ELM
The single layer ELM has a single hidden layer and it is also

known as a single layer feed-forward network (SLFN). The

general architecture of this network is composed of an input

layer where the data is fetched to the network, a feature

mapping layer that effectively extracts the most important and

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.7, March 2016

50

relevant features out of the presented data, and an output layer

where the output of the network gets evaluated. Unlike other

neural networks, the weights of the ELM hidden layer neurons

need not to be tuned during the learning stage. The training

process in the ELM is confined to the output layer weights.

The training starts by randomly initializing the hidden layer

weights independently of the training data. The feed-forward

of the network is then computed by finding the activation

function output of the hidden units and the output units as

well. Tuning the output layer weights is the step followed to

achieve the generalization feature of the network.

Fig. 1. Single layer feed-forward network. It is composed

of three layers: input layer (has no activation function),

feature mapping layer (hidden layer), and output layer.

The training process begins by presenting the training

examples as a pair composes a training example xi and class

label ti, (xi, ti), where xi  Rn, ti  Rm, and (i=1, 2,, NH).

Assuming that the number of hidden units NH, and gi, fi are

hidden and output layer activation functions, respectively.

From Figure 1, the feed-forward output of the network can be

computed using Equation 1.

 ti=gi(𝑁𝐻
𝑖=1 ßi fi (X,b)) (1)

One approach to compute the optimal network parameters is

based on using the normal equation as stated in [6]. The

output weight is computed using Equation 2, where ß denotes

the output layer weight, H refers to the hidden layer output,

and T is output layer vector.

 ß = H-1 * T (2)

As in Equation 2, the output layer weight vector is resulted

from multiplying the Moore-Penrose generalized inverse of

the hidden layer output matrix H by the final network output

vector T. Efficiently, the inverse of the matrix H can be found

using the orthogonal projection method where H-1 = (HT H)-1

HT [7]. As a result, the output weight can be computed as in

equation Equation 3.

 ß = (HT H)-1 HT T (3)

This works perfectly when there are a small number (can not

be guaranteed) of hidden neurons. Finding the inverse of this

term, (HT H)-1 is a computationally extensive, since this

matrix is going to be very large in size as the number of

hidden neurons grows up and the number of classes needed to

be classified increases. In terms of software, a workstation

with a massive memory is required to set the ELM network

parameters as being used in [7]. When it comes to hardware,

finding the inverse of a matrix requires a large number of

resources as in [8, 9]. An alternative to compute the

parameters of the ELM machine without finding the matrix

inversion is using gradient descent. Although the gradient

descent is an iterative based algorithm, in the sense that it

takes a decent amount of time to set the network parameters, it

is efficient in terms of hardware. Therefore, it can be

employed to specify the general network architecture such as

the number of hidden neurons and layers prior to implement

the network in hardware.

Fig. 2. Multi layer feed-forward network. It is structured

from a single input layer, two hiddens and single output

layers.

2.2 Multi-Layer ELM
The ELM architecture can be further extended to form a more

complex architecture that may improve the general network

performance. This is accomplished by raising the number of

hidden layers while fixing hidden neurons count in each layer.

Similar to the SLFN, the weights of hidden layer neurons are

not tuned during the learning process and the output of each

hidden layer is computed analytically as in Equation 4 [6].

Determining the number of hidden layers that may improve

the network performance is still hard to guess, as there is no

particular mathematical model or method can be employed for

this purpose. To this end, exploiting the iterative increment in

the network accuracy offered by the gradient descent

algorithm can be used to guess the number of hidden layers

which offer best network performance.

 Hn = f [(ßn)T Hn-1] (4)

3. ELM AND OPTIMIZATION

METHOD

3.1 Gradient Descent ELM Algorithm
In this paper, it is suggested to use gradient descent based

ELM algorithm to specify several network architecture

parameters such as the number of hidden units, layers, and

activation function that shape the general architecture of the

ELM application specific algorithm targeting hardware

platforms. The reason behind using the gradient descent

instead of the normal equation, is attributed to that the

b

b

x0

xN-1

ai,	bi βi

!
→

Input
Layer

Hidden
Layer

Output
Layerf

f

f

f

f

g

g
b

b

x0

xN-1

!
→

Input
Layer

Hidden
Layer

Output
Layerbf

f

f

f

f

f

f

f

f

f

g

g

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.7, March 2016

51

gradient descent work iteratively unlike the normal equation

which works analytically. This facilitates observing the

accuracy of training and testing classification results which

increase in each iteration logarithmically. The preliminary

results of the classification accuracy curve can be exploited to

predict the future network performance and to determine the

network architecture parameters that gives high accuracy and

minimizes the used physical resources.

In the ELM that works based on the gradient descent, the

weight is updated iteratively. This is performed after

computing the network output in each iteration by propagating

the input through the network as in Equation 1. Then, the

output layer weights are updated for learning as in Equation 5

[10]. In this way, the weights converge to a value which

yields high network accuracy.

 ∆ß(p)=∂xi
(p) (t(p) – t`(p)) (5)

where t(p) and t`(p) represent the expected and achieved outputs

respectively; ∂ represents the learning rate; xi
(p) represents the

input feature, and p refers to the number of training/testing

example.

Fig. 3. Classification accuracy for a single hidden layer

ELM with NH=220 (Blue) and NH=100 (Red). The

classification accuracy curves are fitted using a 6th order

polynomial curve that its slope at region (1) being

determined by a tangent line touching the curve at the

early stage of the training process.

3.2 Optimization Method
In order to set the final network architecture, the following

algorithm is used:

Input: TestAccuracy  Rn, polynomial equation order rd

Output: AccuracyCurveSlope  Rn

1. e = 1:20

2. f = PloyParameters(e, TestAccuracy, rd)

3. y = (f.p1) * erd + (f.p2) * erd-1 + (f.p3) * erd-2 + ….

4. ∆y = ∆y / ∆e

5. k = 5

6. tangentLine = (e – e(k)) * ∆y(k) + y(k)

7. AccuracyCurveSlope = Slope(tangentLine)

This algorithm facilitates the process of setting network

architecture via finding the predicted network accuracy based

on computed AccuracyCurveSlope vector (region (1)). Based

on the slope value (shown in Figure 3) which indicates the

high accuracy as it goes up, the number of neurons in the

hidden layers is determined. Typically, the algorithm starts

with a small number of hidden neurons that increases by a

certain amount specified by the user in every iteration. After a

particular set of iterations, the change in accuracy is evaluated

to see whether a significant change in the accuracy has

occurred. The same strategy is followed to set the rest of

network parameters.

4. VERIFICATION DATASET AND THE

EXPERIMENTAL RESULTS

4.1 Training and Testing Sets
To verify the validity of the proposed method in setting the

ELM network architecture parameters prior to the hardware

realization MNIST [11] standard database of hand-written

digits and labeled faces in the wild (LFW) [12] are used to

train and test the network

4.1.1 MNIST Standard Database
It is composed of 60,000 training and 10,000 testing

examples. Each example is presented to the network as an

image pixel vector that has 784 pixels. This can be reshaped

to restore the original image which has 28x28 pixels as shown

in Figure 4. Prior to fetching these images to the network, all

image pixels are preprocessed to be ranged between [-1,1].

This is to optimize the network performance and achieve a

faster convergence.

(a) (b)

Fig. 4. A part of MNIST (a) and LFW images (b) arranged

in an array. Each cell in the array represents a training or

testing example.

4.1.2 LFW Database
Cross validation with the labeled faces in the wild (LFW),

Figure 4, is performed to validate the network performance.

The LFW is a database of face photographs designed to

recognize the unconstrained faces. This database contains

13,000 images of human faces collected from the web. Prior

to using this database for training and testing the ELM

network, these images are preprocessed by cropping the

images to have the face region only (remove the background).

Then, as in MNIST database, all images’ pixels are

preprocessed to be ranged between [-1,1].

4.2 Experimental Results

4.2.1 Classification Accuracy
One of the main challenges in the ELM-kernel is that, it

requires a computer with a massive memory unit to set the

network parameters. This is the case when the proposed

database is too large as MNIST. This has been proved by

running the ELM-kernel MATLAB code provided in [13] on

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.7, March 2016

52

a FUJITSU laptop with Intel(R) Core(TM) i5-2450M

2.50GHz CPU, 4.0GB RAM, Windows 8.1 Enterprise using

MATLAB R2015a which shows "Out of Memory" error,

mentioning that a computer with at least 26GB of memory is

needed to run this algorithm. This explains the reason behind

using HP z820 workstation in [7] and here it comes the merit

of the gradient descent based ELM.

Fig. 5. MNIST classification accuracy of the gradient

descent based ELM for a single hidden layer ELM with

different number of hidden neurons.

Figure 5 demonstrates the classification accuracy of a single

layer ELM with various numbers of hidden layer neurons. As

can be seen, the classification accuracy is increasing

logarithmically as the number of epochs raises. This is

attributed to the fact that the network generalizes better as it is

exposed to more training examples. Observing the

classification curve reflects that there are two main regions

close to be linear. The first region has a sharp rise in the

classification accuracy in vertical horizon, whereas the second

region changes are limited to horizontal horizon which tends

to be unuseful compared to the first region, since the changes

in accuracy tend to be negligible. By finding the fitting curve

with a high order polynomial equation (4-6 orders) and the

slope of its tangent line at early epochs as in Figure 3, the

final accuracy of the network can be predicted.

Exploiting this curve shape in predicting the final accuracy of

the network and eventually setting the network architecture

parameters at early stage of hardware realization can save a

reasonable amount of physical resources. The results illustrate

that the classification accuracy goes up as the network

expands in size in terms of hidden neurons and layers, but this

is not always the case, especially when it comes to the number

of hidden layers. Increasing the number of hidden layers may

or may not improve the network classification accuracy and

this depends on the feature extraction adapted technique as it

has been already proved in [14].

4.2.2 Performance Evaluation
The proposed ELM is evaluated with respect to the ELM-

Basic algorithm proposed in [13] and state-of-art support

vector machine (SVM) for both MNIST and LFW dataset. It

has been found that, although these algorithms are much faster

than the proposed method, the classification accuracy tends to

be very close (as shown in Figure 7), and the predicted

hardware resources that are used, are much less relative to the

original ELM since there are no extensive computations in the

gradient descent based ELM.

Fig. 6. LFW classification accuracy of the gradient descent

based ELM for a single hidden layer ELM with different

number of hidden neurons.

5. CONCLUSION
The main contribution of this paper is to propose a software

based method that utilizes the gradient descent algorithm to

choose the rational number of hidden neuron units and layers

that improve the network performance and keep the hardware

resources to a minimum. The suggested technique is verified

with MNIST and LFW standard databases and the

experimental results demonstrate the effectiveness of the

proposed method. This work can be extended in the future to

include optimization techniques such as the genetic algorithm

and compare it with the gradient descent in terms of speed and

performance.

Fig. 7. Classification Accuracy for MNIST and LFW

databases using the state-of-art SVM, ELM-Basic model,

and the proposed version.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

ELM-Basic[13] SVM Proposed	ELM

LWF MNIST

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.7, March 2016

53

6. REFERENCES
[1] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme

learning machine: theory and applications,”

Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.

[2] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme

learning machine for regression and multiclass

classification,” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 42, no. 2, pp.

513–529, 2012.

[3] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme

learning machine: a new learning scheme of feedforward

neural networks,” in Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference

on, vol. 2. IEEE, 2004, pp. 985–990.

[4] D. L. Sosulski, M. L. Bloom, T. Cutforth, R. Axel, and S.

R. Datta, “Distinct representations of olfactory

information in different cortical centres,” Nature, vol.

472, no. 7342, pp. 213–216, 2011.

[5] G.-B. Huang, “An insight into extreme learning

machines: random neurons, random features and

kernels,” Cognitive Computation, vol. 6, no. 3, pp. 376–

390, 2014.

[6] R. Kumar Roul, A. Nanda, V. Patel, and S. Kumar

Sahay, “Extreme learning machines in the field of text

classification,” in Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing (SNPD), 2015 16th IEEE/ACIS International

Conference on. IEEE, 2015, pp. 1–7.

[7] J. Tang, C. Deng, G.-B. Huang, and J. Hou, “A fast

learning algorithm for multi-layer extreme learning

machine,” in Image Processing (ICIP), 2014 IEEE

International Conference on. IEEE, 2014, pp. 175–178.

[8] A. Irturk, S. Mirzaei, and R. Kastner, An efficient FPGA

implementation of scalable matrix inversion core using

QR decomposition. Department of Computer Science

and Engineering, University of California, San Diego,

2009.

[9] G. A. Kumar, T. V. Subbareddy, B. M. Reddy, N. Raju,

and V. Elamaran, “An approach to design a matrix

inversion hardware module using fpga,” in Control,

Instrumentation, Communication and Computational

Technologies (ICCICCT), 2014 International Conference

on.IEEE, 2014, pp. 87–90.

[10] J. Tapson, P. de Chazal, and A. van Schaik, “Explicit

computation of input weights in extreme learning

machines,” in Proceedings of ELM-2014 Volume 1.

Springer, 2015, pp. 41–49.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-

Miller, “Labeled faces in the wild: A database for

studying face recognition in unconstrained

environments,” Technical Report 07-49, University of

Massachusetts, Amherst, Tech. Rep., 2007.

[13] Extreme learning machine. [Online]. Available:

http://www.ntu.edu.sg/home/egbhuang/elmcodes.htm

[14] P.-Z. Zhang, S.-X. Zhao, and X.-Z. Wang, “The failure

analysis of extreme learning machine on big data and the

counter measure,” in Machine Learning and Cybernetics

(ICMLC), 2015 International Conference on, vol. 2.

IEEE, 2015, pp. 849–853.

IJCATM : www.ijcaonline.org

