
International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

1

Cache Friendly Bellman-Ford algorithm using OpenCL

Lekha Jadhav

Rahul Dubey

 Manish Shrivastava, PhD

ABSTRACT

Shortest path algorithms play a vital role in real world

applications. In this paper a cache friendly implementation for

Bellman Ford algorithm to solve single source shortest path

and all pair shortest path algorithm is proposed. The proposed

algorithm is compared with sequential algorithm in terms of

execution time, cache hit, ALUPacking and ALUBusy. This

algorithm is also tuned with execution environment to yield

maximum performance. In this paper we have discussed all

above factors in terms of framework called OpenCL.

Keywords

Bellman-Ford, OpenCL, ALUPacking, ALUBusy, Cache hit.

1. INTRODUCTION
In this world of fastest growing technology, computers are

becoming more powerful than ever before. So it‟s a

challenging task to make efficient utilization of all the

resources within a machine. In early days only CPU are

involved in programming but now a day GPU which are

termed as General Purpose Graphical Processing Unit

(GPGPU) are also available as one of the resource which can

be equally utilized and can provide high performance at a

reasonable cost. GPU are well suited for applications which

involve the use of matrices due to its architecture.One of the

applications is shortest path problems on graph which deals

with matrices. Shortest path problem finds application in large

domains of scientific and real world. Common applications of

these algorithms are in network routing [6], VLSI design,

robotics and transportation, they are also used for directions

between physical locations like in Google maps. Here all the

applications mentioned generally involve positive weights but

some applications are there where weights can be negative

like currency exchange arbitrage and some other areas where,

edge represents something other than merely distance between

two entities. In such application areas Bellman-Ford algorithm

can be used. Bellman-Ford algorithm [12] is applicable on

graphs with negative weights and can also detect negative

cycles where majority of algorithms fail. Bellman-Ford is also

used in wireless sensor networks and other ad hoc networks as

distributed Bellman Ford [7] can be used there. Distributed

Bellman-Ford is also used as first ARPANET routing

algorithm in 1969 [14].

Most of the above application areas specified are real time

applications and need results in a quick time so the

performance of algorithm need to be improved so that it

consume less power and time. Parallel computing on GPU is

one of the technologies which are used for high performance

computing at a reasonable cost and considerable speed up of

performance. GPU is currently used for a variety of purposes

apart from graphical processing and gaming. That‟s why we

refer GPU as General Purpose Graphical processing unit

(GPGPU)[10] as it provides high performance computing can

be programmed using standard frame work like OpenCL and

CUDA. OpenCL [11] is a framework which is for all GPU

while, CUDA is meant specifically for NVIDIA GPUs only.

Thus, we will be using OpenCL for our GPU implementation

due to its portability and open-ness. OpenCL provides a way

to utilize heterogeneous resources in a system and one can

control the execution on particular hardware. CPU and GPU

can be selected explicitly for execution using OpenCL. The

piece of code which controls the execution is called host code

and that which run in parallel on CPU or GPU is called

kernel. In this paper a cache friendly hybrid implementation

with vectorization for solving shortest path algorithm using

Bellman-Ford algorithm by the use of OpenCL platform is

proposed. Traditionally programs are intended to run on CPU

with operating system controlling the execution of program.

In such programs which are also referred as set of instructions

to be executed; each instruction starts execution only when

previous instruction is completed. Such programs are referred

as sequential programs. But as now there are plenty of

resources other than CPU in a system and its programmers

responsibility to utilize all those resources new trend of

programming has been introduces. This new era of

programming is referred as parallel computing.

And Bellman Ford algorithm possess inherent parallelism and

is applicable in wide domain as it is applicable for the graphs

with negative edge weights and is also able to identify

negative cycle in garphs.

2. LITERATURE REVIEW
Bellman Ford was introduced by Richard Bellman and Lester

Ford Jr. in 1958. Since then several modifications and

improvements were made on this algorithm. Yen et.al [5]

modified the algorithm in 1970 which proved to be quite

famous. In 1993, another modification which included

topological scan algorithm for Bellman Ford [2] was

developed. This gained attention due to its capability to

outperform the standard algorithm in most of the cases. A

hybrid implementation of Bellman Ford and Dijkstra‟s

algorithm is given in [7]. This implementation is

asymptotically better than Bellman Ford. As Dijkstra‟s

algorithm does not work on negative dges, this algorithm was

applied to graphs with sparse distribution of negative edges.

In 2001, A.S. Nepomniaschaya presented a STAR procedure

for Bellman Ford on a parallel system with vertical data

processing (STAR- machine) [3] and managed to reduce the

complexity to O(n2). STAR machine is a parallel processor of

SIMD type and possess ability to perform vector processing.

Michael J. Bannister and David Eppstein [1] proposed a

randomized variant of algorithm in 2011. It was improved by

a factor of 2/3 over Yen‟s modification (1970) [4, 5]. This

speedup was termed as randomized speedup. Due to GPU‟s

supportive architecture, several parallel implementations on

GPU for SSSP algorithms were proposed. AydınBuluc, John

R. Gilbert and CerenBudak [8] proposed parallel

implementations for SSSP and APSP using CUDA. In [13], a

CUDA implementation for Bellman Ford has been provided.

A speedup of about 10x was obtained by making the

algorithm suitable for parallelism. Recently, Andrew

Davidson [9] presented several work efficient methods for

SSSP problems. Considerable speedup was observed not only

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

2

over serial implementation but over other traditional GPU

implementations as well.

3. SHORTEST PATH ALGORITHMS
Shortest path problems deal with graphs. Out of a number of

graphs the graphs with which shortest path problems deal

belong to weighted directed graph category. Here the weights

may be negative or may be positive. Majority of the

algorithms deals with graphs having positive edge weights

and only a few can deal with graphs having negative edges

also.

In general there are two classes of shortest path problems:

a) Single source shortest path (SSSP) problems.

b) All pair shortest path (APSP) problems.

3.1 Single source shortest path
In Single source shortest path problems single source is there

and these algorithms aims to find shortest path from this

single source vertex to all the other vertices in graph. Weight

of the path is the sum of all the edges weights which

constitutes the path and path with minimum weight is referred

as shortest path.

Some of the single source shortest path algorithms are:

i. Bellman-Ford algorithm.

ii. Dijkstra‟s algorithm.

Our work is concerned about Bellman-Ford algorithm so we

have discussed Bellman-Ford algorithm only.

3.1.1 Bellman-Ford Algorithm
Consider a graph G(n,E,V) where, n is the number of vertices,

E is the set of edges and V is the set of vertices. Adjacency

matrix representation of graph is used here, as it is well suited

for GPU. Here, Cost is the adjacency matrix for graph.

Initially, Dist will contain direct edges from the source„s‟.

Afterwards, Dist[v] of „kth‟ iteration means distance from „s‟

to „v‟ going through no more than „k‟ intermediate edges.

Finally, after successful completion of algorithm Dist will

contain the shortest path to all the vertices „v‟ in V from

source„s‟. For each edge (u,v) in set E, Relax(u,v) is called

(n-1) times. So, Relax () is called E (n-1) times, thus majority

of time of the algorithm is spent in this procedure. The

algorithm for Bellman Ford is illustrated in Algorithm.

Algorithm BellmanFord (s,Dist,Cost,n)

{

for i=1 to n do

Dist[i] = Cost[s,i];

End for

for k=1 to n-1 do

for each (u,v) in E do

Relax(u,v)

 End for

 End for

}

Relax (u,v)

{

If Dist[v]>Dist[u] + Cost[u,v]

Dist[v] = Dist[u] + Cost[u,v]

}

Time complexity of above algorithm if adjacency matrix

representation is used will be O(n3) .

All pair shortest path using bellman ford algorithm could also

be calculated if above algorithm for all the vertices in the

graph is called.

For each s in V

Call BellmanFord(s,Dist,Cost,n);

End for

INDENTIFICAITON OF PARALLELISM IN

BELLMAN FORD:

The only issue arises here is how to calculate minimum of all

these „n‟ values. So rather than calculating the minimum

which will increase the time of algorithm we will synchronize

the write operations on Distk[v] for all „u‟ such that minimum

value resides in Distk[v] at the end of Relax() procedure. This

issue is referred as write-write consistency.

4. PERFORMANCE ENHANCEMENT

IN OPENCL
In opencl there are many measures of kernel performance

measurement. Some of the prominent factors that play an

important role in kernel‟s performance are listed below :

ALU Optimization:[3][4]

There are two measurements that show utilization of single

instruction multiple data (SIMD) unit these are ALUBusy and

ALUPacking.[4][3]

ALUBusy :ALUBusy is defined as rate of instruction

processed by SIMD units.

ALUPacking : utilization of 5 ALUs of single SIMD unit by

instruction in case of VLIW5 architecture of GPU.

Low ALUBusy indicates either not enough work is scheduled

or ALU units are stalled due to data latency. To improve

ALUPacking, developers can structure their codes to use more

vector operations.

Memory Optimization :[2]

Memory optimization comprises of two memory sections :

 Global Memory optimization.

 Local Memory Optimization.

Global Memory Optimization: cache utilization is the

prominent factor that plays the most important role in global

memory optimization.[3][2]

5. RESULTS AND ANALYSIS
In this paper Bellman-Ford is analyzed with previous

implementation by different authors in terms of following:

a. ALUPacking

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

3

b. Cache Hit

c. Execution Time

6. CONCLUSION
In this paper Bellman-Ford is implemented on OpenCL using

principal of locality of reference. Here implementation is

analyzed in terms of ALU Packing, Cache Hit and Execution

time. It is found that after optimized implementation proposed

implementation is better.

7. REFERENCES
[1] Michael J. Bannister and David Eppstein , “Randomized

Speedup of the Bellman Ford Algorithm” in

arXiv:1111.5414v1 [cs.DS] 23 Nov 2011.

[2] Andrew V. Goldberg, Tomasz Radzik , A Heuristic

improvement of the Bellman Ford algorithm. Appl.

Math. Lett.Vol. 6, No. 3, pp. 3-6, 1993.

[3] A.S. Nepomniaschaya, An Associative Version of the

Bellman-Ford Algorithm for Finding the Shortest Paths

in Directed Graphs, V. Malyshkin (Ed.): PaCT 2001,

LNCS 2127, pp. 285–292, 2001.

[4] J. Y. Yen., An algorithm for finding shortest routes from

all source nodes to a given destination in general

networks. Quarterly of Applied Mathematics 27:526-

530, 1970.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein. Problem 24-1: Yen's improvement to Bellman

Ford. Introduction to Algorithms, 2nd edition, pp. 614-

615.MIT Press, 2001.

[6] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, “OpenCL Programming Guide”,Addison-

Wesley pub.,2011.

[7] YefimDinitz ,RotemItzhak , Hybrid Bellman-Ford-

Dijkstra Algorithm.

[8] AydınBuluc , John R. Gilbert and CerenBudak , “Solving

Path Problems on the GPU” , Journal Parallel Computing

Volume 36 Issue 5-6, June,2010 Pages 241-253.

[9] Andrew Davidson , Sean Baxter, Michael Garland , John

D. Owens , “Work-Efficient Parallel GPU Methods for

Single-Source Shortest Path “ in International Parallel

and Distributed Processing Symposium, 2014.

IJCATM : www.ijcaonline.org

