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ABSTRACT  
In 1997 The National Institute of Standards and Technology 

(NIST) started a process to select a symmetric-key encryption 

algorithm instead of DES.  NIST determined the evaluation 

criteria that would be used to compare the candidate 

algorithms depending on the analyses and comments received, 

NIST selected five finalist algorithms (RC6, MARS, Rijndael, 

Serpent and Twofish). At the end, NIST selected Rijndael as 

the proposed Advanced Encryption Standard algorithm 

(AES). Although Twofish algorithm based on Feistel structure 

and possesses a large security margin, it has some drawbacks 

as The Twofish structure is not easy to analyses, the mixing of 

various operations makes it hard to give a clean analysis and 

forces us to use approximation techniques. Moreover, The use 

of key-dependent S-Boxes adds complexity and greatly 

increase the effort required to write automated tools to search 

for characteristics (differentials, linear, …) of the structure. In 

this paper a proposal of a new Secure Symmetric-key 

Encryption (SSE) algorithm based on Feistel structure is 

produced to overcome the previous drawbacks and produce a 

provable secure algorithm.      
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1. INTRODUCTION 
Symmetric-key cryptography is the most prominent and an 

important element in many cryptographic systems comes in 

two flavors, stream ciphers and block ciphers. The later type 

of Symmetric-key cryptography is more powerful object, as it 

can be used in more ways, to encrypt and authenticate, 

provide integrity, protection and confidentiality. It provides 

high diffusion (information from one plain text symbol is 

diffused into several cipher text symbols), and also can be 

employed in many modes (CTR –OFB - …) to gives stream 

cipher algorithm. Block cipher is easier to be implemented in 

software, as it avoids time consuming bit manipulations, 

operates on data in computer-sized block. This paper is 

organized as follows: Section 2 provides an overview of block 

cipher design principles. Section 3, briefly explain Twofish 

cryptographic algorithm. Section 4, describes the (SSE) 

algorithm. Section 5 proves the security of   (SSE) algorithm. 

Finally, conclusion and future work will be in Section 6.  

2. BLOCK CIPHERS DESIGN 

PRINCIPLES   
Block ciphers are the most widely primitives for ensuring data 

confidentiality. Let n and k be two positive integers, a block 

cipher with block–size n and key–size k is a family of 2k   

permutations {Ek   : {1,0}n  to {1,0}n  }k ϵ{1,0}n  on bitstrings of 

length n. For implementation reasons, all classical block 

ciphers are composed of several round-permutations Fi 

(iterated ciphers) of finite field GF(2n), where each  Fi,1≤ i≤ r, 

is parametrized by a secret quantity ki named the round key, 

which is derived from the master key K as shown in figure 1. 

Fig 1: Block Cipher  

Parameter 𝑟 is the number of rounds in the cipher. In each 

iterated cipher, the  𝑟 round-permutations 𝐹𝑖     are chosen to 

be very similar for two reasons. First, the implementation cost 

of the iterated cipher in hardware. Moreover, the type of 

design provides some simple security arguments. However, 

the rounds should be slightly different in order to resist some 

structural attacks such as slide attacks [1].This difference may 

be introduced by key schedule(i.e. identical round 

permutations with different rounds-keys), or the round 

permutation may be slightly different. The main basic 

constructions for the round permutation: substitution-

permutation network (SPN) as (Rijndael, Square,…), Lai-

Massey scheme as (Proposed Encryption Standard (PES), …)  

and Feistel network as (Data Encryption Standard (DES), 

Twofish, ….). The later type as shown in figure 2 relies on an 

inner function 𝐹𝑘   operating on the half of the block size. 

 

Fig 2: Feistel network 

This structure used in many encryption algorithms and 

presents several advantages as the encryption and decryption 

operations hardly need separate implementations, and 

consequently low implementations cost, it has been widely 

studied from the theoretical point of view [2]. Some of the 

Feistel structure algorithms reversible with changes only in 

the key schedule (e.g., DES, and Blowfish), while others uses 

round functions slightly different, but are built from the same 

blocks as Twofish algorithm. The design principles for the 

round permutation follow the principles introduced by 

Shannon [3]: 

(1)  Confusion: means making “the relation between 

the simple statics of the cipher text and the simple 

decryption of the key is very complex and involved 

one”. This implies for instance that any algebraic 
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relation between these quantities must have a high 

degree and a large number of terms.  

(2) Diffusion:  means “dissipating the static 

structure of the plaintext into long range statistics”. 

This implies that all plaintext bits and key bits must 

influence all ciphertext bits. Then, the key idea 

behind the Feistel structure is to decompose the 

round function into two distinct steps: a nonlinear 

substitution function for providing confusion called 

Substitution- box, and linear permutation for 

providing diffusion. 

2.1 Substitution- box    
The strength of most block ciphers (more specifically their 

resistance against linear and diff erential cryptanalysis) is 

inevitably tied to the strength of their S-Boxes, which is 

usually their sole non-linear component. An  n -bit to  m -bit 

S-Box defines simply a substitution, i.e. to each  n  bits input 

is mapped a corresponding 𝑚  bits output value (which has 

not necessarily to be the same length as the input). S-Boxes 

are responsible for bringing confusion in the data processing. 

This means that they should hide any mathematical 

relationship between the plaintext, the ciphertext and the key 

[2]. It is possible to identify three diff erent strategies to build 

S-Boxes: 

a. (1) Random choice: choose the contents completely 

at random. A way to choose random S-Boxes is to 

make them key- dependent, there are at least two 

disadvantages, which can be traded off against each 

other. One is that generating the S-Boxes has a cost. 

The other is that the generated S-Boxes are not 

optimized and may even be weak. On the other 

hand, generating   cryptographically strong S-Boxes 

at run time are impractical [4]. 

b. (2) Random choice followed by filtering: generate 

random ones and to check if they have the desired 

properties until a good one is found but it is a very 

heavy and computation-intensive process [2]. 

c. (3)  Algebraic constructions: using algebraic 

methods to offer good non-linearity properties: 

d. *Mixing non-isomorphic operations (XOR and 

addition   modulo 232  for 32 -bit vectors, for 

instance). 

 Using algebraic operations known as Mixing of 

addition in GF(2𝑛)and in 𝑍𝑛  or Power function 

in GF(2𝑛).  

 Combination of an inverse function X →Xe in 

 GF(2n) and an affine transformation over 

some other incompatible algebraic structure.  

 Combination of a power function X →Xe  in 

GF 2𝑛  and an affine transformation over 𝑍𝑛 . 

On the other hand, these constructions are helpful to Courtois-

Pieprzyk algebraic attacks [2]. 

In his introduction to the Biham and Biryukov work on DES 

with permuted S-Boxes, Schneider summarizes the usefulness 

of randomly-generated S-Boxes [5], “Linear and diff erential 

cryptanalysis work only if the analyst knows the composition 

of the S-Boxes. If the S-Boxes are key-dependent and chosen 

by a cryptographically strong method, then linear and 

diff erential cryptanalysis are much more difficult. Remember, 

though, that randomly-generated S-Boxes have very poor 

diff erential and linear characteristics, even if they are 

secret”. To overcome the drawbacks of the previous 

strategies, by using strong Algebraic S-Boxes that are key-

dependent but are not randomly generated to get the benefits 

of strong S-Boxes and also of key-dependent S-Boxes by 

applying the operations before encryption begins and use the 

modified S-Boxes for the actual encryption, so the overhead is 

exclusively in the set-up phase. There is no increase in the 

per-block encryption cost. There are several classes of 

operations may be used [4]. 

1. Permuting S-Box columns: It can be achieved by 

permuting each row in a key-dependent way. 

2. Adding affine functions to S-Box columns: The 

addition of affine functions can be done by XORing 

a constant into all rows, this constant may be the 

XORing of all bytes of the round subkey. 

3. Permuting S-Box Inputs: Rearranging the order of 

the S-Box rows in a key-dependent way. 

4. Adding Affine Functions to S-Box Inputs: Adding 

selected affine functions to S-Box inputs by 

XORing a constant binary vector into the input and 

then use the output as an input to the S-Boxes. 

2.2 Diffusive components  

The purpose of a diff usive construction is to provide an 

avalanche eff ect, both in the context of diff erential and linear 

approximations. In the linear context, this means that there 

should be no correlations between linear combinations of a 

small set of inputs and linear combinations of a small set of 

outputs. In the diff erential context, small input changes 

should cause large output changes, and conversely [6]. 

Maximum Distance Separable matrix (MDS) is a very popular 

tool to achieve diffusion. The concept of MDS is taken from 

linear coding that is defined by three variables: 

1. 𝑛: The length of codeword (the sum of number of 

bytes input and output). 

2. 𝑘:  The dimension of the codeword (Dimension of 

matrix). 

3. 𝑑: The minimum number of positions. In which any 

2 codewords differ (number of positions where the 

two codewords differ). 

A linear code is called MDS if 𝑑 = n − k + 1 . In simple words, 

if two inputs are applied with particular number of diff erence 

to MDS matrix, then at least a certain number of diff erences 

in the output are got. If the total number of diff erences in 

input bytes are denoted as △in  and total number of diff erences 

in output as △𝑜𝑢𝑡  , then for MDS matrix △𝑖𝑛 +△𝑜𝑢𝑡  ≥  𝐵 , 

where  B  is called branch number which gives a tighter 

bounds for the security of the cipher (the number of outputs 

that will change if one byte of input for single round is 

changed). For the matrix used in Twofish the branch number 

is 5, as it has input of length 4 bytes and output of 4 bytes 

(length of codeword n is 8 bytes) and dimension of matrix k  

is 4, so 𝑑 =8 − 4 + 1 = 5.  

2.3 Efficient MDS matrix generation  
The square matrix A is an MDS matrix if every square 

submatrices of A are nonsingular or matrix A is a full rank 

matrix with the inverse matrix having all entries non zero and 

all of its 2 × 2 submatrices are full rank. There are many 

strategies to generate MDS matrix: 
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(1) Use of circling MDS matrix:  Mk∗k(GF(P)) 

matrix is said to be circling and is noted C(𝛼1,.., 𝛼𝑘) 

if it is of the form: 

α1   α2 ……   αk  

 αk    α1   ……. αk−1 

 .       .      …….          .    

 α2   α3   ……. α1                                                

Where α1 ,..., αk  ∈ GF(q).With this construction, 

the number of distinct coefficients will be 

minimized to optimize the number of precomputed 

tables, and maximize the number of “1” 

coefficients. 

(2) Use of Hadamard Matrix Second: Hadamard 

Matrices are matrices of the form                                                         

   H1       H2        

                                H2       H1        

Where H1 and H2 are Hadamard matrices. An 

interesting fact is that Hadamard matrices are 

entirely defined by their first line. Therefore only  

distinct coefficients are necessary. Another property 

is that H × H = C2.  , where  C is the sum of 

element of the first row. By setting C to 1, H = 𝐻−1  

: H is involuntary. This reduces the number of 

coefficients for ciphering, deciphering to k instead 

of  2k . The matrix of the cipher ANUBIS [7] is 

such an example.   

1               α             𝛼2          𝛼 + α2 

 α               1         𝛼 + 𝛼2          𝛼2 

 α2         𝛼 + 𝛼2       1                𝛼  

 α + α2     𝛼2            𝛼                1  

(3) Use of Algebraic method: It is possible to 

generate matrices that are MDS by construction 

using some code theory. A Reed-Solomon code has 

a generating matrix of the form: 

1         1          1        ……    1 

 1         α        𝛼
2       …….     α(n−1) 

G 𝛼 =    1        𝛼2      𝛼4        …….       𝛼(𝑛−1)2
     

  .          .         .           …….                . 

 1      α(k−1)   𝛼2(𝑘−1) ……. α(n−1)(k−1) 

And any sub matrix 𝑘 ×  𝑘 of G 𝛼  is MDS matrix. 

3. TWOFISH CRYPTOGRAPHIC 

ALGORITHM 
Twofish as shown in figure 3 is a 128-bit block cipher that 

accepts a variable length key. It is a 16-round Feistel network 

with additional whitening of the input and output. Its 

encryption and decryption round functions are slightly 

diff erent, but are built from the same blocks. That is, it is 

simple to build a hardware or software module that perform 

both encryption and decryption without duplicating much 

functionality, but the same module cannot perform both 

encrypt and decrypt [8]. 

 

Fig 3: Twofish Algorithm 

3.1 Input and output whitening 
128 bits plaintext is divided into four words of each 32 bits. 

Each word passes through input whitening process that is 

XOR four units of 32 bits subkey and 128 bits plaintext.  

3.2 F- function 
Two words of the left side are used as inputs of two g- 

function inside the F- function in each round. One input word 

passes through 8 bits left circulation. A g- function is 

composed of MDS matrix multiplier and 4 S-Box. Outputs of 

two g- function combined to use PHT (Pseudo-Hadamard 

Transform), and two subkeys are added by modulo-2 addition. 

3.3 Swapping 
Two outputs of the F function exchange a position for the 

following round. The results of the last round exchange a 

position again after 16th Round and then passes through 

output  whitening to create 128 bits ciphertext. 

3.4 Key schedule 
Twofish is defined for keys of length N = 128, N = 192, and N 

= 256.The global key in our case is 128. The key schedule 

uses the same primitives as the round function, and provides 

two sets of subkeys: 

1) K Subkeys: 40 words of expanded key 𝐾0 .. 

𝐾39              

2) word of keys in each round (2* 16=32 words), 

4 words for input whitening and 4 word of 

output whitening, the total is 32 +8 = 40 

words). The generation of  𝐾  set is done by 

dividing the master key (4 words) into two sets 

𝑀𝑒𝑣𝑒𝑛  (2 word) and 𝑀𝑜𝑑𝑑  (2word), then 

Apply M0,M1 , M2 , M3 to function h as shown 

in figure 4 to generate K0, .., K39  [8]. 
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Fig 4: K subkeys generation 

(2)  S  Subkeys: It contains S0,  S1 that is used in S-Box, 

and they are fixed during the entire encryption and 

decryption process. The generation of S subkeys is done 

by taking the key bytes in groups of 8, interpreting them 

as a vector over  GF(28) with the primitive polynomial x8 

+ x6+ x5+ x3+ x2+ 1, and multiplying them by a 4×8 

matrix derived from an RS code. 

4. (SSE) ALGORITHM 
As mentioned before, Although Twofish algorithm possesses 

a large security margin, it has some drawbacks as the analysis 

of its Key-dependent S-Boxes is complicated and the overall 

complexity of design has drawn some concern [9]. Moreover, 

it had the following observations [10]: 

1) It is not clear whether key-dependent S-Boxes used 

in Twofish algorithm necessarily offer any 

additional security over strong fixed S-Boxes. The 

flexibility of key-dependent S-Boxes can actually an 

advantage to the attacker.” Instead of choosing the 

characteristic to fit the S-Box, we choose the S-Box 

to fit the characteristic”. 

2) The designers did not produce any significant 

reason for adding fixed rotations by one bit position 

in the algorithm except “They believe that the one-

bit rotations make cryptanalysis harder, if they have 

any effect at all”. But fixed rotations can be used by 

the cryptanalyst to reduce the number of active S-

Boxes in a characteristic. Maybe this is the reason 

that one of the Twofish designers said “We have no 

reason to believe that the 1-bit rotations make 

Twofish   stronger against differential attack” [11]. 

3) The fixed rotation by eight bits is intended to lead to 

conflicts that the cryptanalyst will find that is hard 

to resolve. However the use of S-Boxes that is 

changed with the key means that there may be some 

keys that will resolve any potential conflict. 

The proposal symmetric-key encryption algorithm (SSE) as 

shown in figure 5 uses a 16-round reversible Feistel structure 

with additional whitening of the input and output is presented. 

It overcomes these drawbacks and observations of Twofish 

algorithm by providing a proven security for each component, 

besides construct a new key schedule that is fast and secure. 

 

Fig 5: (SSE) Algorithm 

4.1 S-Boxes layer  
Our aim is to build strong Key dependent S-Boxes layer to 

overcome the drawbacks (differential cryptanalysis – linear 

cryptanalysis) of fixed S-Boxes. The building of this S-Box 

layer will be done in two steps: 

1) Building offline a random balanced vectorial 

function over GF(28)  with the primitive polynomial 

x8 + x4 + x3+ x2+1 bits that is satisfies good linear 

properties (nonlinearity - algebraic degree - 

immunity order -  ...) and differential properties 

(propagation criteria – max. autocorrelation - ...) 

Compared to S-Boxes of the AES algorithm.  

2) Conceal the input of the S-box by adding Affine 

Function to S-Box Inputs (XORing the round 

constant into all S-Box input) as described by 

Algorithm 1. 16 different round constants given 

from the key schedule will achieve a different S-

Box for each round, and the right circular shift for 

each constant inside the round function resulting 8 

different S-Boxes output in each round as shown in 

figure 6.  

 

Fig 6: S-Boxes layer 

So, the output of the S-Boxes Layer is dependent on the key 

constant driven from key schedule algorithm, and this output 

will be different even if the input for S-Box is the same.  
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Algorithm 1: Key dependent S-Boxes  

// Input: 

// 8 byte input to Key dependent S-Boxes layer 

// 16 of 1 byte round constant  𝑅𝐶0 … . . 𝑅𝐶15  

for all r from 0 to 15 do 

      for all j from 0 to 8 do 

            S-box_1 r [ j]         S-box i [j ⊕ (RC r >>> j)] 

    end for 

end for 

// Output:      // 8 byte output Key dependent S-Boxes layer 

4.2 Optimal MDS   
Our aim was to build MDS matrix with high branch number, 

by implementing an algorithm that generates a random MDS 

matrix M ϵ Mk∗k  (GF (q)). For efficiency the number of 

distinct coefficients is minimized to optimize the number of 

precomputed tables, and maximize the number of « 1 » 

coefficients leading to a simple and efficient implementation 

in software. Circling MDS matrix strategy is used. To fit the 

condition of minimizing the number of distinct coefficient, 

efficient circling matrix C(α) with α2i  = 1 for all i with 0 ≤ i ≤ 

[log2 (k +1)] − 1  , (i.e. 1≤ 2i  ≤ [k /2]) is generated. 

        01     01     04     01     08     05     02     09 

        09     01     01     04     01     08     05     02 

        02     09     01     01     04     01     08     05 

C (α)=             05     02     09     01     01     04      01    08 

        08     05     02     09     01     01     04     01 

        01     08     05     02     09     01     01     04 

        04     01     08     05     02     09     01     01  

       01     04     01     08     05     02     09     01 

 

4.3 Bit permutation   
A regular bit-permutation is used. This bit-permutation shown 

in figure 7 can be written in the following way: 

                P (i) =         i *8 mod 63                i ϵ {0,...,62}. 

                        63                               i = 63. 

This bit-permutation described by Algorithm 2 will satisfy 

three important features to the algorithm:  

(1) If there is change in only one byte, this will 

satisfy that all output bytes (8 bytes) will change 

and the number of active S-Boxes will increase.  

(2) Helps to make a clear security analysis for the 

algorithm. 

 

Fig 7: Bit Permutation 

Algorithm 2: bit-permutation 

// Input:           Eight bytes  P_I0, …,  P_I7   

Bit-Permutation (P_O i [ j] , P_I j [i]) 

{                                 
for all i from 0 to 7 do 

 for all j from 0 to 7 do 
       P_O i [ j]     P_I j [i] 
 end for 

 end for 

} 

// Output:         Eight bytes  P_O0 , …,  P_O7 

4.4 Key schedule  
As any cipher can be broken due to a bad key-schedule 

design, so many concepts are achieved in our key-schedule 

design: 

(1)  Reuse the Same Primitives that is used in the 

encryption   algorithm (S-Boxes – MDS - …).                                           

(2) The design is secure and simple for analysis.                       

(3) Using constant (IV) to avoid related subkey 

attack.                                                                             

(4) Using Key dependent S-Boxes layer to avoid 

linear and differential cryptanalysis.  

(5) Change in only one bit of master key gives 

influence to all subkeys.  

(6) No weak keys. 

The key schedule shown in figure 8 and described by 

Algorithm 3 with 128 bits global key,  provided 40 subkey of 

expanded key SK0, .., SK39 , and 16 round constant (1 byte) 

RC for each round to Xored to the input of  S-Boxes. 

 Fig 8: key schedule 
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Algorithm 3:  key schedule Algorithm 

// Input: 

// Master Key 16 bytes  𝑀0.. 𝑀15  , Constant IV (C 0 = 8 

bytes) .                                                                               
//Start Algorithm                                                                      

// Divide the master key into two sets M_1, M_2                      

for all 𝑖 from 0 to 7 do                                                           

      M_1 𝑖               M[𝑖]                                                       
      M_2 𝑖               M[𝑖 + 8]                                                   
end for                                                                                       

// Start 20 iteration                                                                 

for all 𝑟 from 0 to 19 do                                                               
      𝑍 = hamming weight (C[𝑟])                                                        

      If  𝑍  is odd then   
       // use M_1 as IP and (𝐾𝐶𝑟= Xored M_2 bytes as         

constant to xored with the input of S-Boxes)                   
for all 𝑖 from 0 to 7 do                                         

       𝐾𝐶𝑟 𝑖         𝐾𝐶𝑟 𝑖  >>>   𝑖                                         
end for                                                                              
for all 𝒊 from 0 to 7 do                                               

       Sbox_in 𝑖            M_1[𝑖]      𝐾𝐶𝑟(𝑖)                      

end for                                                               
//Apply to S-Boxes                                                           
for all 𝑖 from 0 to 7 do                                               

       𝑆_𝑂 𝑖     (S-Box Sbox_in 𝑖   ) ⊕ (𝑀_1[𝑖] >>> 𝑖)   
end for                                                                                  
// Multiply by MDS  matrix                                               
for all 𝑖 from 0 to 7 do                                  
        𝑀_𝑂 𝑖       (MDS 𝑖  𝑗 *𝑆_𝑂 𝑖 ) ⊕ ( 𝑀_2[i]>>> 𝑖)            
end for                                                                       
//Apply to Bit-Permutation                   
Bit - Permutation (𝑆𝐾_𝐼,𝑀_𝑂)                                      
// Generate the output subkeys (𝑆𝐾_𝑂)                  

𝑆𝐾_𝑂[𝑟]        𝑆𝐾_𝐼  ⊕  ( C[𝑟])                                    
// Generate the algorithm rounds constant (RC)   
If  𝑖 > 3   then                       
     𝐟𝐨𝐫 all 𝑗 from 0 to 7 do   
     𝑅𝐶         𝑋𝑜𝑟𝑒𝑑( 𝑆𝐾_𝑂 𝑗 )                         

     𝐞𝐧𝐝 for                                    
end if 

       // Build the new constant (Circular shift of 64bits subkey) 

        for all 𝑖 from 0 to 63 do 

      C[𝑟 + 1]       (𝑆𝐾_𝐼[𝑟] >>> 𝑖  )                            
end for 

      else Z is even then 
       Use 𝑀_1[𝑖] as IP and (𝑅𝐶𝑟= Xored M_1 bytes as constant  

        to xored with the input of S-Boxes).                                   

      𝐞𝐧𝐝  if 
end for  

// End Algorithm 

// Output:  

 // 20 Subkeys of 8 bytes  SK0 , …,    SK19  
// 16 Round constants RC (1 byte)  

 

5. (SSE) ALGORITHM 

5.1 Brute force attack    
As the key length of (SSE) algorithm is 128-bit, the key has a 

complexity of (2128).To be attacked by Brute Force Attack. 

Let's used super computer (Tianhe-2, a supercomputer 

developed by China’s National University of Defense 

Technology, has retained its position as the world’s No. 1 

system, according to the 45th edition of the twice-yearly 

TOP500 list of the world’s most powerful supercomputers. 

with a performance of 33.86 petaflop/s (quadrillions of 

calculations per second) [12]) do 33.86 * (1015) decryptions 

per second (33.86 *  (1015) quadrillions of calculations per 

second). That is mean (10.41 *    (1023) decryptions per year 

for one machine. About (2127) decryptions on average are 

needed, so you would need    
(2127 )

 10.41  ∗ (1023 )
 = 16.34* (1013) 

years. Or, need   
(2127 )

 10.41  ∗ (1023 )
 = 16.34 * (1013) computers / 

year and this is costly and infeasible.  

5.2 Linear and differential cryptanalysis    
There are two approaches used to ensure the resistance of any 

block cipher to linear and diff erential cryptanalysis, either 

using key-dependent S-Boxes, or increase the number of 

active S-Boxes. 

In order to achieve the first approach, S-Box layer started with 

carefully-prepared 8 diff erent strong static S-Boxes with good 

linear and differential properties compared with AES and key-

dependent operations are applied to the input of S-Boxes 

before using it to achieve best diff erential and linear 

characteristics. The goal was to introduce additional entropy 

so that attacks which depend on knowledge of the S-Boxes 

become impractical, without changing the properties which 

make the S-Boxes strong. Affine function is added to the 

input of S-Boxes (XORing a round constant to the input) 

before encryption begins and use the modified S-Boxes layer 

for the actual encryption. The addition of affine functions does 

nothing to degrade cryptographic security in the S-Boxes 

layer. However, such an operation, can make it significantly 

more difficult to construct characteristics in a diff erential 

cryptanalysis attack (because it cannot be computed in 

advance when the XOR of two given S-Box outputs will 

produce one value or another). Hence, this operation increases 

the security of the cipher by raising the computational 

complexity of mounting this attack [4]. 

For the second approach, the diffusion layers of the (SSE) 

Algorithm are MDS and bit permutation. As the replacement 

of permutation layer in SPN with a diff usive linear 

transformation improves the avalanche characteristics of the 

block cipher which increases the cipher’s resistance to 

diff erential and linear cryptanalysis [13-14]. Thus the main 

application of MDS matrix in cryptography is in designing 

block ciphers that provide security against diff erential and 

linear cryptanalysis [6]. 

If there is one active byte at the input to the F function, there 

must be at least 8 active bytes at its output. For the next 

round, one active S-Box will appear at the output of MDS 

(Piling-Up Lemma) [15], but bit permutation layer increase 

this number to 8 bytes. The minimal Number of Active S-

Boxes for (SSE) algorithm satisfied the relation (number of 

active S-Boxes = 8r +1, where r = 0:15), and shown in table 1 

compared to the minimal Number of Active S-Boxes for AES 

shown in table 2. The total number of active S-Boxes 

increases faster.  

Table 1 : Number of active S-Boxes in (SSE) algorithm 

Round 1 2 3 4 5 6 7 8 9 10 

Min. 1 9 17 25 33 41 49 57 65 73 

Table 2: Number of active S-Boxes in AES 

Round 1 2 3 4 5 6 7 8 9 10 

Min. 1 5 9 25 26 30 34 50 51 55 
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5.3 Higher order differential cryptanalysis    
It is another version of differential cryptanalysis, looks at 

higher order relations between pairs of plaintext and cipher 

texts, and is applicable to algorithms which can be represented 

as Boolean polynomials of a low algebraic degree [16][17], or 

algorithms with a few rounds and poor short-term diff usion.  

In order to avoid this attack, (SSE) algorithm S-Box has been 

generated using the multiplicative inverse procedure similar to 

AES with a randomly chosen primitive polynomial defining a 

Galois field. The nonlinearity of this S-Box is 110 and its 

nonlinear degree is 7, strong diffusion functions (MDS, bit 

permutation) and the number of rounds equal 16. 

5.4 Interpolation attack    
This attack is efective against ciphers with a very small 

number of rounds, or against ciphers whose rounds functions 

have very low algebraic degree [18]. (SSE) algorithm has two 

reasons make this attack very unlikely to succeed. The first 

reason, S-Boxes   have large algebraic degree = 7, moreover, 

the combination of operations from diff erent algebraic groups 

(including both addition mod 232  and Xor operations) 

increase the degree. The second reason, its number of rounds 

is large = 16. 

5.5 Related-key attack and slide attack    
These attacks focus on the key scheduling. In the related-key 

attack, attacker obtains the encryption of certain plaintexts 

under several keys having certain relationships with each 

other to reveal the secret key. The basic related-key attack is 

“chosen key attack” based on the observation that in many 

block ciphers, the key scheduling algorithm can be viewed as 

a set of algorithms each of which “extracts one particular 

subkey from the subkeys of previous rounds”. If all the 

algorithms of extracting the subkeys of the various rounds are 

the same then for a given key all the subkeys can be shifted 

one round backwards and get a new set of valid subkeys 

which can be derived from some other keys[19]. It depends on 

slow diff usion or symmetry in the key schedule. (SSE) key 

schedule algorithm uses functions that have maximum 

diff usion (MDS, bit permutation) and strong Key dependent 

S-Boxes layer. The generation of each round subkey is 

independent on the other round subkeys but depends only on 

the master key. Although the structure of the key schedule 

algorithm seems the same during generation of each round 

subkey, but it differs in many things: 

(1) the contents of S-Boxes layer  is not the same in 

each round but depends on a constant that is 

delivered  from the xored bytes from the previous 

round subkey after circulated shift right (not from 

previous round subkey directly ). 

(2) In each round, the generation of its subkey 

depend on half of master key M_1 or M_2 

(independently any other subkeys). The selection 

between the two half depend on the hamming 

weight of the byte resulted from xored bytes from 

the previous round subkey after circulated shift right 

(even or odd). 

(3) The changing in any bit of master key influences 

𝑆𝐾𝑖  and Round constant 𝑅𝐶𝑖   directly ,as The values 

that is xored with the outputs of S-Boxes and MDS 

is differ depending on the  round number (M_1>>> 

r ,M_2>>> r). 

Slide attack can be viewed as a particular case of related-key 

attack in which the relation is between the key and itself. If 

the function F is weak enough, it permits to retrieve the key k, 

so the structure of H-function of key schedule algorithm 

(strong Key dependent S-Boxes, MDS, bit permutation) 

makes this attack very unlikely to succeed. 

5.6 Related subkey attack    
The idea of this attack depends on finding a fixed diff erence 

(relationship) between expanded keys (subkeys), but not to 

original keys. It is applied to 11 round of version. 256-bit 

AES since its key schedule is close to linear and therefore the 

subkeys can be viewed as a codeword of a linear code. 

This fixed difference between expanded keys (subkeys) in the 

(SSE) key schedule algorithm is infeasible as: 

(1)The generation of each round subkey is 

independent on the others round subkeys but depend 

only on the master key. 

(2) The structure of key schedule algorithm is 

slightly different for each round (S-Boxes layer is 

not the same - The values M_1>>> r and M_2>>> r 

that xored with the outputs of S-Boxes and MDS is 

dependent on round number). 

(3) Using a different constant to be xored with the 

output subkey in each round. 

The previous reasons make this attack very unlikely to 

succeed. 

6. CONCLUSION AND FUTURE WORK 
This paper has proposed a new secure symmetric-Key 

encryption (SSE) Algorithm based on the well-studied Feistel 

Structure to overcome the drawback and observations of 

Twofish algorithm. Each component in (SSE) Algorithm was 

studied carefully; a proven security for these components is 

produced. Cipher structure can be used on platforms with 

limited resources, the identical function be used for 

encryption and decryption with changes only in the key 

schedule. New key dependent S-Boxes layer was designed, 

fully dependent on the master key, which improves cipher 

quality when it comes to linear and differential cryptanalysis. 

New efficient MDS matrix and bit permutation to increase the 

number of active S-Boxes compared to AES algorithm are 

used. The key schedule is secure and simple for analysis, uses 

the same components that are used in (SSE) Algorithm, has 

been considerably simplified in comparison to that of Twofish 

Algorithm. 

A new cryptanalysis attacks as algebraic attack and fast 

algebraic attack on (SSE) Algorithm to evaluate it will be our 

future work.   
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