
International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

26

An Optimal Goal Programming Model to Recovery from

Deadlocks

Anas Jebreen Atyeeh Husain
Information Systems Department,

 Al al-Bayt University, Mafraq, Jordan;

ABSTRACT
Process termination is a common strategy that is used to

recover from deadlocks. However, terminating processes

during their execution may affect and degrade the performance

of the underlying system. The proposed solution in this paper is

to select particular processes that can reduce the potential

consequences of process termination in order to be terminated.

A goal programming (GP) model is constructed to identify and

select the best processes that can break a deadlock at lowest

consequences of process termination. Several experimental

tests are performed and the results showed that the proposed

solution maintains the performance of the system during

deadlock recovery compared to the other related methods.

Keywords

Goal Programming, Deadlock Recovery, Process Termination,

Termination Cost.

1. INTRODUCTION
A deadlock in a computer system is a situation in which several

processes are waiting infinitely to allocate some resources that

are allocated by other waiting processes and cannot complete

its tasks [1]. As a result, such situation can prevent the system

from running and achieve its designated goals. Deadlock is an

important issue that needs to be handled in computer systems,

and in operating systems (OS) particularly [2-3]. Among the

common strategies of deadlock handling, deadlock detection

and recovery is accepted as a main feasible solution due to its

applicable principles about resource allocation requirements of

the processes [4-9].

Recovery from a deadlock can be performed when a deadlock

occurs by terminating all or some deadlocked processes and

releasing its allocated resources to be available for use [10].

However, aborting processes is found to be challenging

because a great cost might result; utilizing of several allocated

resources might be interrupted and part of computations and

performed work might be wasted which negatively impacts the

system performance [11]. Several desirable performance

attributes for the system, such as throughput and resource

utilization might be influenced and degraded by terminating the

processes [12]. Another issue is to determine which processes

are able to break the deadlock and solve the problem. Processes

holding different resources dynamically and specifying the best

set of processes that allocate enough resources to break the

deadlock is a difficult task in such environment.

The objective of this paper is to find an optimal set of

processes that can break the deadlock at minimum potential

cost. Processes that can break deadlocks and whose termination

will cause the minimum cost need to be specified and selected

for termination. Thus, the problem of this paper can be

represented in the following question:

 How can an optimal set of processes whose termination

causes less impact on the overall system performance and

can break a deadlock be selected?

Consequently, a goal programming (GP) model that seeks an

optimal set of processes that can break the deadlock at

minimum cost is proposed. Indeed, several selection criteria

related to system performance and breaking deadlocks are

proposed, and a GP model responsible for selecting processes

that best achieve such criteria to be terminated is constructed.

The remainder of this paper is organized as follows: the related

works are reviewed in section 2. Section 3 presents the

requirements and a detailed design of the proposed solution.

Evaluation result and discussion is introduced in section 4.

Finally, some conclusions are given in section 5.

2. RELATED WORKS
Several varied strategies are used for recovery from a deadlock

[11] [13] [14]. Process termination, especially partial

termination, is one common solution that is used for deadlock

recovery [3,15]. In partial termination, one or more of the

deadlocked processes are aborted and its resources are released

until the deadlock is broken [16].Nevertheless, the primary

issue is to find the best processes whose termination will result

in minimum cost to be terminated [7-9, 17].

Many researchers have found out that the primary step of

deadlock recovery is to select a process and then to abort

it [18-20]. Different attributes of processes or resources have

been adopted when selecting a process for termination. The

simplest method is to abort any deadlocked process [21-22], or

randomly terminate any process until a deadlock is broken

[14,23]. The authors in [24] discuss minimum cost recovery for

multiprogramming by selecting processes based on the number

of held and requested resources; in addition to a number of

requests that a process can satisfies. The cost represent the

computation complexity in terms of time.

Another method proposed in [25] selects processes based on a

dynamic process priority that was assigned based on several

attributes such as: process age, process history, process code

size, process priority, resource utilized, number of in/out-

degree edges, and cycle participation. The author in [26]

proposes the use of heuristics for choosing the right process

such as the last process that has been loaded, or the process

with the least remaining processing time. Many other criteria

are used to guide process selection for termination such as

process code size [27], number of deadlock cycles that the

process involved [15,28], number of submitted operations

[29,30], number of holding resources [9,28], number of

terminated processes [31-32], process age [32-33] and process

priority [8-9,20,34-35].

However, the cost of aborting processes has been mainly

measured in terms of either time complexity [9,15,30,36], or

message complexity [6,8,37]. Process termination may lead

to a significant degradation in system performance (e.g.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

27

throughput and resource utilization) rather than time and

message complexity. The investigation or measurement of

potential cost of process termination as an impact on system

performance is generally missing in the literature. As pointed

out in [14], however, cost is a general term and several factors

may affect the decision of which deadlocked process should be

terminated. Therefore, measuring and minimizing the cost of

process termination in terms of system performance is required

and adopted in this paper.

In fact, some process selection methods aimed to improve a

specific performance aspect instead of maintaining overall

system performance. In this sense, one method can be ideal in

one aspect of system performance, but not in other aspects.

Successful recovery from a deadlock is the one that maintains

the overall system performance encompassing several desirable

performance aspects simultaneously. Furthermore, such

methods do not actually model a recovery strategy from

detected deadlocks. Several desirable performance parameters

that could improve the overall system performance will be

considered in this paper when measuring and minimizing cost

of process termination.

Moreover, little attention has been given to recovery from

deadlocks in systems that have multiple instances for each

resource type in in the literature. Deadlock detection and

recovery in systems that have single instance of each resource

type can be simply performed using a wait-for-graphs [13,15]

which require less operations and overhead. In contrast,

deadlock detection and recovery in systems that have multiple

instances for each resource type is more challenging and the

cost might be higher. Therefore, the proposed solution is

intended to deal with resources that has multiple instances.

Consequentially, previous solutions of recovery from

deadlocks depend on a deadlock detection algorithm to

determine whether the deadlock is resolved, and they are not

concerned with the ability to break deadlock in their selection

strategy. Such a procedure requires frequent execution of

deadlock detection algorithm for each occurrence of a deadlock

situation. Consequently, valuable system resources may be

wasted as a result of frequent execution of deadlock detection

algorithm [13]; which increase the overhead and cost.

However, the proposed solution do not require a detection

algorithm to insure that a deadlock situation is resolved.

Alternatively, the GP selected the processes according to its

ability to break the deadlock. This can reduce the overhead of

detection that might be required after each process selection

and improve the performance.

3. THE PROPOSED SOLUTION
The proposed solution for minimum cost deadlock recovery is

to determine which deadlocked processes should be terminated

based on its ability to break the deadlock, and based on the

potential cost that might be resulted from aborting such

processes. Simultaneous achievement of such constraints is

required when performing the selection. The following

subsections present the details of the solution.

3.1 Breaking a Deadlock
A deadlock occurs when there is not enough available

resources that can be used by waiting processes. Each

deadlocked process awaits for resources that are occupied by

other waiting processes. The goal of process termination is to

release a number of resources that can satisfy the requests of

one or more other waiting processes and leads to break the

deadlock. Thus, the optimal set of processes holding resources

that are enough to satisfy the requests of some deadlocked

processes need to be specified and selected for termination.

However, the proposed GP will be formulated to find a best set

of processes that hold enough number of resources to break a

deadlock to be terminated. This formulation guarantees

recovery from the deadlock without need to use of deadlock

detection algorithm.

3.2 Cost of Recovery from a Deadlock
Process termination may lead to interrupt resource usage, and

to waste performed work and tasks for the terminated processes

which eventually affect the overall system performance,

especially throughput and resource utilization [11,14,25]. Thus,

several cost factors - as pointed out in [14] - that might

contribute to maintain the system performance will be used in

the proposed solution to measure and minimize the cost of

aborting processes. These factors will be modeled and

formulated in this paper to be used as selection criteria that

guide to a minimum cost deadlock recovery. The cost factors

are presented in Table 1.

Table 1. Cost Factors (selection criteria) for Process

Selection [14]

1. What is the priority of the process

2. How long time the process has computed

3. How long time the process still requires in order to

complete

4. How many resources the process has used

5. How many resources left for the process to complete

Indeed, each factor can contribute in minimizing the cost by

maintaining a specific performance parameter for the system.

For example, reducing the number of wasted resources is

desired and needs to be attained when recovering from a

deadlock; thus the number of resources that the process has

used needs to be considered as a cost factor in order to be

minimized. Using the previous cost factors can contribute

mainly in maintaining throughput, resource utilization and

fairness among process, which are important and desired

attributes in resource sharing and process cooperating system

environments [1, 12]. Such performance attributes might be

significantly degraded when recovering from deadlocks by

process termination.

Fairness among processes can be achieved by selecting

processes according to a predetermined priority rather than any

other arbitrary reference. A system that achieves fairness

among processes is better in terms of cost. Throughput can be

maintained by either increasing the completed work or tasks in

a given time or increasing the number of processes completed

per unit time [1]. Indeed, processes that require more execution

time and higher number of resources in order to complete are

assumed to consume more resources and finish the execution

much later, and terminating such processes can let smaller

processes to finish in a given time which attain higher

throughput. Furthermore, processes that have computed longer

time are supposed to complete more work or tasks, thus

keeping such processes and terminating processes that have

computed less time can help in maintaining throughput.

Moreover, higher performed work and completed tasks can

indicate higher resource utilization. Thus, terminating

processes that hold and use less number of resources reduce the

number of wasted resources that are already being used, and

keep more resources executing and completing their designated

tasks rather than interrupting their execution which indicates

better resource utilization. A system that achieves higher

throughput and resources utilization is better at a lower cost.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

28

3.3 The Goal Programming Model
The objective of this paper is to perform deadlock recovery at

minimum cost by process termination. Thus, cost factors in

addition to the ability of breaking the deadlock need to be used

as selection criteria, and the selection of processes for

termination will be performed up on these criteria. However,

the challenge lies in finding a solution that best achieves such

criteria concurrently; processes that are optimal in minimizing

cost may not guarantee to break the deadlock and vice versa.

Furthermore, a set of processes that is optimal in one cost

factors as a selection criterion may not be optimal in others.

The best solution in such case is always a compromise, and all

metrics of interest must be taken into account concurrently.

Accordingly, a GP model responsible for finding an optimal set

of processes that best satisfies such multiple selection criteria is

proposed. GP is a multi-criteria satisfying methodology that

seeks a solution that best fits or satisfies the desired set of

criteria in a multi criteria decision making problems [38].

In fact, the main objective function to be formulated in the GP

model is to minimize the cost that has several factors.

Consequently, percentage of execution time (T), percentage of

resource allocation (R), and priority violation (Pr) are proposed

as input variables for the GP model to help measure and

minimize the cost that represents the proposed factors. T, R,

and Pr variables can be calculated for each deadlocked

processes based on available information that can be obtained

dynamically from the underlying operating system at a time of

performing deadlock detection and recovery. Through such

variables, the proposed GP can find processes that best satisfy

the adopted cost factors and minimize the cost. Table 2 shows

the description of the proposed formulation variables and its

relation to the cost factors.

Table 2. Information about Formulation Variables (V:

variable and CF: cost factor as in Table 1)

V CF Parameter Description GP selection

Pr 1 Priority Priority of the process. Lower value

T 2 Time

computed

Amount of time that the process

has computed.

Lower value

3 Time

required

Amount of remaining time that

required for the process in order

to complete.

higher value

R 4 Resource

allocation

Number of resources of each

type currently allocated to each

process.

Lower value

5 Resource

required

Number of resources that

required for each process in

order to complete.

higher value

T, R, and Pr variables can be calculated for a process i using the

following equations.

Ri =
Resource allocation 𝑖

Resource allocation 𝑖+Resource required 𝑖
 (1)

Ti =
Time computed 𝑖

Time computed 𝑖+Time require d 𝑖
 (2)

Pri = priorityi −min(priority) (3)

Where Min (priority) is a function that returns smallest value of

priority for all deadlocked processes that exist in the system at

a time of performing deadlock recovery.

As a result, minimizing the cost of aborting processes as a main

objective can be divided into the following sub-goals as: (i)

minimize the percentage of wasted execution time (T); (ii)

Minimize percentage of wasted resources(R); (iii) Minimize

priority violation (Pr).

Additionally, in order to select a set of processes that able to

break the deadlock, set of related constraints are developed and

used in the model. Finally, the following GP model is

constructed as presented in Figure 1:

1 Min 𝐶𝑜𝑠𝑡;
2 Subject to:
3 Cost =𝑑𝑅

− + 𝑑𝑅
+ + 𝑑𝑇

− + 𝑑𝑇
+ + 𝑑𝑃

− + 𝑑𝑃
+;

4 (𝑅𝑖 ∗ 𝑃𝑖)− 𝑑𝑅
− + 𝑑𝑅

+𝑛
𝑖=1 = 0;

5 (𝑇𝑖 ∗ 𝑃𝑖)− 𝑑𝑇
− + 𝑑𝑇

+𝑛
𝑖=1 = 0;

6 (𝑃𝑟𝑖 ∗ 𝑃𝑖)− 𝑑𝑃
− + 𝑑𝑃

+𝑛
𝑖=1 = 0;

7 For k=0… n-1

8 For j=1 … r

9 (request𝑖 ,𝑗 ∗ 𝑇𝑘𝑃𝑖) ≤
𝑛−1
𝑖=0 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 +

 (ℎ𝑜𝑙𝑑𝑖 ,𝑗 ∗ 𝑃𝑖) +𝑛−1
𝑖=0 (ℎ𝑜𝑙𝑑𝑖 ,𝑗 ∗ 𝑇𝑚𝑃𝑖)

𝑛−1
𝑖=0

𝑘−1
𝑚=0,k≠0 ;

10 For i=0… n-1

 (𝑇𝑘𝑃𝑖) + 𝑃𝑖 = 1𝑛−1
𝑘=0

Fig. 1 the proposed GP model for recovery from deadlocks

Where n is the number of deadlocked processes, r is the

number of resource types in the system, request𝑖 ,𝑗 is the

number of requested resources of type j by a process i, ℎ𝑜𝑙𝑑𝑖 ,𝑗

is the number of allocated resources of type j by a process i, Pi

and TkPi are binary decision variables (0/1 variables), and

 𝑑𝑅
−,𝑑𝑅

+,𝑑𝑇
−,𝑑𝑇

+,𝑑𝑃
−,𝑑𝑃

+ are deviational variables. The expected

output of the model is a vector of 0/1 values corresponds to

each process decision variable (Pi). 0 means that the

correspondent process is not selected, where 1 means that the

associated process is suitable for termination. Processes with 1

value are the optimal processes whose termination together as a

set can break the deadlock at minimum cost.

4. EVALUATION RESULTS AND

DISCUSSION
In order to measure the ability of the proposed GP model to

perform deadlock recovery with the least possible cost, and to

compare its performance with related methods, a simulation

system was constructed and several tests were run. The

simulation was executed to generate varied deadlock situations

under the following assumptions:

 The number of allocated resources, the number of

requested resources, the amount of computed time, the

amount of required time, and the priority for each process

were selected randomly.

 The simulation selected varied numbers of resource types

(r) with random number of instances in each type.

 Each deadlocked process is holding one or more resources

in the system.

 Each deadlocked process requests a number of resources

less than or equal to the number the system has.

 All system resources are in use

 The number of requested resources were selected under

the constraint requesti,j+holdi,j less than or equal to all

resources of that type in system.

However, deadlock situations were generated randomly under

three different values of resource types, where r = 1, 4, and 8.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

29

The number of requested resources by each process were

selected randomly between 0 and MAXrequest. MAXrequest

can reflect the relation between the number of allocated and

requested resources to the number of all resources in the

system. MAXrequest = factor*(requesti-holdi). The factor

reflects the degree of how costly the recovery from a deadlock

[24]. The selected factor values were 0.1, 0.5, and 1.0. For each

of the 9 combinations of r and factor values, priorities were

generated randomly between 0 and MAXpriority where

MAXpriority= 2, 10, and 20, respectively. This makes up three

variations of priorities. For each of the 27 combinations of

resource types, factors, and MAXpriority values, 250 deadlock

situation were generated resulted in a total of 6750 deadlock

situations.

In sum, all scenarios have been classified, summarized, and

tested as depicted in Table 3 into three sets: Set (A) is to

measure and compare the performance of the related methods

in handling deadlocks with different number of resource types,

set (B) is to measure and compare the performance of the

related methods in handling deadlocks with different values of

deadlock factors, and set (C) is to measure and compare the

performance of the related methods in handling deadlocks with

different variations of priorities.

Table 3. Simulation Scenarios

No

Resource

type

Factor Priority

Test Value Test Value Test Value

1 (A)1 1 (B)0.1 0.1 (C)0-2 0-2

2 (A)4 4 0.1 0-2

3 (A)8 8 0.1 0-2

4 (A)1 1 (B)0.5 0.5 0-2

5 (A)4 4 0.5 0-2

6 (A)8 8 0.5 0-2

7 (A)1 1 (B)10 1 0-2

8 (A)4 4 1 0-2

9 (A)8 8 1 0-2

10 (A)1 1 (B)0.1 0.1 (C)0-10 0-10

11 (A)4 4 0.1 0-10

12 (A)8 8 0.1 0-10

13 (A)1 1 (B)0.5 0.5 0-10

14 (A)4 4 0.5 0-10

15 (A)8 8 0.5 0-10

16 (A)1 1 (B)10 1 0-10

17 (A)4 4 1 0-10

18 (A)8 8 1 0-10

19 (A)1 1 (B)0.1 0.1 (C)0-20 0-20

20 (A)4 4 0.1 0-20

21 (A)8 8 0.1 0-20

22 (A)1 1 (B)0.5 0.5 0-20

23 (A)4 4 0.5 0-20

24 (A)8 8 0.5 0-20

25 (A)1 1 (B)10 1 0-20

26 (A)4 4 1 0-20

27 (A)8 8 1 0-20

Consequently, for each deadlock situation generated, the

deadlock was recovered by terminating processes that selected

using five methods namely; least required resources (LRR),

least required processing time (LRPT), first detected first

aborted process (order of detection), priority, and the proposed

GP model. Each method selects a set of processes to be aborted

and recover from each deadlock situation, and the cost was

calculated based on the selected processes.

Figure 2 shows the performance of the GP model compared to

the average performance of all other related methods under

different system parameters. Firstly, the results showed that

performing deadlock recovery becomes more difficult with the

increase of the values of parameters. That is, the expected cost

of deadlock recovery increases with environmental changes.

Secondly, the average performance of the GP model is

significantly better than average performance of the four

related methods and it can scale to varying environmental

changes at a minimum cost.

Fig. 2 avarage cost resulted when using GP compared to

avarge cost of all other methods(LRR,LRPT,priority and

order)

More specifically, as depicted in Figure 3 (a-d), the proposed

GP method performs better than the other methods and recover

all deadlock situations at minimum cost under all tests. This

could be explained as the GP selects processes based on the

potential cost that might be resulted and based on its ability to

break deadlock simultaneously. Furthermore, GP seeks

processes that best achieves all cost factors which have better

result for the overall system performance. Comparatively,

methods such as order selection do not take into account any

selection criteria which significantly increased the recovery

cost. Other methods that are based on specific criteria such as

the number of required resources, remaining processing time,

or priority consider only one cost factor which partially reduces

the cost.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

30

(a) avarage cost resulted when using GP compared to

avarge cost resulted when using priority method

(b) avarage cost resulted when using GP compared to

avarge cost resulted when using order method

(c) average cost resulted when using GP compared to

avarge cost resulted when using LRPT method

(d) avarage cost resulted when using GP compared to

avarge cost resulted when using LRR method

Fig. 3 Performance of the GP compared to each related

method

Figure 4 summarizes the overall cost achieved by all methods

for all generated deadlock situations. The cost of aborting

processes resulted when using the GP method was the lower

among the other methods with varying degrees. The GP

outperforms the LRR with 86% efficiency, LRPT with 87%

efficiency, order with 60% efficiency, and priority with 24%

efficiency. Furthermore, the detection algorithm was not

required when performing recovery by the proposed GP model

which significantly reduces the recovery cost in terms of

overhead. In contrast, the detection algorithm was frequently

executed for each deadlock situation when it was recovered by

each other method.

Fig. 4 Overall cost achived by all methods for all generated

dealock situations

5. CONCLUSION
Deadlock recovery at minimum cost has been addressed in this

paper. The proposed solution was to find and terminate set of

processes that best reduce the potential termination cost.

Performance attributes such as throughput, resource utilization

and fairness are used as selection criteria in addition to the

ability to break the deadlock to help in choosing processes for

termination. Accordingly, a linear goal programming model

was proposed to find processes that best satisfy such multiple

selection criteria. Measuring and minimizing recovery cost

based on the proposed criteria reduced the negative impact of

aborting processes on the overall system performance.

 The performance of the proposed GP has been measured and

compared to some related methods that might be used to select

a process for termination. The result showed that the GP

selected the best set of processes for termination that were able

to break the deadlock and conducted minimum potential cost.

The GP outperforms the other selection methods with 64%

average overall efficiency. However, as a future development

of the new model, the proposed selection criteria can be

dynamically weighed according to their level of achievement in

the system; and use these weights in the proposed GP model.

This might best maintain such desirable performance criteria

dynamically.

6. REFERENCES
[1] A. S. Tanenbaum, Modern operating systems (Prentice

Hall Press, 2014).

[2] Y. Nir-Buchbinder, R. Tzoref, S. Ur, Deadlocks: From

exhibiting to healing. In Runtime Verification, LNCS

5289, Springer Berlin Heidelberg, 2008, 104-118.

[3] V. S. Kondhalka, Deadlock detection and recovery in

Linux. Ph.D. Thesis, San Diego State University, 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

31

[4] Izumi, A., Dohi, T., & Kaio, N. Deadlock Detection

Scheduling for Distributed Processes in the Presence of

System Failures. Proceedings of the 6th Pacific Rim

International Symposium on Dependable Computing

IEEE (page 133, 2010).

[5] E. Knapp, Deadlock detection in distributed

databases. ACM Computing Surveys (CSUR), Vol. 19, n.

4, pp. 303-328, 1987.

[6] S. Lee, J. L. Kim, Performance analysis of distributed

deadlock detection algorithms, Knowledge and Data

Engineering, IEEE Transactions on, Vol. 13, n. 4, pp. 623-

636, 2001.

[7] M. Singhal, Deadlock detection in distributed

systems. IEEE Computer, Vol. 22, n. 11, pp. 37-48, 1989.

[8] J. R. González de Mendívil, F. Fariña, J. R. Garitagotia,

C. F. Alastruey, J. M. Bernabeu-Auban, A distributed

deadlock resolution algorithm for the AND model. IEEE

Transactions on Parallel and Distributed Systems, Vol. 10,

n. 5, pp. 433-447, 1999.

[9] I. Terekhov, T. Camp, Time efficient deadlock resolution

algorithms. Information Processing Letters, Vol. 69, n. 3,

pp. 149-154, 1999.

[10] R. C. Holt, Some deadlock properties of computer

systems. ACM Computing Surveys (CSUR), Vol. 4, n. 3,

pp. 179-196, 1972.

[11] K. S. Vaisla, M. Goswami, A. Singh, VGS Algorithm-an

Efficient Deadlock Resolution Method. Journal of

Computer Applications, Vol. 44, n. 1, pp. 29-33, 2012.

[12] S. M. Darwish, A. A. El-Zoghabi, M. H. Hassan, Soft

Computing for Database Deadlock Resolution.

International Journal of Modeling and Optimization, Vol.

5, n. 1, pp. 15, 2015.

[13] F. Zeng, Just-in-time and just-in-place deadlock

resolution. Ph.D. Thesis, New Brunswick Rutgers, The

State University of New Jersey, 2007.

[14] A. Silberschatz, P. B. Galvin, G. Gagne, Operating system

concepts (Wiley, 2013).

[15] Chow, Y. C., Kostermeyer, W. F., & Luo, K. Efficient

techniques for deadlock resolution in distributed systems,

Proceedings of the Fifteenth Annual International

in Computer Software and Applications Conference,

IEEE, (Page: 64 Year of Publication: 1991).

[16] Y. Ling, S. Chen, C. Y. Chiang, On optimal deadlock

detection scheduling. IEEE Transactions on Computers,

Vol. 55, n. 9, pp. 1178-1187, 2006.

[17] Macri, P. P. Deadlock detection and resolution in a

CODASYL based data management system.

In Proceedings of the 1976 ACM SIGMOD international

conference on Management of data, ACM, (Page: 45

Year of Publication: 1976).

[18] Villadangos, J., Fariña, F., Cordoba, A., de Mendivil, J. R.

G., & Garitagoitia, J. R. Knot resolution algorithm and its

performance evaluation. In Proceedings of the Conference

on Parallel, Distributed and Network-Based Processing,

IEEE (Page: 227 Year of Publication: 2003).

[19] Lee, S. Fast detection and resolution of generalized

distributed deadlocks. Proceedings of the10th Euromicro

Workshop on Parallel, Distributed and Network-based

Processing, IEEE, (Page: 429 Year of Publication: 2002).

[20] Cordoba, A., Fariña, F., Garitagoitia, J. R., de Mendivil, J.

R. G., & Villadangos, J. A low communication cost

algorithm for distributed deadlock detection and

resolution. Proceedings of the Eleventh Euromicro

Conference on Parallel, Distributed and Network-Based

Processing, IEEE, (Page: 235 Year of Publication: 2003).

[21] Mitchell, D. P., & Merritt, M. J. A distributed algorithm

for deadlock detection and resolution. In Proceedings of

the third annual ACM symposium on Principles of

distributed computing , ACM, (Page: 282Year of

Publication: 1984).

[22] M. Roesler,W. Burkhard, A. Resolution of deadlocks in

object-oriented distributed systems. Computers, IEEE

Transactions on, Vol. 38, n. 8, pp. 1212-1224, 1989.

[23] Hashemzadeh, M., Farajzadeh, N., & Haghighat, A. T.

Optimal detection and resolution of distributed deadlocks

in the generalized model. In Proceedings of the 14th

Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing,IEEE, (Page:

4-pp Year of Publication: 2006).

[24] J. T. Leung., E. K.Lai, On minimum cost recovery from

system deadlock. IEEE Transactions on Computers, Vol.

28, n. 9, pp. 671-677, 1979.

[25] V. Geetha, N. Sreenath, Performance Analysis of Victim

Selection Algorithms in Distributed Systems and Proposal

of Weight Based Resolution Strategy. International

Journal of Computer Science, Vol. 2, n. 4, pp. 40-44,

2012.

[26] Schruben, L. W. Deadlock detection and avoidance in

cluster tools. In Proceedings of the 1999 International

Conference on Semiconductor Manufacturing Operational

Modeling and Simulation, (Page: 31 Year of Publication:

1999).

[27] Weikum, G., & Vossen, G. Transactional information

systems. ACM, 2002

[28] P. Chahar, S.Dalal, Deadlock Resolution Techniques: An

Overview.International Journal of Scientific and Research

Publications, Vol. 3, n. 7, pp. 5-1 , 2013.

[29] Lin, X., Orlowska, M. E., & Zhang, Y. An optimal victim

selection algorithm for removing global deadlocks in

multidatabase systems. Proceedings In TENCON'94.

IEEE Region 10's Ninth Annual International Conference.

Theme: Frontiers of Computer Technology, (Page: 501

Year of Publication: 1994).

[30] Lin, X., & Chen, J. . An optimal deadlock resolution

algorithm in multidatabase systems. Proceedings in the

International Conference on In Parallel and Distributed

Systems IEEE, (Page: 516 Year of Publication: 1996).

[31] Sapra, P., Kumar, S., & Rathy, R. K. Deadlock Detection

and Recovery in Distributed Databases. International

Journal of Computer Applications, Vol. 73, n. 1, pp. 32-

36, 2013.

[32] R. Agrawal, M. J. Carey, L. W. McVoy, The performance

of alternative strategies for dealing with deadlocks in

database management systems. IEEE Transactions on

Software Engineering, Vol. SE-13, n. 12, pp. 1348-1363,

1987.

International Journal of Computer Applications (0975 – 8887)

Volume 138 – No.8, March 2016

32

[33] Alom, M., Henskens, F., & Hannaford, M. Deadlock

Detection Views of Distributed Database. Proceedings in

the Sixth International Conference on Information

Technology: New Generations,IEEE, (Page: 730 Year of

Publication: 2009).

[34] Al Shayeji, M. H., Fairouz, A., & Samrajesh, M. D. An

Enhanced Distributed Deadlock Detection and Recovery

in Process Networks. International Journal of Computer

and Electrical Engineering, Vol. 4, n. 3, pp. 298-302,

2012.

[35] Sinha, M. K., & Natarajan, N. A priority based

distributed deadlock detection algorithm. IEEE

Transactions on Software Engineering, Vol. 1, pp. 67-80,

1985.

[36] Chen, S., & Ling, Y. Stochastic analysis of distributed

deadlock scheduling. In Proceedings of the twenty-fourth

annual ACM symposium on Principles of distributed

computing, (Page: 265 Year of Publication: 2005).

[37] S. Lee, Fast, centralized detection and resolution of

distributed deadlocks in the generalized model. IEEE

Transactions on Software Engineering, Vol. 30, n. 9, pp.

561-573, 2004.

[38] A. J. A. Husain, New Roll-Up Operator for Non-Additive

Numeric Measure Summarization. Contemporary

Engineering Sciences, Vol. 6, n. 8, pp. 393 - 402, 2013.

IJCATM : www.ijcaonline.org

