
International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

1

Provably Secure Encryption Algorithm based on Feistel

Structure

Ahmed M. Rayan
Master Student, Elec. &
Comm. Dep., Faculty of
Engineering, ASU, Egypt

Ahmed A. Abdel-Hafez
Communications Department,

Military Technical Collage,
Egypt

Ismail Mohamed Hafez
Elec. & Comm. Department,
Faculty of Engineering, ASU,

Egypt

ABSTRACT
In 1997 The National Institute of Standards and Technology

(NIST) started a process to select a symmetric-key encryption

algorithm instead of DES. NIST determined the evaluation

criteria that would be used to compare the candidate

algorithms depending on the analyses and comments received,

NIST selected five finalist algorithms (RC6, MARS, Rijndael,

Serpent and Twofish). At the end, NIST selected Rijndael as

the proposed Advanced Encryption Standard algorithm

(AES). Although Twofish algorithm based on Feistel structure

and possesses a large security margin, it has some drawbacks

as The Twofish structure is not easy to analyses, the mixing of

various operations makes it hard to give a clean analysis and

forces us to use approximation techniques. Moreover, The use

of key-dependent S-Boxes adds complexity and greatly

increase the effort required to write automated tools to search

for characteristics (differentials, linear, …) of the structure. In

this paper a proposal of a new Secure Symmetric-key

Encryption (SSE) algorithm based on Feistel structure is

produced to overcome the previous drawbacks and produce a

provable secure algorithm.

Keywords

Symmetric-key cryptography; Block Ciphers; Substitution-

Box; Diffusive Components; MDS; branch number.

1. INTRODUCTION
Symmetric-key cryptography is the most prominent and an

important element in many cryptographic systems comes in

two flavors, stream ciphers and block ciphers. The later type

of Symmetric-key cryptography is more powerful object, as it

can be used in more ways, to encrypt and authenticate,

provide integrity, protection and confidentiality. It provides

high diffusion (information from one plain text symbol is

diffused into several cipher text symbols), and also can be

employed in many modes (CTR –OFB - …) to gives stream

cipher algorithm. Block cipher is easier to be implemented in

software, as it avoids time consuming bit manipulations,

operates on data in computer-sized block. This paper is

organized as follows: Section 2 provides an overview of block

cipher design principles. Section 3, briefly explain Twofish

cryptographic algorithm. Section 4, describes the (SSE)

algorithm. Section 5 proves the security of (SSE) algorithm.

Finally, conclusion and future work will be in Section 6.

2. BLOCK CIPHERS DESIGN

PRINCIPLES
Block ciphers are the most widely primitives for ensuring data

confidentiality. Let n and k be two positive integers, a block

cipher with block–size n and key–size k is a family of 2k

permutations {Ek : {1,0}n to {1,0}n }k ϵ{1,0}n on bitstrings of

length n. For implementation reasons, all classical block

ciphers are composed of several round-permutations Fi

(iterated ciphers) of finite field GF(2n), where each Fi,1≤ i≤ r,

is parametrized by a secret quantity ki named the round key,

which is derived from the master key K as shown in figure 1.

Fig 1: Block Cipher

Parameter 𝑟 is the number of rounds in the cipher. In each

iterated cipher, the 𝑟 round-permutations 𝐹𝑖 are chosen to

be very similar for two reasons. First, the implementation cost

of the iterated cipher in hardware. Moreover, the type of

design provides some simple security arguments. However,

the rounds should be slightly different in order to resist some

structural attacks such as slide attacks [1].This difference may

be introduced by key schedule(i.e. identical round

permutations with different rounds-keys), or the round

permutation may be slightly different. The main basic

constructions for the round permutation: substitution-

permutation network (SPN) as (Rijndael, Square,…), Lai-

Massey scheme as (Proposed Encryption Standard (PES), …)

and Feistel network as (Data Encryption Standard (DES),

Twofish, ….). The later type as shown in figure 2 relies on an

inner function 𝐹𝑘 operating on the half of the block size.

Fig 2: Feistel network

This structure used in many encryption algorithms and

presents several advantages as the encryption and decryption

operations hardly need separate implementations, and

consequently low implementations cost, it has been widely

studied from the theoretical point of view [2]. Some of the

Feistel structure algorithms reversible with changes only in

the key schedule (e.g., DES, and Blowfish), while others uses

round functions slightly different, but are built from the same

blocks as Twofish algorithm. The design principles for the

round permutation follow the principles introduced by

Shannon [3]:

(1) Confusion: means making “the relation between

the simple statics of the cipher text and the simple

decryption of the key is very complex and involved

one”. This implies for instance that any algebraic

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

2

relation between these quantities must have a high

degree and a large number of terms.

(2) Diffusion: means “dissipating the static

structure of the plaintext into long range statistics”.

This implies that all plaintext bits and key bits must

influence all ciphertext bits. Then, the key idea

behind the Feistel structure is to decompose the

round function into two distinct steps: a nonlinear

substitution function for providing confusion called

Substitution- box, and linear permutation for

providing diffusion.

2.1 Substitution- box
The strength of most block ciphers (more specifically their

resistance against linear and diff erential cryptanalysis) is

inevitably tied to the strength of their S-Boxes, which is

usually their sole non-linear component. An n -bit to m -bit

S-Box defines simply a substitution, i.e. to each n bits input

is mapped a corresponding 𝑚 bits output value (which has

not necessarily to be the same length as the input). S-Boxes

are responsible for bringing confusion in the data processing.

This means that they should hide any mathematical

relationship between the plaintext, the ciphertext and the key

[2]. It is possible to identify three diff erent strategies to build

S-Boxes:

a. (1) Random choice: choose the contents completely

at random. A way to choose random S-Boxes is to

make them key- dependent, there are at least two

disadvantages, which can be traded off against each

other. One is that generating the S-Boxes has a cost.

The other is that the generated S-Boxes are not

optimized and may even be weak. On the other

hand, generating cryptographically strong S-Boxes

at run time are impractical [4].

b. (2) Random choice followed by filtering: generate

random ones and to check if they have the desired

properties until a good one is found but it is a very

heavy and computation-intensive process [2].

c. (3) Algebraic constructions: using algebraic

methods to offer good non-linearity properties:

d. *Mixing non-isomorphic operations (XOR and

addition modulo 232 for 32 -bit vectors, for

instance).

 Using algebraic operations known as Mixing of

addition in GF(2𝑛)and in 𝑍𝑛 or Power function

in GF(2𝑛).

 Combination of an inverse function X →Xe in

 GF(2n) and an affine transformation over

some other incompatible algebraic structure.

 Combination of a power function X →Xe in

GF 2𝑛 and an affine transformation over 𝑍𝑛 .

On the other hand, these constructions are helpful to Courtois-

Pieprzyk algebraic attacks [2].

In his introduction to the Biham and Biryukov work on DES

with permuted S-Boxes, Schneider summarizes the usefulness

of randomly-generated S-Boxes [5], “Linear and diff erential

cryptanalysis work only if the analyst knows the composition

of the S-Boxes. If the S-Boxes are key-dependent and chosen

by a cryptographically strong method, then linear and

diff erential cryptanalysis are much more difficult. Remember,

though, that randomly-generated S-Boxes have very poor

diff erential and linear characteristics, even if they are

secret”. To overcome the drawbacks of the previous

strategies, by using strong Algebraic S-Boxes that are key-

dependent but are not randomly generated to get the benefits

of strong S-Boxes and also of key-dependent S-Boxes by

applying the operations before encryption begins and use the

modified S-Boxes for the actual encryption, so the overhead is

exclusively in the set-up phase. There is no increase in the

per-block encryption cost. There are several classes of

operations may be used [4].

1. Permuting S-Box columns: It can be achieved by

permuting each row in a key-dependent way.

2. Adding affine functions to S-Box columns: The

addition of affine functions can be done by XORing

a constant into all rows, this constant may be the

XORing of all bytes of the round subkey.

3. Permuting S-Box Inputs: Rearranging the order of

the S-Box rows in a key-dependent way.

4. Adding Affine Functions to S-Box Inputs: Adding

selected affine functions to S-Box inputs by

XORing a constant binary vector into the input and

then use the output as an input to the S-Boxes.

2.2 Diffusive components

The purpose of a diff usive construction is to provide an

avalanche eff ect, both in the context of diff erential and linear

approximations. In the linear context, this means that there

should be no correlations between linear combinations of a

small set of inputs and linear combinations of a small set of

outputs. In the diff erential context, small input changes

should cause large output changes, and conversely [6].

Maximum Distance Separable matrix (MDS) is a very popular

tool to achieve diffusion. The concept of MDS is taken from

linear coding that is defined by three variables:

1. 𝑛: The length of codeword (the sum of number of

bytes input and output).

2. 𝑘: The dimension of the codeword (Dimension of

matrix).

3. 𝑑: The minimum number of positions. In which any

2 codewords differ (number of positions where the

two codewords differ).

A linear code is called MDS if 𝑑 = n − k + 1 . In simple words,

if two inputs are applied with particular number of diff erence

to MDS matrix, then at least a certain number of diff erences

in the output are got. If the total number of diff erences in

input bytes are denoted as △in and total number of diff erences

in output as △𝑜𝑢𝑡 , then for MDS matrix △𝑖𝑛 +△𝑜𝑢𝑡 ≥ 𝐵 ,

where B is called branch number which gives a tighter

bounds for the security of the cipher (the number of outputs

that will change if one byte of input for single round is

changed). For the matrix used in Twofish the branch number

is 5, as it has input of length 4 bytes and output of 4 bytes

(length of codeword n is 8 bytes) and dimension of matrix k

is 4, so 𝑑 =8 − 4 + 1 = 5.

2.3 Efficient MDS matrix generation
The square matrix A is an MDS matrix if every square

submatrices of A are nonsingular or matrix A is a full rank

matrix with the inverse matrix having all entries non zero and

all of its 2 × 2 submatrices are full rank. There are many

strategies to generate MDS matrix:

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

3

(1) Use of circling MDS matrix: Mk∗k(GF(P))

matrix is said to be circling and is noted C(𝛼1,.., 𝛼𝑘)

if it is of the form:

α1 α2 …… αk

 αk α1 ……. αk−1

 . . ……. .

 α2 α3 ……. α1

Where α1 ,..., αk ∈ GF(q).With this construction,

the number of distinct coefficients will be

minimized to optimize the number of precomputed

tables, and maximize the number of “1”

coefficients.

(2) Use of Hadamard Matrix Second: Hadamard

Matrices are matrices of the form

 H1 H2

 H2 H1

Where H1 and H2 are Hadamard matrices. An

interesting fact is that Hadamard matrices are

entirely defined by their first line. Therefore only

distinct coefficients are necessary. Another property

is that H × H = C2. , where C is the sum of

element of the first row. By setting C to 1, H = 𝐻−1

: H is involuntary. This reduces the number of

coefficients for ciphering, deciphering to k instead

of 2k . The matrix of the cipher ANUBIS [7] is

such an example.

1 α 𝛼2 𝛼 + α2

 α 1 𝛼 + 𝛼2 𝛼2

 α2 𝛼 + 𝛼2 1 𝛼

 α + α2 𝛼2 𝛼 1

(3) Use of Algebraic method: It is possible to

generate matrices that are MDS by construction

using some code theory. A Reed-Solomon code has

a generating matrix of the form:

1 1 1 …… 1

 1 α 𝛼
2 ……. α(n−1)

G 𝛼 = 1 𝛼2 𝛼4 ……. 𝛼(𝑛−1)2

 . . . ……. .

 1 α(k−1) 𝛼2(𝑘−1) ……. α(n−1)(k−1)

And any sub matrix 𝑘 × 𝑘 of G 𝛼 is MDS matrix.

3. TWOFISH CRYPTOGRAPHIC

ALGORITHM
Twofish as shown in figure 3 is a 128-bit block cipher that

accepts a variable length key. It is a 16-round Feistel network

with additional whitening of the input and output. Its

encryption and decryption round functions are slightly

diff erent, but are built from the same blocks. That is, it is

simple to build a hardware or software module that perform

both encryption and decryption without duplicating much

functionality, but the same module cannot perform both

encrypt and decrypt [8].

Fig 3: Twofish Algorithm

3.1 Input and output whitening
128 bits plaintext is divided into four words of each 32 bits.

Each word passes through input whitening process that is

XOR four units of 32 bits subkey and 128 bits plaintext.

3.2 F- function
Two words of the left side are used as inputs of two g-

function inside the F- function in each round. One input word

passes through 8 bits left circulation. A g- function is

composed of MDS matrix multiplier and 4 S-Box. Outputs of

two g- function combined to use PHT (Pseudo-Hadamard

Transform), and two subkeys are added by modulo-2 addition.

3.3 Swapping
Two outputs of the F function exchange a position for the

following round. The results of the last round exchange a

position again after 16th Round and then passes through

output whitening to create 128 bits ciphertext.

3.4 Key schedule
Twofish is defined for keys of length N = 128, N = 192, and N

= 256.The global key in our case is 128. The key schedule

uses the same primitives as the round function, and provides

two sets of subkeys:

1) K Subkeys: 40 words of expanded key 𝐾0 ..

𝐾39

2) word of keys in each round (2* 16=32 words),

4 words for input whitening and 4 word of

output whitening, the total is 32 +8 = 40

words). The generation of 𝐾 set is done by

dividing the master key (4 words) into two sets

𝑀𝑒𝑣𝑒𝑛 (2 word) and 𝑀𝑜𝑑𝑑 (2word), then

Apply M0,M1 , M2 , M3 to function h as shown

in figure 4 to generate K0, .., K39 [8].

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

4

Fig 4: K subkeys generation

(2) S Subkeys: It contains S0, S1 that is used in S-Box,

and they are fixed during the entire encryption and

decryption process. The generation of S subkeys is done

by taking the key bytes in groups of 8, interpreting them

as a vector over GF(28) with the primitive polynomial x8

+ x6+ x5+ x3+ x2+ 1, and multiplying them by a 4×8

matrix derived from an RS code.

4. (SSE) ALGORITHM
As mentioned before, Although Twofish algorithm possesses

a large security margin, it has some drawbacks as the analysis

of its Key-dependent S-Boxes is complicated and the overall

complexity of design has drawn some concern [9]. Moreover,

it had the following observations [10]:

1) It is not clear whether key-dependent S-Boxes used

in Twofish algorithm necessarily offer any

additional security over strong fixed S-Boxes. The

flexibility of key-dependent S-Boxes can actually an

advantage to the attacker.” Instead of choosing the

characteristic to fit the S-Box, we choose the S-Box

to fit the characteristic”.

2) The designers did not produce any significant

reason for adding fixed rotations by one bit position

in the algorithm except “They believe that the one-

bit rotations make cryptanalysis harder, if they have

any effect at all”. But fixed rotations can be used by

the cryptanalyst to reduce the number of active S-

Boxes in a characteristic. Maybe this is the reason

that one of the Twofish designers said “We have no

reason to believe that the 1-bit rotations make

Twofish stronger against differential attack” [11].

3) The fixed rotation by eight bits is intended to lead to

conflicts that the cryptanalyst will find that is hard

to resolve. However the use of S-Boxes that is

changed with the key means that there may be some

keys that will resolve any potential conflict.

The proposal symmetric-key encryption algorithm (SSE) as

shown in figure 5 uses a 16-round reversible Feistel structure

with additional whitening of the input and output is presented.

It overcomes these drawbacks and observations of Twofish

algorithm by providing a proven security for each component,

besides construct a new key schedule that is fast and secure.

Fig 5: (SSE) Algorithm

4.1 S-Boxes layer
Our aim is to build strong Key dependent S-Boxes layer to

overcome the drawbacks (differential cryptanalysis – linear

cryptanalysis) of fixed S-Boxes. The building of this S-Box

layer will be done in two steps:

1) Building offline a random balanced vectorial

function over GF(28) with the primitive polynomial

x8 + x4 + x3+ x2+1 bits that is satisfies good linear

properties (nonlinearity - algebraic degree -

immunity order - ...) and differential properties

(propagation criteria – max. autocorrelation - ...)

Compared to S-Boxes of the AES algorithm.

2) Conceal the input of the S-box by adding Affine

Function to S-Box Inputs (XORing the round

constant into all S-Box input) as described by

Algorithm 1. 16 different round constants given

from the key schedule will achieve a different S-

Box for each round, and the right circular shift for

each constant inside the round function resulting 8

different S-Boxes output in each round as shown in

figure 6.

Fig 6: S-Boxes layer

So, the output of the S-Boxes Layer is dependent on the key

constant driven from key schedule algorithm, and this output

will be different even if the input for S-Box is the same.

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

5

Algorithm 1: Key dependent S-Boxes

// Input:

// 8 byte input to Key dependent S-Boxes layer

// 16 of 1 byte round constant 𝑅𝐶0 … . . 𝑅𝐶15

for all r from 0 to 15 do

 for all j from 0 to 8 do

 S-box_1 r [j] S-box i [j ⊕ (RC r >>> j)]

 end for

end for

// Output: // 8 byte output Key dependent S-Boxes layer

4.2 Optimal MDS
Our aim was to build MDS matrix with high branch number,

by implementing an algorithm that generates a random MDS

matrix M ϵ Mk∗k (GF (q)). For efficiency the number of

distinct coefficients is minimized to optimize the number of

precomputed tables, and maximize the number of « 1 »

coefficients leading to a simple and efficient implementation

in software. Circling MDS matrix strategy is used. To fit the

condition of minimizing the number of distinct coefficient,

efficient circling matrix C(α) with α2i = 1 for all i with 0 ≤ i ≤

[log2 (k +1)] − 1 , (i.e. 1≤ 2i ≤ [k /2]) is generated.

 01 01 04 01 08 05 02 09

 09 01 01 04 01 08 05 02

 02 09 01 01 04 01 08 05

C (α)= 05 02 09 01 01 04 01 08

 08 05 02 09 01 01 04 01

 01 08 05 02 09 01 01 04

 04 01 08 05 02 09 01 01

 01 04 01 08 05 02 09 01

4.3 Bit permutation
A regular bit-permutation is used. This bit-permutation shown

in figure 7 can be written in the following way:

 P (i) = i *8 mod 63 i ϵ {0,...,62}.

 63 i = 63.

This bit-permutation described by Algorithm 2 will satisfy

three important features to the algorithm:

(1) If there is change in only one byte, this will

satisfy that all output bytes (8 bytes) will change

and the number of active S-Boxes will increase.

(2) Helps to make a clear security analysis for the

algorithm.

Fig 7: Bit Permutation

Algorithm 2: bit-permutation

// Input: Eight bytes P_I0, …, P_I7

Bit-Permutation (P_O i [j] , P_I j [i])

{
for all i from 0 to 7 do

 for all j from 0 to 7 do
 P_O i [j] P_I j [i]
 end for

 end for

}

// Output: Eight bytes P_O0 , …, P_O7

4.4 Key schedule
As any cipher can be broken due to a bad key-schedule

design, so many concepts are achieved in our key-schedule

design:

(1) Reuse the Same Primitives that is used in the

encryption algorithm (S-Boxes – MDS - …).

(2) The design is secure and simple for analysis.

(3) Using constant (IV) to avoid related subkey

attack.

(4) Using Key dependent S-Boxes layer to avoid

linear and differential cryptanalysis.

(5) Change in only one bit of master key gives

influence to all subkeys.

(6) No weak keys.

The key schedule shown in figure 8 and described by

Algorithm 3 with 128 bits global key, provided 40 subkey of

expanded key SK0, .., SK39 , and 16 round constant (1 byte)

RC for each round to Xored to the input of S-Boxes.

 Fig 8: key schedule

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

6

Algorithm 3: key schedule Algorithm

// Input:

// Master Key 16 bytes 𝑀0.. 𝑀15 , Constant IV (C 0 = 8

bytes) .
//Start Algorithm

// Divide the master key into two sets M_1, M_2

for all 𝑖 from 0 to 7 do

 M_1 𝑖 M[𝑖]
 M_2 𝑖 M[𝑖 + 8]
end for

// Start 20 iteration

for all 𝑟 from 0 to 19 do
 𝑍 = hamming weight (C[𝑟])

 If 𝑍 is odd then
 // use M_1 as IP and (𝐾𝐶𝑟= Xored M_2 bytes as

constant to xored with the input of S-Boxes)
for all 𝑖 from 0 to 7 do

 𝐾𝐶𝑟 𝑖 𝐾𝐶𝑟 𝑖 >>> 𝑖
end for
for all 𝒊 from 0 to 7 do

 Sbox_in 𝑖 M_1[𝑖] 𝐾𝐶𝑟(𝑖)

end for
//Apply to S-Boxes
for all 𝑖 from 0 to 7 do

 𝑆_𝑂 𝑖 (S-Box Sbox_in 𝑖) ⊕ (𝑀_1[𝑖] >>> 𝑖)
end for
// Multiply by MDS matrix
for all 𝑖 from 0 to 7 do
 𝑀_𝑂 𝑖 (MDS 𝑖 𝑗 *𝑆_𝑂 𝑖) ⊕ (𝑀_2[i]>>> 𝑖)
end for
//Apply to Bit-Permutation
Bit - Permutation (𝑆𝐾_𝐼,𝑀_𝑂)
// Generate the output subkeys (𝑆𝐾_𝑂)

𝑆𝐾_𝑂[𝑟] 𝑆𝐾_𝐼 ⊕ (C[𝑟])
// Generate the algorithm rounds constant (RC)
If 𝑖 > 3 then
 𝐟𝐨𝐫 all 𝑗 from 0 to 7 do
 𝑅𝐶 𝑋𝑜𝑟𝑒𝑑(𝑆𝐾_𝑂 𝑗)

 𝐞𝐧𝐝 for
end if

 // Build the new constant (Circular shift of 64bits subkey)

 for all 𝑖 from 0 to 63 do

 C[𝑟 + 1] (𝑆𝐾_𝐼[𝑟] >>> 𝑖)
end for

 else Z is even then
 Use 𝑀_1[𝑖] as IP and (𝑅𝐶𝑟= Xored M_1 bytes as constant

 to xored with the input of S-Boxes).

 𝐞𝐧𝐝 if
end for

// End Algorithm

// Output:

 // 20 Subkeys of 8 bytes SK0 , …, SK19
// 16 Round constants RC (1 byte)

5. (SSE) ALGORITHM

5.1 Brute force attack
As the key length of (SSE) algorithm is 128-bit, the key has a

complexity of (2128).To be attacked by Brute Force Attack.

Let's used super computer (Tianhe-2, a supercomputer

developed by China’s National University of Defense

Technology, has retained its position as the world’s No. 1

system, according to the 45th edition of the twice-yearly

TOP500 list of the world’s most powerful supercomputers.

with a performance of 33.86 petaflop/s (quadrillions of

calculations per second) [12]) do 33.86 * (1015) decryptions

per second (33.86 * (1015) quadrillions of calculations per

second). That is mean (10.41 * (1023) decryptions per year

for one machine. About (2127) decryptions on average are

needed, so you would need
(2127)

 10.41 ∗ (1023)
 = 16.34* (1013)

years. Or, need
(2127)

 10.41 ∗ (1023)
 = 16.34 * (1013) computers /

year and this is costly and infeasible.

5.2 Linear and differential cryptanalysis
There are two approaches used to ensure the resistance of any

block cipher to linear and diff erential cryptanalysis, either

using key-dependent S-Boxes, or increase the number of

active S-Boxes.

In order to achieve the first approach, S-Box layer started with

carefully-prepared 8 diff erent strong static S-Boxes with good

linear and differential properties compared with AES and key-

dependent operations are applied to the input of S-Boxes

before using it to achieve best diff erential and linear

characteristics. The goal was to introduce additional entropy

so that attacks which depend on knowledge of the S-Boxes

become impractical, without changing the properties which

make the S-Boxes strong. Affine function is added to the

input of S-Boxes (XORing a round constant to the input)

before encryption begins and use the modified S-Boxes layer

for the actual encryption. The addition of affine functions does

nothing to degrade cryptographic security in the S-Boxes

layer. However, such an operation, can make it significantly

more difficult to construct characteristics in a diff erential

cryptanalysis attack (because it cannot be computed in

advance when the XOR of two given S-Box outputs will

produce one value or another). Hence, this operation increases

the security of the cipher by raising the computational

complexity of mounting this attack [4].

For the second approach, the diffusion layers of the (SSE)

Algorithm are MDS and bit permutation. As the replacement

of permutation layer in SPN with a diff usive linear

transformation improves the avalanche characteristics of the

block cipher which increases the cipher’s resistance to

diff erential and linear cryptanalysis [13-14]. Thus the main

application of MDS matrix in cryptography is in designing

block ciphers that provide security against diff erential and

linear cryptanalysis [6].

If there is one active byte at the input to the F function, there

must be at least 8 active bytes at its output. For the next

round, one active S-Box will appear at the output of MDS

(Piling-Up Lemma) [15], but bit permutation layer increase

this number to 8 bytes. The minimal Number of Active S-

Boxes for (SSE) algorithm satisfied the relation (number of

active S-Boxes = 8r +1, where r = 0:15), and shown in table 1

compared to the minimal Number of Active S-Boxes for AES

shown in table 2. The total number of active S-Boxes

increases faster.

Table 1 : Number of active S-Boxes in (SSE) algorithm

Round 1 2 3 4 5 6 7 8 9 10

Min. 1 9 17 25 33 41 49 57 65 73

Table 2: Number of active S-Boxes in AES

Round 1 2 3 4 5 6 7 8 9 10

Min. 1 5 9 25 26 30 34 50 51 55

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

7

5.3 Higher order differential cryptanalysis
It is another version of differential cryptanalysis, looks at

higher order relations between pairs of plaintext and cipher

texts, and is applicable to algorithms which can be represented

as Boolean polynomials of a low algebraic degree [16][17], or

algorithms with a few rounds and poor short-term diff usion.

In order to avoid this attack, (SSE) algorithm S-Box has been

generated using the multiplicative inverse procedure similar to

AES with a randomly chosen primitive polynomial defining a

Galois field. The nonlinearity of this S-Box is 110 and its

nonlinear degree is 7, strong diffusion functions (MDS, bit

permutation) and the number of rounds equal 16.

5.4 Interpolation attack
This attack is efective against ciphers with a very small

number of rounds, or against ciphers whose rounds functions

have very low algebraic degree [18]. (SSE) algorithm has two

reasons make this attack very unlikely to succeed. The first

reason, S-Boxes have large algebraic degree = 7, moreover,

the combination of operations from diff erent algebraic groups

(including both addition mod 232 and Xor operations)

increase the degree. The second reason, its number of rounds

is large = 16.

5.5 Related-key attack and slide attack
These attacks focus on the key scheduling. In the related-key

attack, attacker obtains the encryption of certain plaintexts

under several keys having certain relationships with each

other to reveal the secret key. The basic related-key attack is

“chosen key attack” based on the observation that in many

block ciphers, the key scheduling algorithm can be viewed as

a set of algorithms each of which “extracts one particular

subkey from the subkeys of previous rounds”. If all the

algorithms of extracting the subkeys of the various rounds are

the same then for a given key all the subkeys can be shifted

one round backwards and get a new set of valid subkeys

which can be derived from some other keys[19]. It depends on

slow diff usion or symmetry in the key schedule. (SSE) key

schedule algorithm uses functions that have maximum

diff usion (MDS, bit permutation) and strong Key dependent

S-Boxes layer. The generation of each round subkey is

independent on the other round subkeys but depends only on

the master key. Although the structure of the key schedule

algorithm seems the same during generation of each round

subkey, but it differs in many things:

(1) the contents of S-Boxes layer is not the same in

each round but depends on a constant that is

delivered from the xored bytes from the previous

round subkey after circulated shift right (not from

previous round subkey directly).

(2) In each round, the generation of its subkey

depend on half of master key M_1 or M_2

(independently any other subkeys). The selection

between the two half depend on the hamming

weight of the byte resulted from xored bytes from

the previous round subkey after circulated shift right

(even or odd).

(3) The changing in any bit of master key influences

𝑆𝐾𝑖 and Round constant 𝑅𝐶𝑖 directly ,as The values

that is xored with the outputs of S-Boxes and MDS

is differ depending on the round number (M_1>>>

r ,M_2>>> r).

Slide attack can be viewed as a particular case of related-key

attack in which the relation is between the key and itself. If

the function F is weak enough, it permits to retrieve the key k,

so the structure of H-function of key schedule algorithm

(strong Key dependent S-Boxes, MDS, bit permutation)

makes this attack very unlikely to succeed.

5.6 Related subkey attack
The idea of this attack depends on finding a fixed diff erence

(relationship) between expanded keys (subkeys), but not to

original keys. It is applied to 11 round of version. 256-bit

AES since its key schedule is close to linear and therefore the

subkeys can be viewed as a codeword of a linear code.

This fixed difference between expanded keys (subkeys) in the

(SSE) key schedule algorithm is infeasible as:

(1)The generation of each round subkey is

independent on the others round subkeys but depend

only on the master key.

(2) The structure of key schedule algorithm is

slightly different for each round (S-Boxes layer is

not the same - The values M_1>>> r and M_2>>> r

that xored with the outputs of S-Boxes and MDS is

dependent on round number).

(3) Using a different constant to be xored with the

output subkey in each round.

The previous reasons make this attack very unlikely to

succeed.

6. CONCLUSION AND FUTURE WORK
This paper has proposed a new secure symmetric-Key

encryption (SSE) Algorithm based on the well-studied Feistel

Structure to overcome the drawback and observations of

Twofish algorithm. Each component in (SSE) Algorithm was

studied carefully; a proven security for these components is

produced. Cipher structure can be used on platforms with

limited resources, the identical function be used for

encryption and decryption with changes only in the key

schedule. New key dependent S-Boxes layer was designed,

fully dependent on the master key, which improves cipher

quality when it comes to linear and differential cryptanalysis.

New efficient MDS matrix and bit permutation to increase the

number of active S-Boxes compared to AES algorithm are

used. The key schedule is secure and simple for analysis, uses

the same components that are used in (SSE) Algorithm, has

been considerably simplified in comparison to that of Twofish

Algorithm.

A new cryptanalysis attacks as algebraic attack and fast

algebraic attack on (SSE) Algorithm to evaluate it will be our

future work.

7. REFERENCES
[1] A. Biryukov, D. Wagner. “Slide Attacks,” Fast software

Encryption (FSE’99), volume 1636, lecture notes in

computer science, pp.245-259, springer, 1999.

[2] P. JUNOD, Statistical Cryptanalysis of Block Ciphers

(Lausanne, EPFL, 2005).

[3] C. E. Shannon, “Communication theory of secrecy

systems,” Bell System Technical Journal, vol. 28, pp.

656–715, Oct. 1949.

[4] S. Harris1, C. Adams2, “Key-Dependent S-Box

Manipulations” Selected Areas in Cryptography (SAC

'99) Proceedings, LNCS 1556, Springer, 1999.

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.1, April 2016

8

[5] M. Matsui, R. Zuccherato,” Selected Areas in

Cryptography,” 10th Annual International Workshop,

SAC 2003, Ottawa, Canada, August 2003.

[6] K. Gupta, I. Ghosh Ray, “On Constructions of MDS

Matrices from Companion Matrices for Lightweight

Cryptography,” CD -ARES 2013 Workshops,

MoCrySEn, pp. 29-43, Springer 2013.

[7] P. S. L. M. Barreto and V. Rijmen, “The ANUBIS block

cipher,” 1st NESSIE Workshop, Heverlee, Belgium,

Nov. 2000.

[8] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall,

N. Ferguson, “Twofish: A 128-bit Block Cipher,” AES

Round 1 Technical Evaluation CD-1: Documentation,

National Institute of Standards and Technology, Aug

1998.

[9] J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti

and E. Roback,” Status report on the first round of the

development of the advanced encryption standard,”

Journal of Research of the NIST, vol. 104, no 5,

Nechvatal et al., Sep-Oct, 1999.

[10] S. Murphy, M. Robshaw,” Differential Cryptanalysis,

Key- Dependent S-Boxes and Twofish,” Codes and

Cryptography, Vol. 27, pp. 229-255, 2002.

[11] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall,

N. Ferguson,” Twofish: A 128-bit Block Cipher,”

Counterpane Systems, USA, AES submission, 15 June,

1998.

[12] Top500 List - June 2015.

http://www.top500.org/list/2015/06/

[13] H. M. Heys, S. E. Tavares, “The Design of Substitution-

Permutation Networks Resistant to Differential and

Linear Cryptanalysis,” Proceedings of 2nd ACM

Conference on Computer and Communications Security,

Fairfax, Virginia, pp. 148–155, 1994.

[14] H. M. Heys, S. E. Tavares, “Avalanche Characteristics of

Substitution - Permutation Encryption Networks,” IEEE

Trans. Comp., Vol. 44, pp. 1131-1139, Sept 1995.

[15]] M. Matsui, “ Linear cryptanalysis method for DES

cipher,” in Advances in Cryptology -EUROCRYPT'93,

Lecture Notes in Computer Science 765, Springer-

Verlag, pp. 386–397, 1994.

[16] X. Lai, “Higher order derivatives and differential

cryptanalysis,” Communications and Cryptology,

pp.227-233, Kluwer Academic Publishers, 1994.

[17] L.R. Knudsen, “Truncated and Higher Order

Diff erentials,” Fast Software Encryption, 2nd

International Workshop Proceedings, pp. 196– 211,

Springer- Verlag, 1995.

[18] T. Jakobsen and L.R. Knudsen, “The interpolation attack

on block ciphers,” Fast Software Encryption, LNCS

1267, pp. 28-40, Springer- Verlag, 1997.

[19] G. Piret, M. Ciet, J. Quisquater, “Related key and slide

attacks: Analysis, connections, and improvements,”

Proceedings of the 23rd Symposium on IT in Benelux,

pp. 315-325, 2002.

IJCATM : www.ijcaonline.org

