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ABSTRACT 
Academics carry out research studies periodically that they 

need to report. Various problem arise during the course of 

these studies ranging from proper comprehension of the task 

or domain problem, its sensitivity and failure analysis via 

model creation, its visual result representation and its other 

ecstatic that help the proposed model to be easily readable, 

understandable and implemented. In modeling, a researcher 

may seek underlying relations or data feats of interest between 

observed versus computed data and/or values, from statistical 

perspective or vantage point. This study aims to discuss and 

unveil modeling a problem from a graph-based perspective as 

well as highlighting some of the feats for analysis. 
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1. INTRODUCTION 
The future continually leave us curious as we seek to control 

every frontier of our daily activity and dealings in the society. 

Knowledge of such future will grant us insight and help us 

plan the magnitude of other events that are dependent on it. A 

farmer may inquire how temperature and rainfall affects his 

farm products. This will shed great light and grant the farmer 

insight to what factors need to be changed, and in turn – 

change his farm’s output; Whereas, the immediate society 

may be more concerned about other impact of temperature and 

rainfall such as erosion etc. Chaotic, complex and dynamic 

events if properly predicted will help experts make better 

decisions about the future from observed data. 

These results can be made more manifest via models and 

modeling. Thus, a model is tool that provides knowledge 

statement of the future we sought and real-time prediction as 

output that helps us to plan in time, the scale or magnitude of 

a probable event as it reaches maximum (Ojugo, 2012). 

Though, the reliability of models can be questioned as its 
results are seen as prophesies based on certain probability 

(Macy and Willer, 2002).  

1.1 The Concept of Models 
Models are a collection of finite objects along with its 

consequent relations or operations that are defined upon it. It 

is also a representation of entities and the relationships that 

ensue between them. The model simply learns by imitating 

and observing the thought process of how its entities work or 

behaves (Ojugo et al, 2015a) – and can be exemplified in a 

flock of bird flying in tight formation. These birds will 
collectively form an image with a goal to move as a single 

organism.  

The flock choreographs in such grace even with no group-

leader bird. Instead, each bird reacts in movement of its 

immediate neighbors, to result in hypnotic-pattern-rhythm and 

highly-nonlinear (Ojugo et al, 2015b). Modeling such 

elegance that is not governed by any system – can be quite 

tedious due to its dynamism, complexity and nonlinear nature. 

Yet, we can model it as an aggregation of local feats 

interactions via 3-rules: (a) separation: each bird does not get 

too close to another, (b) alignment: each bird matches its 

direction and speed to nearest bird, and (c) cohesion: each 

bird stores in memory perceived center of the flock and its 

immediate neighbor (Reynolds, 1987). Thus, each bird is an 

agent with local feats interaction to yield a highly realistic 

flight formation via simple rules – to result in the theory of 

Agent Based Modeling – ABM (Ojugo et al, 2014). 

ABM is best suited for graph-based problem/task domain 

designs. The graph-design allows the collection of entities to 

be represented as nodes (agents or actors) so that they are 

defined as highly self-organized, path-dependent, dynamic, 

autonomous and complex-in-nature such that they all have 

features that are local (innate) within them. As these agents 

interact, these feats eventually emerge and spread through the 

graph- structure as a global feat. These interactions are in 

response to varying external and internal influences received – 

as thus, and results in a global pattern (Axelrod, 1997). 

Various studies have harnessed the many potential of ABM as 

tools in relational method modeling with its fundamental 

focus on emergent social structure and social order via local 

interaction – because, it provides these position: (a) provides a 

theoretical framework of dynamic social graphs shaped via 

interactions of actor, and (b) it puts to the test, all social-

learning theories that manipulate feats of the graph-structure 

such as its topology, stratification and others (Simon, 1998; 

Kaufman, 1996; Macy and Willer, 2002). 

1.2 Types of Models 
Models are of two types: 

a. Knowledge driven models, governed by dynamic laws 

have their spatial/frequency distributions results of its 

predicted values obtained via observed-historic data that 

is used to calibrate and test the model. Its usage focuses 

on formulation of new parameters to help predict the 

model’s internal process. Its major challenges includes 

(not limited to): (a) parameter choice selection, (b) its 

results must be validated, (c) heterogeneity nature of its 

historic data to be used, and (d) limited data availability 

due to the complex, dynamic and non-linear nature of 

most tasks (Ojugo, Yoro et al, 2013a).  

b. Data-Driven models explore intelligent heuristic rules 

and search, aimed at learning data feats of interest as the 

data converges in time. Its spatial and statistical 

distribution is based on dynamic laws of evolution that 

allows entrant of new data feats that may not have been 

present at its outset, to be injected as model progresses. 

Thus, helps it to yield a solution of high quality (even 

with noise, imprecision, ambiguity and partial truth 

applied to its input). It rather focuses more on model 

validation than the results achieved, with a view to 

provide insight about the domain problem – even with 
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limited data to perform the much required tests (Ojugo et 

al, 2013a). 

In summary, reasons for modeling include: 

a. Robustness, which allow the researcher to tune up the 

model in anticipation or in view of the real system to help 

estimate the system’s effectiveness even with noise 

implementation at its data input. 

b. Continuous adaptation allows from statistics point of view, 

agents that are void of local minima, allows the introduction 

of new and random immigrants not present from the outset 

with high diversity to slow convergence in the search space 

as well as balances data exploitation and exploration so that 

in learning the properties of change, it yields an accordingly 

biased solution).  

c.    Flexibility – decisions made with uncertainty has its 

impacts in a system’s future state. Thus, optimization aims 

to predicts the future needs with an algorithm that focuses 

on both its objective function, to make the system flexible 

and facilitate adaptation (if necessary) with the ease of 

black-box integration. 

1.3 Properties of Agents in a Graph-Based 

Model 
Properties of an agent in a graph-based agent modeling 

(ABM) include (Ojugo et al, 2015a,b): 

a. Agents1 are autonomous – System may not directly be 

modeled as globally-integrated entity; But, they emerge 

as a bottom-up pattern, coordinated not by centralized 

authority (as in environmental constraints) but via local 

interactions in autonomous decision makers known as 

self-organization. 

b. Agents follow rules – Global pattern does not reflect 

cognitive complexity in an agent’s ability. Agents build 

up behaviors by obeying rules as norms, morals and 
social habits. These rules yield the un-obvious global 

patterns that are sometimes very difficult to understand. 

The complexity of our behavior thus, is a reflection of 

our environmental complexity. Thus, ABMs explore 

simple rule set of behavioral assumptions required to 

generate a pattern of explanatory interest to influence the 

dynamics of population as well as determine their 

behavior from local feats and processes that are innate in 

agents as they interact with their neighbors. 

c. Agents Evolve – As agents learn, their behavior/actions 

evolve allowing them respond appropriately to the task 

so as to meet specific needs/requirements as well as reach 

their desired state and set objectives. 

d. Agents are interdependent – As they build social habits 

(such as affection, imitation and set-goals etc), agents 

influence themselves in response to signals that they 

receive. An agent’s behaviors can change an aspect of the 

environment, which in turn affects the behavior of 

other agents. Thus, aftermath of each agent’s decisions, 

depend in part on the choices of others.  

e. Agents are adaptive through interaction to generate a 

system as individual and population learning, imitating 

and replicating; they may not calculate most efficient 

action. As individuals, they learn via processes such as 

reinforcement or back-propagation, which in turn alters 

the probability distribution of behaviors competing for 

attention within the system. As population, they learn via 

evolution process of selection, imitation, and social 

influence to alter frequency distribution of agent-types 

competing for reproduction within a population. 

f. Agents have Property or characteristics that describe 

them. These properties may be intrinsic (unchanged, but 

we can change their values in time); while others are re-

evaluated as agent interact within the system. 

g. Agents have Lifetime – Agents are created as they enter 

the environment and are destroyed when they expire or 

die. A system has some form of control over the lifetime 

of an agent as the agent goes through its corresponding 

processes. Each agent is allotted a space and with more 

agents introduced – the more positions and memory is 

used up and the greater its complexity and performance 

of the system. Stochastic models aim to maximize an 

agent’s potentials by creating and destroying them on a 

need-basis (Ojugo, 2008). 

h. Agents are instantiated – Each agent belongs to a class – 

so that agents of the same class can perform the same 

action. Class determines what properties and methods are 

available to an agent. Each time an agent is thus created, 

it brings forth an instance of the class such an agent 

belongs to.  

i. Agents have scope that defines the underlying structure 

of the system an agent has access to. They are strong, 

weak and no-ties defined through local interaction that 

ripples as patterns into a global effect on the system. 

j. Agents have Methods as actions an agent can perform. 

The actions are determined by the nature of the task. 

Agents defined in a class can all perform same actions.  

k. Agents have Events as reactions that an agent receives in 

response from its environment (and previous actions 

taken). Agents have events associated with them. 

l. Agents are encapsulated – Is the inability of the system 

to define how feats are innate in its agents, irrespective of 

the system being able to redirect these feats. Thus, 

agents’ feats are transparent to the system and we often 

refer to as the agent goes through its corresponding 

processes. Each agent is allotted a space and with more 

agents introduced – the more positions and memory is 

used up and the greater its complexity and performance 

of the system. Stochastic models aim to maximize an 

agent’s potentials by creating and destroying them on a 

need-basis (Ojugo, 2008). 

m. Agents are instantiated – Each agent belongs to a class – 

so that agents of the same class can perform the same 

action. Class determines what properties and methods are 

available to an agent. Each time an agent is thus created, 

it brings forth an instance of the class such an agent 

belongs to.  

n. Agents have scope that defines the underlying structure 

of the system an agent has access to. They are strong, 

weak and no-ties defined through local interaction that 

ripples as patterns into a global effect on the system. 

o. Agents have Methods as actions an agent can perform. 

The actions are determined by the nature of the task. 

Agents defined in a class can all perform same actions.  

p. Agents have Events as reactions that an agent receives in 

response from its environment (and previous actions 

taken). Agents have events associated with them. 
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q. Agents are encapsulated – Is the inability of the system 

to define how feats are innate in its agents, irrespective of 

the system being able to redirect these feats. Thus, 

agents’ feats are transparent to the system and we often 

refer to agents in a process as black-box tools (tools we 

can use without knowing its inner workings). The merit 

of encapsulation includes: (a) speeds up development 

processes, (b) allows reuse of agent in similar systems, 

and (c) makes transparency more effective. 

r. Agents have states – The state of an agent is a set of all 

the values defined by all its properties. A person can be 

fair in complexion, 6.8feets tall, short hair, etc. 

 

1.4 Issues with Agents in Graph-Based 

Models  
Macy and Willer (2002) ABMs converge to two problems 

(both complementary to explain clustering in social ties) as: 

1. Emergent Social Structure – Agents (via their behavior) 

traverse a physical space in response to influence and 

selection pressures. They may start off the same as the 

crowd; But, eventually change their behavior to avoid 

being different or isolated. Thus, they conform rather 

than be homogenous, and aggregates to a global pattern 

of cultural difference, stratification and homophilous 

clustering in graphs. Modeling such process starts off as 

a heterogeneous population to end in convergence, 

coordination, diffusion, and collapse of personal norms, 

institutions, beliefs, innovations, etc. 

2. Emergent Social Order – Agents’ egoistic adaptation 

often leads to successful collective action without the 

altruism or global (top-down) imposition of control. A 

key finds in many studies, is that cooperation achieved 

via social order and collective action as a function of 

trust, largely depends decisively on social interaction that 

are embedded therein in the social system. 

1.5 Model Validation and ABM 
Much confusion in result validation via different process, arise 

from varying semantics – since validation notes the 

confidence level in a model’s ability to represent a problem. It 

emphasizes a model is not expected to be absolutely valid and 

compares predicted versus observed values in relation to the 

model design/calibration dataset (De Vos et al, 2005). There 

are 3-types of validation (Gaas, 1983) which includes: (a) 

Replicative validation ensures that prediction agrees with 

observed dataset used in its design and parameter estimates, 

(b) Predictive validation ensures model accurately predicts 

variable convergence in time, not used in calibration so that 

the model is structurally valid as it reflects the behaviour of 

real system, and (c) Specific validation ensures a generally 

accepted standard for model test and validating is adequate for 

a special purpose. Thus, some models maybe unrealistic to 

emphasize parameters for calibration and ad-hoc feats to will 

make validation less rigorous – so that even inadequate 

models will likely pass tests (Gaume and Gosset, 2003).  

Some researchers used history-match to distinguish data used 

in training versus testing. Others used corroboration to 

describe extent a hypothesis passed a test and to express 

limited acceptance of the model’s result. Valid, from validus 

implies powerful, well-grounded, defensible and sound. A 

more accepted semantics is needed to describe qualification of 

prediction. ‘Verification’ is inappropriate (used in some 

studies) to note establishment of truth as hardly possible both 

in science and absolutely not in modeling. Thus, the more 

concise use of validation here – is to imply predictive validity 

as proposed by Gaas (1983). 

2. GRAPH AND ITS STRUCTURE 
A graph is a structure consisting a set of vertices (nodes, 

agents, actors, entities) connected together by corresponding 

set of edges (relations). It helps to models task in a variety of 

task domain (not limited to) computing, mathematics, 

sociology, biology, engineering etc – by modeling various 

interactions within a system, in which agents represent nodal 

entities; while its edges represent their defined relations and 

interactions (via clusters formation) to effect a global feat. A 

powerful role of graphs is to bridge local feats that exist in 

nodes as they blossoms into global patterns to help explain 

how nodes and their corresponding relations impacts and 

ripple through the entire system. Each node helps to shape 

graph’s evolution in time, adapting themselves to various 

forms (Ojugo et al, 2014).  

Mathematically, a graph G = (V,E) has that each node x  V 

and each m  E. Edges can be directed from a node to 

another. The node from which an edge points away from is the 

source/predecessor, whereas that which an edge points to is 

destination/successor. Each node has a corresponding set of 

neighbors to which it is either linked to or is isolated from. 

The links can be weak, strong or isolated, in terms of relations 

status as measured through dyads D (West, 2001; Izquierdo 

and Hanneman, 2008; Ojugo et al, 2015a).  

The edges describe what relations exist between the nodes. A 

network has nodes with corresponding one or more kinds of 

relations. Graph with a single type of relation amongst its 

nodes is called simplex; while those of more than one kind of 

relationship are multiplex. Multiplex graphs are analyzed 

differently and via different techniques (one for each type). 

An undirected relation is seen among siblings indicating a 

relation of co-occurrence, co-presence or bonded-tie where 

nodes are of same level); while, a directed relation is seen 

between a parent and child as data originates from parent as 

source node and reaches child as target node (in an instance) 

via an arc. This is called a digraph (directed graph) and these 

directed links may be reciprocated to indicate that both nodes 

can be source cum target at any instance. Edges may be 

weighted to indicate binary (presence or absence of relations), 

signed (negative, positive or no relations), ordinal (strong, 

weak or isolated relationship), or numeric value or cost scaled 

on ratio (Diestel, 2005). 

2.1 Connectivity in Graphs 
Nodes in a graph are connected as thus: 

1. Walk – is a sequence of nodes and relations (edges) that 

begin and ends with nodes. A closed walk start and end 

with same node. Length of a walk is number of edges it 

uses. Examples of walks and its length for fig 1 include: 

{A, B, D} = 2    

 {A, C, D} = 2 

{A, B, C, D} = 3    

 {A, C, B, D} = 3 

{A, B, C, B, D} = 4  

{A, B, C, E, D} = 4 
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{A, B, F, E, C, D}=5   

{A, C, B, F, E, C, D} = 6 

2. Cycle is a special, restricted walk used to examine the 

neighborhoods of nodes (points adjacent to a particular 

node). A cycle is a closed walk of 3 or more nodes, all of 

whom are distinct except for the origin or destination 

nodes. The cycle beginning and ending with A is {A, B, 

C}. The cycles beginning and ending with B are: {(B, A, 

C), (B, C, D), (B, D, E, F), (B, A, C, E, F) and (B, A, C, 

D, E, F)} respectively. And so on.  

3. Trail between nodes is any walk that includes any given 

relation at most once. The same nodes, however – can be 

part of a trail multiple times. The length of a trail is the 

number of relations in it. All trails are walks, but not all 

walks are trails. A trail that begins and ends with the 

same node is closed trail. There are a number of trails 

between A and D. All tracings as listed above, are trails 

except {A, B, C, B, D} – which is a walk but not a trail. 

This is because the relation BC is used more than once. 

4. Path – is a walk in which each node (or relation) in the 

graph is used at most once. Also, it is a simple path in 

which every vertex is incident to at most two edges. All 

paths are trails and walks; But, not all trails/walks are 

paths. From fig 1, example of paths includes: {A,B,D}, 

{A,B,C,D}, {A,C,D}, {A,B,F,E,D}. The length of a path 

is number of relations it has. The length of shortest path 

between two nodes is geodesic distance between them. 

The geodesic distance between A-D is shortest distance = 

2 in {A,B,D} and 2 {A,C,D} respectively. 

 

 

 

 

 

 

5. Tree – is a connected acyclic simple graph. The vertex of 

degree 1 is called a leaf or pendant vertex. An edge 

incident to a leaf is a leaf edge. A non-leaf vertex is an 

internal vertex. If a tree has a vertex, distinguished as its 

root, the tree is called rooted. Rooted trees are often 

treated as directed acyclic (in which case, the root is 

called its source node or delivery point) – with all its 

edges pointing away from the root. A subtree of the tree 

T is a connected subgraph of T. A forest is an acyclic 

simply graph. A subforest of the forest F is a subgraph of 

G. a spanning tree is a spanning subgraph that is a tree. 

Every graph has a spanning forest. But only a connected 

graph has a spanning tree. A special kind of tree called a 

star is K1,k 

6. Cliques – A complete graph Kn of order n is a simple 

graph with n-nodes in which every vertex is adjacent to 

every other node denoted by 𝐾𝑛 =
𝑛(𝑛−1)

2
 edges (which is 

all possible choices of vertices pairs) as in Fig. 2. A 

clique is a set of pairwise adjacent vertices. A k-clique is 

a clique of order k. In fig 1, {A,B,C} is a triangular 3-

clique. A maximal clique is a clique that is not a subset of 

any other clique. The clique number ω(G) is the order of 

a largest clique in G. 

2.2 Graph Measures 
To analyze graphs and seek data feats of interest, the basic 

measures (both at local and global pattern) include: 

1. Degree of Distribution is number of edges incidence on 

any node. It helps us know how and where to add another 

node. If k is the number of edges incident on a node, and 

P(k) is probability that the degree of a randomly chosen 

node equals k. We may add a new node x with preference 

based on probability proportional to number of existing 

edges k, that node x has. Thus, the connectivity of a node x 

to a node y approximately follows the rule as in Eq. 1: 

𝑃(𝑙𝑖𝑛𝑘𝑠_𝑡𝑜_𝑛𝑜𝑑𝑒_𝑥) =  
𝑘𝑥

 𝑘𝑦𝑦
  (1) 

Degree of distribution of x in N(G) denoted as deg(x) is 

total number of edges at x or the number of neighbors of x 

as in Eq. 2 (Mason and Verwoerd, 2006): 

𝑑𝑒𝑔 𝑥 = |𝑁 𝑢    (2) 

For a digraph G, the number of head endpoints adjacent to a 

node is its in-degree; while, the number of tail endpoints is 

its out-degree. Thus, in-degree of a node is the number of 

edges that points to a node x, denoted as 𝑑𝑒𝑔𝑖𝑛 (𝑥)and out-

degree is number of edges that points away from node x 

denoted by 𝑑𝑒𝑔𝑜𝑢𝑡 (𝑥). Also, in-degree is denoted as 

𝑑𝑒𝑔−(𝑥)and out-degree is denoted as 𝑑𝑒𝑔+(𝑥). A node 

with 𝑑𝑒𝑔− 𝑥 = 0 is a source node; while, a node with 

𝑑𝑒𝑔+ 𝑥 = 0 is the destination node given by Eq. 3: 

 𝑑𝑒𝑔+(𝑥)

𝑣∈𝑁

=   𝑑𝑒𝑔−(𝑥)

𝑣∈𝑁

=  𝐴     (3) 

If for every node v ∈ N, 𝑑𝑒𝑔− 𝑥 =  𝑑𝑒𝑔+ 𝑥  – then, we 

have a balanced digraph. Thus, the nodes for both figures of 

10 – so that we have v1, v2,…vn, then adjacency matrix A of 

G is given by Eq. 4 as: 

𝑎𝑥𝑦 =   
1  𝑖𝑓 𝑣1𝑣2  ∈ 𝐸(𝐺)
0  𝑖𝑓 𝑣1𝑣2  ∉ 𝐸(𝐺)

       (4)  

 

 

 

 

 

 

 

 

Fig 3a yields the Adjacency Matrix 𝐴 =

 
 
 
 
 
0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0 

 
 
 
 

   

Fig 1: An Undirected G 

=(V, E) 

a 

b 

d c 

e 

f 

Fig 2: Undirected G with K5 complete 

graph. If G is subgraph, its vertices forms 

a clique of size 5 

a 

b 

d c 

e 

x 

Fig 3a: Undirected G 

5nodes 

x 

Fig 3b: Directed G  

5nonnodes 
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Fig 3b yields Adjacency Matric: 𝐴 =

 
 
 
 
 
0 0 1 1 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 1 0 0 

 
 
 
 

 

 

For the undirected G, 𝑑𝑒𝑔 𝑥 =  4; while for the directed 

graph – we have that 𝑑𝑒𝑔𝑖𝑛  𝑥 = 3 and 𝑑𝑒𝑔𝑜𝑢𝑡  𝑥 = 2. 

Degree of Distribution has become a prominent feat in the 

measure of network topology and graph models. It is a 

more reliable property for numerical estimation. Its visual 

representation of the properties of the network is achieved 

via 3-means namely: (a) each node is ranked according to 

their degree and values of the each node’s degrees plotted 

against the ranks of each vertex, (b) plot a histogram of the 

nodes of G according against their degrees using a 

logarithmic scale, and (c) plot degree of the nodes sorted 

versus their degree distribution P(k) or their cumulative 

degree distribution Pc(k).  

2.  Paths/Average Path Length – If x,y are nodes in G, the 

sequence of nodes given by 𝑥 =  𝑣1, 𝑣2, … , 𝑣𝑛 = 𝑦 is such 

that for i = 1, 2, …, k-1, the path length k – 1 from x-to-y is 

given as Eq. 5: 

 𝑖 𝑣𝑖𝑣𝑖+1  ∈ 𝐸(𝐺) 
 𝑖𝑖  𝑣𝑖  ≠ 𝑣𝑗  𝑓𝑜𝑟 𝑖 ≠ 𝑗

       (5) 

The geodesic distance δ(x,y) is the length of the shortest 

path from x-to-y. If no such path exists, then δ(x,y) = ∞. If 

for every pair of vertices x,y  N(G), there is some path 

from x to y – then, it is G is connected. The average path 

length and diameter of s graph G is defined as the average 

and maximum value of δ(x,y) taken over all pairs of distinct 

nodes x,y in N(G) which are connected by atleast one path. 

Thus, for fig 4, the path length equals 3.  

 
3. Clustering Coefficient: Clusters are formed by existence 

of cliques. Thus, clustering coefficient is the measurement 

that shows the tendency of a graph to be divided up into 

clusters. A cluster is a subset of vertices that contains lots of 

edges connecting vertices to each other. If x is a vertex with 

degree deg(x) = k. Its clustering coefficient of x for an 

undirected graph G, is given below such that for the node x 

of degree k with e-edges between these k-neighbors of x in 

G, we have that Eq 6: 

𝐶𝒙 =  
2𝑒

𝑘(𝑘 − 1)
      (6) 

 

Cx measures the ratio of the number of edges between the 

neighbors of x to the total possible number of such edges, 

which is 
𝑘(𝑘−1)

2
. It takes a value 0 ≤ Cx ≤ 1 and is the local 

clustering coefficient. Conversely, the average clustering 

coefficient of the graph G is defined as Eq. 7: 

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
1

𝑁
 

𝐸𝑥
𝑘𝑥(𝑘𝑥 − 1)

𝑁

𝑥=1

      (7) 

 

where N = |V| is number of vertices. The closer the local 

clustering is to 1, the more likely G form clusters, and the 

more the number of cliques. 

 

From fig 4a, node V is a hub with a clustering coefficient C 

= 0. Conversely in fig 4b, node V does same function with 

a high clustering coefficient. The maximum number of all 

potential connections is given by Eq 8:  

𝐸𝑚𝑎𝑥 =  𝑉 ∗  
 𝑉 − 1

2
        (8) 

 

If |V| = 5 (as the number of the neighbors of node V). 

𝐸𝑚𝑎𝑥 = 5 ∗  
5 − 1

2
  ≡ 10 

 

Neighbors of node V are connected with 8 edges between 

each other in the connection is: {(a,b), (b,c), (c,d), (d,e), 

(e,a), (a,c), (a,d) and (b,e)}. Thus, E = 8 connections and 

the clustering coefficient is given by: 

𝐶𝑥 𝑘 =  
𝐸

𝐸𝑚𝑎𝑥
 =  

8

10
= 0.8 

 

The more complex a graph, the more significantly higher 

will be the average clustering coefficients, as compared to 

random graphs (helping to prove the modular nature of such 

graphs). Clustering coefficient in analysis, helps us to 

classify observations into two/more mutually exclusive 

unknown groups based on some combination of variables. 

Thus, clusters analysis is best employed in unsupervised 

classification (Duda et al, 2001 and Jain et al, 1999) – 

whose purpose is to group different objects together by 

observing common feats within the system. In biological 

networks, it helps us identify similar biological entities and 

units such as protein, enzymes and genes that are 

homologous in different organisms or that belong to same 

complex genes that are co-expressed (Borate et al, 2009; 

Perkins and Langston, 2009; Pavlopoulos et al, 2011). 

Due to the difficulty of the analysis and prediction of 

elements in a system that are based on observation of the 

behaviors and properties of other elements in the same 

system – clustering algorithms has been grouped into 

various techniques namely: (a) exclusive (data are grouped 

so that a certain element is assigned to only one group 

exclusively, (b) overlapping (uses fuzzy sets to cluster data 

so that each point may belong to two or more clusters with 

different degrees of membership, (c) hierarchical (data is 

organized in hierarchies based on the union of two nearest 

clusters. It is best for microarray and sequence analysis, and 

(d) probabilistic or spectral where data is grouped through 

profiling (Ojugo et al, 2015a). 

 

2.3 Graph Models and Network Topology 
Graphs are basically divided into three (3) models namely: 

1. Erdos-Renyl (Random) model describes the feats of a 

random graph in which nodes n are connected to each 

other by randomly selecting from 
𝑛(𝑛−1)

2
 edges. Its 
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distribution is such that probability of a node of degree k 

is 𝑃 𝑘 ≈ 𝑒−(𝑘) (𝑘)𝑘

𝑘!
, following Bernoulli Degree – with k 

as average connectivity of G. For small values of P 

probabilities, G has many isolated cliques; But with the 

value of 𝑃 >  
𝐿𝑜𝑔  𝑉

𝑉
, almost all nodes are connected 

(Pavlopoulos et al, 2011). 

2. Watts-Strogatz (Small World) model deviates from the 

concept of random graph in that each node is added to G 

sequentially and linked to an existing one based on a 

chosen probability proportional to its current degree in a 

hierarchical model. It assumes G grows via power-law 

degree distribution with the probability of n of degree k 

which is proportional to P(k) = k-, where   = 3 (Watts 

and Strogatz, 1998; Pavlopoulos et al, 2011). The graph 

is characterized or either influenced by: (a) small path 

length α that defines its average shortest path between 

pair of nodes and determines probability of nodes being 

connected given a number of common neighbors; And, 

so controls the extent to which G has small or densely 

connected components in that as α nears infinity, it yields 

a random graph, or (b) its clustering coefficient q is the 

average pair of neighbors of a node connected to another, 

which determines the probability of an edge being 

rewired to connect to a node in G. Small values of q 

implies high clustering coefficient cum large average 

path length so that G become a random graphs; Else, as q 

tends to 0.01 (small values of q), it becomes a small-

world graph (Schnettler, 2009 and Ojugo et al, 2014). 

3. Scale-Free Graphs describes Barabasi/Albert model 

whose graph reveals data about its dynamics from an 

evolutionary point. It deviates from a random network 

based on two feats namely: growth and preferential 

attachment. It views a graph as an evolving entity that 

models the dynamics of its growth. Given a positive 

integer m in an initial network Go, G evolves based on 

these rules in discrete time-process as thus: 

i. Growth – At each time j, a new node of degree m is 

added to the network. 

ii. Preferential Attachment – For each node x in G, the 

probability a new node connects to it is proportional to 

the degree of x. We express Gj for the network at time 

j and P(x,y) for the probability that the new node 

added at time k is linked to x in Gj-1 as in Eq. 9: 

𝑃 𝑥, 𝑦 =  
deg 𝑥 

 deg 𝑥 𝑣∈𝑁 𝐺𝑗−1 

     9  

Simply put, each node inserted is sequentially linked to 

an existing one based on a chosen probability that is 

proportional to the existing node’s current degree, in a 

hierarchical fashion. Thus, model generates G whose 

degree of distribution asymptotically approaches power 

law so that node x of degree k is proportional to P(k) = k- 

with range 2 <  < +∞ (Albert and Barabasi, 2002; 

Pastor-Satorras and Vespignani, 2002; Pavlopoulos et al, 

2011). Variants of this model all follow a power law 

degree of distribution with  as above. If  ≤ 3, it yields a 

small world G; whereas if  ≥ 3, it yields a scale-free 

graphs. An evolving graph follows power law degree 

distribution with 2 <  < +∞ (Barabasi and Albert, 1999; 

Dorogovtsev, Mendes and Samukhin, 2000). 

3. DIFFUSION MODELS IN RELATION 

TO GRAPHS 

Diffusion is the process or art of moving a product, idea or an 

innovation from a region of high concentration to that of a 

lower region/sphere. To this effect, every node on a G can 

may exist in any of these states: (a) susceptible: if node is 

exposed to the innovation and will likely adopt or is infected 

by the innovation, (b) infected/adopted: if node has adopted 

the innovation after being exposed and can pass it to others 

too, and (c) removed/reject: if a node had been exposed to the 

innovation and rejects it (in the case of a virus, the node has 

recovered, immunized or virus dies). Thus, we have two 

modes: susceptible-infect-susceptible (SIS) and susceptible-

infect-remove (SIR). In SIS, a node may adopt innovation 

after exposure; But, is later cured but not immunized. Thus, 

such a node can be infected again. Conversely in the SIR 

mode, the node switches between being susceptible – to 

become immunized of the innovation, in which case it can 

never adopt it again. Thus, node is permanently immunized 

and can no longer participate in propagation.  

3.1 Independent Cascade Model 
It is a discrete-time model in which at t = 0, an adversary 

inserts d copies of innovation to some nodes on G. If node x is 

infected the first time at t, it has a single chance to infect any 

neighbor y not currently infected. Probability that x will 

succeed with y is Pxy. If x succeeds, y is infected at t+1; Else, x 

tries again (even in the future, if y gets infected by another 

neighbour). This process continues and stops after n-steps if 

no more nodes, are unexposed. It needs a node to be infected 

exactly once following Kempe et al (2003). Graph of size M, 

has Md subset of nodes and d copies of virus placed on the 

network. With diffusion complete, S(Md,G) is expected 

number of infected nodes. Expectation exceeds all random 

choices made by propagation model. Eq. 10 is maximum 

expected number of infected nodes and maximum exceeds all 

possible initial virus placements. 

𝑆𝑑 𝐺 =  max
𝑀𝑑

 𝑆(𝑀𝑗 , 𝐺)    (10) 

The subset 𝐴𝑑 = 𝑎𝑟𝑔max𝑀𝑑
 𝑆(𝑀𝑑 , 𝐺) corresponds to 

choices made by an inventor to spread the innovations. Sd(G) 

is the epidemic spread in G and a similar definition of 

epidemic spread of randomize adversary as in Eq. 11 in which 

case, it defines the expected epidemic spread where the 

expectation takes over all possible positions of the d 

innovations placed on G and given by: 𝑆′ 𝑑 𝐺 =
 EMd

[ 𝑆(𝑀𝑑 , 𝐺)]    (11) 

3.2 Dynamic Propagation Model 
In SIS, viruses are seen as dynamic birth-death process that 

evolves overtime. It continues to either propagate or 

eventually die. An infected node x spreads virus to node y in 

time t with infection rate of 
𝛽

𝛿
 and probability . At same time, 

an infected node may recover with probability . With 

adjacency matrix T, 1(T) is largest eigen-value of T. The 

state 
𝛽

𝛿
 < 

1

1(𝑇)
 is true as epidemic threshold and sufficient for 

quick recovery (Ganesh et al, 2005; Wang et al, 2003).  

4. CONCLUSION / 

RECOMMENDATION 
Models are predictive, educational tools to aid experts and 

researchers compile existing knowledge about a task. They 

serve as vehicle to communicate hypotheses, a means to 

investigate parameters crucial in estimation as well as help us 
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better understand a problem domain. Simple models may not 

provide enough new data, whereas complex models may not 

be understood. Model implementation as an intellectual tool, 

requires less accurate numeric agreement in predicted versus 

observed values as it displays feat of interest with its 

probabilities. But, rather requires feedback mechanism as 

more important. Only models that are understandable and 

easily manageable are fully explored. Thus, modelers must 

balance complexity and simplicity, which is crucial to 

studying the relevant processes of how a model works. 

Prediction depends largely on predictive value accuracy. But, 

ABM is more concerned with theoretical model design and 

explanation of such prediction rather than the prediction itself. 

For highly abstract experiments that explore plausible 

mechanisms to observe underlying patterns, ABMs do not 

necessarily aim at accurate display of a particular empirical 

application. Instead, enriches our insight of the fundamental 

processes in a variety of tasks. Making a model realistic, 

inevitably add complexity can undermines its benefit as tool 

for theoretical research, if we cannot figure how the model 

yields a given result. Researchers are skeptic about validity of 

simulated results if a model is for theoretical exploration 

rather than empirical prediction (Axelord, 1997).  

Global feats are sui generis, but also emerge from bottom up 

via local interactions – so that path-dependent, emergent feats, 

self-organize process (like informal control) are not mistaken 

for globally-coordinated institutions. ABM studies processes 

with no global-coordination (which, established) – forces a 

top-down approach. It is dedicated to how simple, predictable 

local interactions generate familiar but highly intricate, 

enigmatic global patterns such as data diffusion, coordination 

of conventions, norm emergence and collective action via 

participation. These local emergent feats appear unexpectedly 

to either transform or disappear in a society such as 

revolutions, market crashes, fads and feeding frenzies. ABMs 

are theoretical bridge to leverage between individualism and 

non-reductionist in which global patterns aggregates of 

interest more than individual feats; And at same time, is an 

emergent pattern not understood without the bottom-up 

dynamical model (Macy and Willer, 2002).  
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