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ABSTRACT 

In recent years, folding of various objects have been generated 

using different approaches. The classical Cantor set is an 

interesting mathematical construction with links to several 

areas of analysis and topology. The purpose of this paper is to 

represent the folding of Cantor string (compliment of Cantor 

set) using direct folding and folding by cut methods. 

Moreover, the results governing these types of folding are 

obtained. 
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1. INTRODUCTION 
Cantor set is a classical example of perfect subset of the 

closed interval [0, 1], which has the same cardinality as the 

real line but whose Lebesgue measure is zero[10]. It was 

discovered in 1875 by Henry John Stephen Smith [33] and 

first introduced by German mathematician George Cantor 

(1845-1918) that become known as Cantor ternary set [3-8]. 

Later on, Devil’s and other researchers gave graphical 

representation of Cantor set in the form of staircases [28-30].  

The folding of a manifold was, firstly introduced by 

Robertson in 1977 [31]. When a sheet of paper is crumpled in 

the hands and then crushed flat against a desk-top, the pattern 

so formed is governed by certain simple rules. These rules are 

generalized to theorems on folding manifolds isometrically 

into one another which has been examined independently by 

Robertson [1977] and Sewell [1973]. In 1986, the topological 

character of the manifolds has been introduced by Robertson 

et al. [32]. Later on, in a series of papers, Ghoul [15-20], 

Ghoul et al. [12-14] jointly with others carried further analysis 

and generalizations of manifolds (see also [24]). Also, for 

more properties and applications of manifolds in analysis one 

may refer to [1, 9, 20-23, 25-27]. The limit of folding of a 

manifold is defined in [22].  

Lapidus and van Frankenhuijsen [30, 31] introduced the 

concept of fractal string and established the geometric zeta 

function, zeros of zeta function, spectra of fractal string and 

the complex dimension of the fractal string. Further in 2008, 

Lapidus [32] suggested that fractal string and their 

quantization may be related to aspects of string theory. In last 

few decades, M. L. Lapidus, jointly with other researchers 

generalized and introduced the various properties of fractal 

string. 

In 2012, Attiya [2] studied the folding of hyperbolic manifold 

using mathematical results. Further, in 2012, the types of 

retractions of one dimensional manifolds and the isometric 

and topological folding have been studied by A.E. El-Ahmady 

et al.[11]. 

In this paper, we study the folding of Cantor string using two 

different approaches of folding. The limit of folding of a 

Cantor string is also discussed. Section 2 deals with some 

basic definition pertaining to the folding of a manifold, Cantor 

set and Cantor string. In Section 3, the main result of our 

study has been presented. 

2.  PRELIMINARIES 
Definition 1. Let M be a non-empty (second-countable) 

Hausdorff topological space such that: 

(i) M is the union of open subsets Uα and each Uα is equipped 

with a homeomorphism xα taking Uα to an open set in Rn , 

i.e.;   

xα : Uα → xα (Uα) ⊂ Rn 

(ii) If Uα ⋂ Uβ  = W ≠


 , the sets xα-1(W) and  xβ-1(W) are 

open sets in Rn then the overlap map  

   1 :  x x x W x W   
 

xβ 𝑥𝛼
−1: xα (W) → xβ (W ) 

is a smooth map, see Fig.1, where the map 

1x x 
 

 from an 

open set in Rn to Rn is smooth if all partial derivatives of all 

orders of each component of the map exist everywhere, where 

the map is defined. 

Each pair (Uα, xα) is called a chart on M, and the collection A 

= {( Uα, xα)}of charts is called (smooth) atlas on M. The 

space M taken together with the atlas A will be called a 

smooth manifold of dimension n or smooth n-manifold or C∞ 

n-manifold.  
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Definition 2. Let M and N be two C∞- Riemannian manifolds 

of dimension m and n respectively. A map f : M →N is said to 

be an isometric folding of M into N if for every piecewise 

geodesic path γ : I →M the induced path f ◦γ : I →N is 

piecewise geodesic and of the same length as γ. If f does not 

preserve length it is called a topological folding. [34] 

Definition 3. A subset A of a topological space is  a retract of 

X if there exist a continuous map r: X → A called a retraction 

such that r(a) = a for any a ∈  A.[20] 

Definition 4.  The Cantor set C is defined as C = ⋂ 𝐼𝑛
∞
𝑛=1 , 

where In+1 is constructed by trisecting In and removing the 

middle third, I0 being the closed real interval [0, 1]. 

In 2000, Lapidus and van Frankenhuijsen introduced the 

concept of fractal strings. They defined it as follows:  

Definition 5. A fractal string Ω is a bounded open subset of 

the real line R. The collection of lengths ℓj of the disjoint 

intervals is denoted by L. For example, the complement of the 

Cantor set in the closed unit interval [0, 1] is a Cantor string. 

Moreover, the topological boundary of a Cantor string is the 

Cantor set C itself. 

Definition 6. The limit of the folding of an n-dimentional  

manifold M into itself  is a manifold N of dimension n-1. [22] 

3.  MAIN RESULTS 
In the year (1879-1884), George Cantor coined few problems 

and consequences in the field of set theory. One of them was 

Cantor ternary set a classical example of fractals. Under the 

constructions of Cantor set, we begin with the closed interval 

I0 = [0, 1] and divide it into three equal open sub-intervals. 

And remove the central open interval I1 =  
1

3
,

2

3
   such that  

                    [0, 1] – I1 =  0,
1

3
  ∪ 

2

3
  , 1  

by repeating the process of removing the middle one third 

from each closed interval, we can define as  

                C = ⋂ 𝐼𝑛
∞
𝑛=1  

where In+1 is constructed as above by trisecting In and 

removing the middle third, I0 being the closed interval [0, 1]. 

In this paper, we study the folding of Cantor string. To start 

the constructions of folding of Cantor string, we take the 

closed interval [0,1] and divide it into 3 equal subintervals. 

Fig.2 below shows the representation of folding of Cantor 

string by using direct method.  

To start the construction, initiator F0 = [0, 1] is subdivided 

into three equal subintervals, left(L), right(R) and middle(M). 

Drop first and third semi-open intervals 
1

1
0,

3
x

 
 
 

  and 

2

2
,1

3
x

 
  
 

  such that  

F1 = [0, 1] - 1 2
0, ,1

3 3

   
  

   
  = 1 2

,
3 3

 
 
 

 

Again we subdivide the closed interval F1 =  
1

3
,

2

3
  into three 

equal subintervals and remove the first and third semi-open 

intervals, then we get  

F2 = 
1 2 1 4 5 2

, , ,
3 3 3 9 9 3

     
     

     
 = 

4 5
,

9 9

 
 
 

  

Further, repeating the same process again and again, by 

removing the semi-open subintervals of first and third position 

at each step from each closed interval, we obtain a sequence

 
1k k

F



 .   

M 

 

W 

𝑥𝛼  

 

𝑈𝛼  

 𝑥𝛼
−1(𝑊) 

 

𝑥𝛽
−1°𝑥𝛼  

 

𝑥𝛽  

 

𝑥𝛽
−1(𝑊) 

 

𝑈𝛽  

 

Fig. 1   Smooth mapping 
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Thus the folding of Cantor string would be the limit F as the 

intersection of sets Fk i.e. F = ⋂𝐹𝑘  

 

 

 

 

 

Theorem 3.1  Let f be the folding map on [0, 1] defined by 

f(x) = 
𝑥+1

3
. Then the Cantor string F defined above satisfies 

the inclusion 
 1 0,1,2...k kF F for all k 

. 

Proof.  In the starting of this section, we study the folding of 

Cantor set by simply removing the one-third semi-open 

intervals of first and third step.  

Now using the map f(x) = 
𝑥+1

3
 , we generate the folding which 

is quite different from the method mentioned above. 

 In Fig.3, by using the mapping f(x) = 
𝑥+1

3
 on initiator [0,1], 

we study the folding of Cantor string in the following way: 

 First, let x ∈  [0,1] and then using the map f, we get 

                     f1 (F0) = f1 ([0, 1]) =  
1

3
,

2

3
   = F1        

    ⇒                     F0 ⊇ F1 

Now, take x ∈  
1

3
,

2

3
  and then using the mapping f, we get  

                      f2 (F1) = f2 ( 
1

3
,

2

3
 ) =  

4

9
,

5

9
  = F2                     

    ⇒                     F1⊇ F2  

Again, taking x ∈  
4

9
,

5

9
  and then using the mapping f, we get 

                      f3 (F2) = f2 ( 
4

9
,

5

9
 ) =  

13

27
,

14

27
  = F3            

     ⇒                    F2⊇ F3  

Fig.3 shows the geometrical representation of the folding by 

using a folding map.  
 

 Fig. 3 
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1 
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1 

F1 
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4
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5

9
 

 

F2 

f2 
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2
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1 
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1
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2
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4

9
 

 

5
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2
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Fig. 2  Folding of Cantor string by direct method 



International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.10, April 2016 

26 

Further repeating the same process and substituting the value 

of previous steps in the mapping f(x) = 
𝑥+1

3
 , we get the 

following table: 

Table-1 

f(x) = 
𝑥+1

3
 

f1 ([0, 1]) 
 
1

3
,
2

3
  

F1 

f2 ( 
1

3
,

2

3
 )  

4

9
,
5

9
  

F2 

f3( 
4

9
,

5

9
 )  

13

27
,
14

27
  

F3 

f4( 
13

27
,

14

27
 )  

40

81
,
41

81
  

F4 

f5( 
40

81
,

41

81
 )  

121

243
,
122

243
  

F5 

------ ------ ----- 

fn(Fn-1) 
 
 3𝑘−1𝑛

𝑘=1

3𝑛
,
1 +  3𝑘−1𝑛

𝑘=1

3𝑛
  

Fn 

------ ------ ------ 

This implies that the inclusion 1k kF F  holds for all

 0,1,2...k . This completes the proof of the theorem. 

Theorem 3.2 The limit of folding by cut of Classical Cantor 

set [0, 1] is a 0-dimensional manifold. 

Proof.  Here we take closed interval F0 = [0, 1] and divided it 

into 3 equal subintervals.  

We remove p1 = 
1

0,
3

 


 
  and p2 =

2
,1

3

 
 
 

  such that 

                   [0, 1] - p1 ∪p2 = 
1 2

,
3 3

 
 
 

 = F1. 

Next subdivide F1 into 3 equal subintervals and then remove 

two semi open intervals p3 = 
1 4

,
3 9

 


 
  and p4 = 

5 2
,

9 3

 
 
 

 , 

 we get       F1 – p3 ∪p4 = 
4 5

,
9 9

 
 
 

 = F2 

 In this way we divide the middle closed interval in 

three equal sub-intervals and then remove the outer two semi-

closed intervals. We then find a set of closed intervals, i.e., 

                       F = [0, 1] - ∪ pn = ⋂ 𝐹𝑛
∞
𝑛=1  

 In each step, we removed [a, a+ w) and (b-w, b] 

intervals from [a, b], where w = 
𝑏−𝑎

3
. 

Theorem 3.3 The folding of Cantor string is nonempty.  

Proof.  In the folding of Fn to form Fn+1 leaves a closed 

interval. For example removing 
1

0,
3

 


 
 

and 
2

,1
3

 
 
 

  from 

[0,1] leaves  
1

3
,

2

3
  . In fact, since the folding of Cantor string is 

the infinite intersection of each Fn, F contains at least one sub-

interval and is clearly nonempty and infinite. 

Theorem 3.4 The folding of Cantor string is uncountable. 

Proof. Georg Cantor demonstrated that real numbers cannot 

be put into one-to-one correspondence with the natural 

numbers and therefore that the set of real numbers has a 

greater cardinality than the set of natural numbers. By folding 

method, we get a nonempty closed subinterval of real 

numbers which is uncountable. 

Theorem 3.5 The limit of folding of Cantor string [0, 1] is 

equal to the limit of retraction. 

Proof.  Let  ri : Ii= (a, b) → [a+w, b-w] ,  be the retraction 

and the limits of folding for [0,1] are given by fi : Ii= [a, b] → 

[a+w, b-w] , where w = 
𝑏−𝑎

3
  . 

 Let   r1 : C1 → C2 ,  C2 ⊂ C1 

    r2: C2 → C3 

    ………... 

      rn : Cn → Cn+1 

Then ri ≡ fi , fig.4 represents that there are homeomorphisms 

hi such that 

                hn+1∘ limn→∞ rn = limn→∞ fn∘ hn+1.

 

             

C1 C2 C3 C4 

  C1 

 

 C2 

 

   C3 

 

C4 

 

r1 r2 

 

r3 

 

lim
𝑛→∞

𝑟𝑛  

 

f1 f2 

 

f3 

 

lim
𝑛→∞

𝑓𝑛  

 

h1 h2 

 

h3 h4 
hn+1 

            Fig. 4 
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4. CONCLUSION 
In this paper, different Folding methods have been introduced 

in the study of Cantor string. Also, the limits of folding and 

retraction are identical. We have drawn different diagrams to 

give the description of our approach. Thus, our work is the 

application of folding in the field of Cantor set theory. 
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