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ABSTRACT 
Text Clustering is a problem of dividing text documents into 

groups, such that documents in one group are more similar 

than those in other groups. Although comparisons of the 

different algorithms have been done in an attempt to choose 

some over the others, such comparisons have been found to 

be either too limited or inadequate. In such comparisons, 

either the researchers (who are usually the authors of the 

algorithms being compared with others) did not apply a 

formal comparison methodology, or the comparisons were 

based on inadequate data, metrics and procedures.Also, the 

comparisons always focus on only the aspects where their 

algorithms are superior to the other algorithms. The few 

algorithms being compared with theirs obviously seem to be 

carefully selected such that they are the ones performing 

lesser than theirs on those aspects.Thus, there is still a large 

gap on the most suitable methodology for comparing the 

algorithms. 

In this paper, a methodology for fairly comparing text 

clustering algorithms is proposed. 

Keywords 
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1. INTRODUCTION 
Text clustering (TC) is an area currently receiving a lot of 

attention. Previous comparisons of TC algorithms are clearly 

very limited. According to [1], most authors of newly-

proposed algorithms claim success of their algorithms based 

on comparisons with older algorithms using a few hand-

crafted examples, showing only where the old fails and the 

new one succeeds.  

It is important to note that the process of comparing some 

products (e.g. TC algorithms) includes evaluating them. 

Therefore, we include both the aspects of evaluation and 

comparisons of TC algorithms.Evaluating a product (e.g. an 

algorithm) can simply be understood to be the process of 

ascertaining how good (or well performing) the product is. 

Note that the performance of a product has various criteria. 

Consequently, comparing two or more products is simply 

checking which one evaluates higher either based on a 

particular performance criteria or in overall. 

Evaluating and comparing algorithms in TC is still a big 

challenge nowadays. Various identified reasons for this are; 

 Nature of comparison: Most researchers have 

compared algorithm only empirically. But it‟s evident that 

some aspects of algorithms need to be compared 

descriptively and not empirically, for example the 

complexity of running time of an algorithm. And an 

algorithm may be better than another descriptively and not 

empirically, and so which of the two comparison types to use 

is a challenge. 

 Nature of data: The nature (or hardness) of text 

documents can vary based on various factors. This study 

identifiedthese to be the irregularities of shapes of clusters, 

irregularities of densities of points in a group, as well as the 

noise level (unusual values including erroneous data/missing 

values, outliers, or unknown values). And it has been noted 

that the performance of a TC algorithm may vary by using 

data of different hardness. And in that case, it‟s important to 

have either a standard data or data sets with varying hardness 

for fair comparisons. 

 Sizes of data: The performance of a TC algorithm, and 

consequently the comparison results may vary with varying 

data sizes. It‟s therefore important to consider a standard size 

of the data sets for all the algorithms. And the various 

aspects of the data sizes were identified as the total number 

of text documents, the total number of attributes (or terms), 

and the number of groups/topics (or clusters). 

 Source of data: Sources of data include personally 

generated data sets or benchmark data sets (of real-world 

data sets that are readily available and have been grouped 

into clusters, so an algorithms clustering is compared with 

the already known clusters). It is still not agreed which of the 

three types of sources is more appropriate to use in 

evaluating TC algorithms. However, it is noted that the 

source of data has an impact on the conclusion of a TC 

algorithms comparison. Each of the two types of sources has 

advantages and disadvantages. Thus during a comparison, we 

need to combine the two sources where possible to ensure a 

fair comparison. 

 Evaluation criteria and metrics:Many researchers 

have commended on the performance of TC algorithms 

based on unclear or limited criteria. For example, some claim 

superiority of an algorithm due to lesser running time only, 

and others on accuracy (and using unjustified metric). In 

such research, there is no comprehensive look at the various 

criteria for the performance of a TC algorithm. Also, there is 

no justification of the use of the metrics (e.g. purity, rand 

index, etc). It has been noted from literature review that 

using a different metric in a comparison may in many cases 

alter the conclusions. Therefore, the choice of the evaluation 

criteria and metrics should be justified.   

 Parameter settings:Different algorithms have 

different parameters. For example, K Means algorithm has 

one parameter i.e. k (i.e. the number of desired clusters). 

From this research, using different values of each algorithm‟s 

parameters during a TC comparison makes each algorithm 

perform very differently andchanges the comparison 

conclusions alot. And it is also evident that it‟s hard to 
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decide an optimal value for each parameter. [2]agrees with 

this for K Means algorithm by saying that the clustering 

results may be different if the different value of parameter k 

is used.Therefore, it is proposed that one should settle at 

particular parameter values for a fair comparison 

2. THE METHODOLOGY 
In the real sense, a TC comparison methodology that 

accommodates the different TC approaches is very difficult 

to propose. This is because different approaches have 

different ways of perceiving clusters of data sets, different 

similarity measurement methods, as well as different 

parameter requirements. As [3] agrees with this by saying 

“Comparing clustering methods in general is difficult as the 

formalization in terms of an optimization problem strongly 

depends on the scenario under consideration and accordingly 

varies for different approaches”. However, this studydoes 

propose common comparison settings that can be a 

compromise of the different approaches. 

2.1 TC Comparison Domains 
This study proposes a formal way of looking at the process 

of comparing TC algorithms.From literature, the various 

objectives in clustering can be identified as appropriate 

document representation, accuracy, efficiency, robustness, 

scalability, interpretability and cluster labeling, avoiding 

input parameters, simplicity, and applicability. Consequently, 

the basis (or criteria) of evaluating or comparing algorithms 

is derivable from these objectives. And one needs to exhaust 

these objectives as much as possible in fair comparisons. 

Also, it can be observed that some of these objectives can be 

determined empirically, e.g. accuracy. This is by running the 

algorithms on sample data sets and observing the results 

empirically to determine an algorithm‟s expected 

performance. Others can only be done descriptively, by 

describing the various behaviors of an algorithm, e.g. the 

number of parameters. Other objectives can be determined in 

both ways (i.e. empirically and descriptively). For example, 

the accuracy of an algorithm can be measured not only 

empirically, but by studying the algorithm‟s characteristics 

and concluding possibilities of weaknesses of effectively 

clustering the data. But other objectives can be determined 

by doing some calculations. For example, scalability of an 

algorithm or software is usually done by calculating the 

expected number of steps from the algorithm‟s statements 

and logic depending on the data inputs, and consequently 

expressed this using the big O notation. This is generalized 

as analytical comparison. And these are the various 

approaches that one can evaluate a TC algorithm. Therefore, 

the identified three domains (or approaches) for evaluating 

and comparing TC clustering algorithms are descriptive 

domain, analytical domain and empirical domain. 

2.1.1: Descriptive domain 

This study proposes comparing algorithms descriptively 

using the attributes assumptions, goals, process, and 

characteristics. These are important since one is able to 

know the exact nature of each algorithm under comparison. 

Each algorithm makes assumptions concerning what 

constitutes a cluster (e.g. to a density-based algorithm, a 

cluster is assumed to be a group of concentrated VSM points 

surrounded by empty space). And each algorithm is meant to 

achieve particular goal(s), e.g. the goal of DBSCAN 

algorithm (density-based) is to find groups of VSM points, 

each with a minimum of Minpts points within the radius Eps. 

Thirdly, each algorithm follows a unique exact process of 

achieving the goal. The process of the DBSCAN algorithm 

for example, involves finding all neighbor points within 

distance Eps of a starting point p, and either forming a 

cluster (if the number of the neighbors is at least Minpts), or 

else considering p as noise. The algorithm then repeats the 

evaluation process for all neighbors recursively. Lastly, each 

algorithm has some characteristics that describe its behavior. 

For example, one characteristic of DBSCAN algorithm is 

that it has two parameters, i.e. Eps and Minpts. And the 

various characteristics of an algorithm can be derived from 

the objectives in clustering (given immediately above). 

2.1.2: Analytical domain 
TC algorithms should also be compared by analyzing their 

expected performanceusing some mathematical model(s). 

For example, the expected running time of an algorithm can 

be approximated from the known process by calculating the 

best case and the worst case of an algorithm (i.e. the least 

possible running time and the highest possible running time 

respectively). Also,the big O notation should be given to 

express the scalability of an algorithm,e.g. an algorithm of 

order 2 i.e. O(2) has the highest power being 2.  

2.1.3: Empirical domain 
Finally, TC algorithms should be compared or evaluated 

based on observed results based on some scenario. The 

algorithm is run using the scenario and using appropriate 

settings, and the results empirically observed. This is done 

using appropriate metrics and data sets. The measures that 

can be observed under this domain include accuracy, 

efficiency, scalability, and robustness. 

2.2 Performance Criteria 
Thus, TC algorithms should be compared using the above 

criteria (in section 2.1).Butit‟s obvious that some criteria 

have higher priorities than others. For example, it‟s obvious 

that the key-most requirement for any process is its ability to 

accomplish what it‟s expected to do with sufficient accuracy. 

But this should be within reasonable time. Some algorithms 

have been found to take too long time to cluster some data 

set (e.g. 10 hours instead of few seconds), such that it‟s 

completely not practical for most applications. Thus, 

accuracy and efficiency are primary performance factors. But 

two other criteria that are related to accuracy and efficiency 

are scalability and robustness. The size of data sets affects a 

lot the performance of algorithms. For example, an algorithm 

may take a few seconds to cluster a small data size, and yet 

take even a full day to cluster a data set of typical larger size, 

i.e. being less scalable. Alternatively the larger data size may  

make the algorithm produce wrong results, i.e. be less 

accurate. Another algorithm may even fail entirely to cluster 

such larger data. And in such cases, it may not be important 

to consider such an algorithm as accurate or efficient only 

when dealing with small data sizes, and not with larger sizes 

which are typical in text mining. Similarly, the hardness of 

data (either irregularity of shapes, irregularities of densities 

or level of noise) affects algorithms‟ accuracy and efficiency. 

An accurate or efficient algorithm on normal data may either 

produce wrong results when dealing with harder data or be 

less efficient in such data. Other criteria (interpretability and 

cluster labeling, usability, and applicability) are clearly 

secondary to the above four.Also, it is important to note that 

each of the criteria can be done under one or more of the 

above domains. For example, one can measure the salability 

of an algorithm analytically using the big O notation, or by 

using a simulation and observing the time taken by the 

algorithm on particular scenario. Also, interpretability of 

clusters of an algorithm can be described as a behavior of the 
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algorithm (e.g. either the algorithm produces cluster labels or 

not) i.e. under descriptive domain. This algorithm‟s behavior 

can also be empirically observed i.e. under empirical domain.   

2.3 Comparing Performance 
Here, this study proposes the exact method of 

evaluating/comparing the performance of any given 

algorithms‟ for each of the above criteria. For each 

performance criterion, it specifies the domain(s) under which 

the comparison needs to be done (i.e. to address the issue of 

the type of comparison), then describes how to evaluate or 

compare the performance.For any criterion under 

thedescriptive domain, the specified are the assumptions, 

goals, process, and characteristics of each algorithm. For any 

criterion under the analytical domain, the study describes the 

mathematical model that needs to be used in approximating 

the performance, typically the big O notation. For a criteria 

under the empirical domain, the study addresses each of the 

six TC comparison (mainly empirical) issues discussed in 

part 1 (Introduction)  i.e. the nature of comparisons, the 

source of data, the size of data, the nature (or hardness) of 

data, the metric used, and the parameter values used. 

However, the nature of comparison is already addressed by 

the domain used, and so is excluded here. The criteria that 

can be measured under this domain are accuracy, efficiency, 

scalability, and robustness. However, it‟s still possible to 

measure other criteria here, e.g. one can also measure 

usability by running an algorithm and observing the number 

of parameters it requires (instead of just stating this – the 

number of parameters of most algorithms is already known). 

But for the purpose of this methodology being proposed, the 

study limits the criteria here to the above four.The figure 

below illustrates the comparison rules.  

 
 

Figure 1: Framework for TC Evaluation/Comparison  

 

 

 

 

 

 

It is noted that the items under the empirical domain (i.e. 

metrics, parameters, data sets size, data sets source, and data 

sets hardness) are those identified as the key issues in 

algorithms‟ empirical comparisons in part 1 above. This 

implies that they have causal effect on the performance of an 

algorithm, and thus the comparison results. The following is 

the proposedmethod of evaluating or comparingeach 

criterion.  

2.3.1: Accuracy 
Algorithms‟ accuracy should be evaluated or compared from 

the simulation domain by clustering the documents using 

each algorithm on each of particular data sets and observing 

a particular metric‟s value for each data set. Concerning the 

chosen metric, the study settles at external metrics because 

they are independent of the approach used, unlike the 

internal measures. [4]agrees with this by saying that the 

external measures are independent on the text representation 

method and metrics used during the text clustering process. 

And to justify which of the external measures to use, the 

study identifies the following constraints: Homogeneity and 

completeness. For a metric to satisfy homogeneity, it should 

prefer clusterings whereby items in a cluster are much as 

possible from one class. According to [5], this means that if 

A is a clustering with a particular cluster C containing items 

from two classes c1 and c2, while B is a clustering same as A 

except that items in C are instead in two clusters 

corresponding to classes c1 and c2, then a metric should yield 

better value for distribution B for it to be said to be 

homogenous. For a metric to satisfy completeness, it should 

prefer clusterings whereby items belonging to a class are as 

much as possible be clustered together. According to [5], this 

means that if A is a clustering whereby two clusters C1 and 

C2 contain items of the same class c, while B is a clustering 

same as A except that clusters C1 and C2 are combined into a 

single cluster C, then a metric should yield better value for 

distribution B for it to be said to be complete. Thus, the 

chosen metric should satisfy both homogeneity and 

completeness requirements. Concerning data sizes, the study 

suggests the use of almost-near data sizes (typically small or 

medium sized data sets). This avoids testing scalability 

instead of accuracy (i.e. the data sizes usually have a causal 

effect on the accuracy of an algorithm). Regarding the data 

source, synthetic and benchmark data sets should be 

combined so as to take the benefits of each of the two types. 

The data sets chosen should be used for each algorithm in the 

comparison. Concerning parameters, it is noted that from 

theory, these have more causal effect on the accuracy of 

algorithms more than the other factors under the empirical 

domain (i.e. data sets sizes, source, hardness, and metrics). 

An algorithm may produce very different results using 

different parameters. Also, unlike the other factors, it‟s hard 

to determine the best set of parameter values to use in a 

comparison, since different data sets have different 

distributions of data points. For example in DBSCAN, there 

is no ideal radius (Eps) that should be used for all data sets 

because different data sets will have different distances 

between the data points.It is noted that though the default 

parameter values are not the best for all data sets, if we can 

use different data sets with vrying data distributions in terms 

of the distances among the points, the default parameter 

values (or K=number of classes for distance-based 

algorithms) represent good approximation of the most 

appropriate parameter values on average. And a good metric 

that tells of the distances among the data points is the SSE. 

For example, data points that are very far from one another 
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have higher SSE values and vice versa. Alternatively rather 

than using default parameters with data of varying 

distributions, one can comfortably set appropriate parameters 

to correspond to the actual SSE approximated value for each 

data set. For example for DBSCAN, one should set 

Eps=(SSE/number of instances)0.5, which corresponds to the 

approximated inter-points distance.Andthe calculation of the 

average accuracy for each algorithm out of the accuracies in 

all the data sets should be done. This should be followed by 

ranking the algorithms such that those with the best average 

accuracy win.Also where appropriate, the descriptive domain 

is applied to describe how the assumptions, goals, process, or 

characteristics of an algorithm contribute to its observed 

accuracy (either high accuracy or low accuracy).  

But an issue with calculating average accuracies and ranking 

the algorithms based on the average accuracies is the un-

clustered data sets. From experience, an algorithm may not 

cluster at all some data set during the performance 

comparison (e.g. it may fail after a short time giving fail 

message, or may just hang, or may take indefinitely very 

long time to cluster without stopping). The question is what 

accuracy value to assign that algorithm for that data set? 

Ordinarily, one assigns accuracy value of 0 for that algorithm 

on that data set such that the average accuracy value for that 

algorithm is lowered. But the problem here is that some 

accuracy metrics have the best algorithms with the lower 

values (e.g. within cluster sum of square, percentage of 

wrongly clustered instances, etc), and so giving such 

algorithm value 0 will erroneously mean it‟s the most 

accurate in that data set, and the average is also lowered 

(improved). And this studyrefers to such a metric as a low-

value metric, and the opposite a high-value metric.So 

alternatively, one can use the style of just leaving missing 

values for the un-clustered data sets (and computing averages 

excluding the un-clustered data). But the problem here is that 

still, an algorithm with missing values may get better average 

accuracy as a result (since the average is computed excluding 

the un-clustered data sets).This study therefore proposes a 

simple and fair formula for un-clustered accuracies. The 

accuracy of such un-clustered data sets should be 

consideredas missing values. One should then calculate the 

average accuracy for that algorithm out of all clustered data 

sets (excluding the un-clustered data sets), but then increase 

this average value proportionally to the number of un-

clustered data sets. This is done by incrementing the average 

value by the ratio of the number of un-clustered data sets 

over the total number of the data sets multiplied by the 

average value, i.e. 

Accuracy = average accuracy + ( average accuracy * 

unclustered data sets / total data sets ) 

This means that for the algorithms that cluster all data sets, 

the formula is 

Accuracy = average accuracy 

But in case there is an algorithm with no clustered data set at 

all, since it has missing values for all data sets, the formula 

simply shouldn‟t be appliednor computing even the average 

value. One should simply rank it (or them) last. Also, this 

idea of having missing values should also happen when using 

a high-value metric. In this case, an algorithm with missing 

values should have lower average rather than higher one as a 

result. So the formula becomes 

Accuracy = average accuracy - ( average accuracy * 

unclustered data sets / total data sets ) 

Which is logically the same as 

Accuracy = average accuracy * clustered data sets / 

total data sets 

For example, assume two algorithms (A1 and A2) obtaining 

the following accuracy values (using a low-value metric) for 

three data sets A, B, and C respectively: (2, 4) and (2, 4, 3) 

i.e. both algorithms have the same accuracies for data A and 

B but A1 does not cluster data C. Using a high-value metric, 

the comparison will be  

Table1: Sample accuracy comparison of2 algorithms 

Data set A1 A2 

A 2 2 

B 4 4 

C   3 

Average 3 3 

Measure 2 3 

Rank 2 1 

 

Here, the accuracy measure of A1 is computed as (3-

(3*1/3))=2 or (3*2/3)=2. Thus, A1 average accuracy is 

reduced proportionally to the number of un-clustered data.  

2.3.2: Efficiency 
The efficiency of an algorithm is its ability to process using 

minimum computer resources, mainly the CPU and the 

memory. These are empirically measured using the CPU‟s 

time taken to process the algorithm‟s task and the memory 

size used by the algorithm respectively. However, the 

execution time is the most crucial metric for determining 

algorithms‟ efficiency comparison and evaluation. And many 

researchers have computed the efficiency of algorithms by 

running them using various data sets of any size, then 

computing the average running times, and observing the 

algorithm with the least average as the winner. Also, many 

have confused efficiency with scalability by measuring 

running times as data sets increase, such that what they 

actually measure is scalability. This study explains that the 

efficiency test of an algorithm should include only the 

normal-sized data sets. Just like in testing accuracy where the 

factors of empirical domain are maintained constants for all 

algorithms under comparison (including metrics, data sets 

sizes, and data sources), the same should be done 

here.Another aspect that lacks with previous research is lack 

of considerations of the correlation between accuracy and 

efficiency during efficiency comparisons of algorithms, 

leading to wrong conclusions. An algorithm may take lesser 

time to cluster a data set not because of its high efficient 

nature, but because of its inability to cluster the data fully 

(detecting more groups/clusters of data obviously requires 

more time). 

i.e. low accuracy of an algorithm on some given data may 

make it take less time to cluster the data. And an algorithm 

may obviously take more time to produce better clusters.  

For example, the comparative study results of three 

classification algorithms by [6] concluded that there is a 

tradeoff between accuracy and efficiency such that the most 

accurate algorithms in their study had the highest time 

complexity (lowest efficiency) and vice versa. Consequently, 

even the efficiency will vary with different parameter values, 
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since efficiency is correlated to accuracy. And consequently, 

one should at least talk of an algorithm‟s efficiency at a 

particular accuracy level (or at particular values of 

parameters).  But measuring the efficiency of each algorithm 

at a particular level of accuracy (e.g. 90%)requires that one 

sets the factors (mainly the parameters) of each algorithm 

that will yield that accuracy level. Problems here are that 

even with all possible values of parameters, some algorithms 

may fail to yield the required accuracy level, and that one 

needshuge number of runs searching for the required level of 

accuracy using different parameter values. Alternatively, 

since the efficiency is correlated to accuracy, this 

studysuggests doing the accuracy and efficiency measures 

together using the same accuracy comparison runs explained 

above. This means using data with different SSE values, and 

consequently considering the default parameter values to be 

a good approximation of the best parameter settings for all 

the data sets.  

 

Thus, this study proposescomparing an algorithm‟s 

efficiency from the simulation domain by observing the time 

taken (in seconds) to fully cluster the documents using the 

algorithm. One should use the exact arrangement as in 

accuracy comparison i.e. the same data sets of small to 

medium sizes with varying SSE levels, but with no noise 

added, of both synthetic and benchmark types, and default 

parameter values for the algorithms (or K=number of classes 

for distance-based algorithms).  One should run each 

algorithm on each data set and record the time taken to 

cluster in each run, and then calculate the average efficiency 

for each algorithm out of the efficiencies in all the data sets. 

And the missing values issue should be addressed similar to 

the accuracy comparison above, whereby the efficiency 

metric (running time) is a low-value metric. In this case, one 

should calculate the efficiency measure as 

Efficiency = average efficiency + ( average efficiency 

* unclustered data sets / total data sets ) 

 

Then the algorithms should be ranked such that those with 

the best average efficiency (i.e. the lowest average running 

times) win.Also where appropriate, one should apply the 

descriptive domain to describe how the assumptions, goals, 

process, or characteristics of an algorithm contribute to its 

observed efficiency (either high efficiency or low 

efficiency).  

2.3.3: Scalability 

The scalability of an algorithm as defined by some 

researchers has ambiguities,e.g. the ability of a TC algorithm 

to cluster documents of increasing sizes. [7]for example, 

defines the scalability of a model-building algorithm as 

follows: „This is the ability to construct the model efficiently 

even for a large amount of high dimensional data‟. From 

literature, the testing and comparisons of algorithms‟ 

performance has been weak, limited and unclear. First, most 

researchers have tested scalability of their newly-proposed 

algorithm empirically by running the algorithm and others 

being compared with using data sets of different sizes 

(mainly the number of documents). They then represented 

this using a graph, and visually observed how the running 

time of the algorithm varies with the different data sets sizes. 

If the graph of the proposed algorithm „seems‟ to be better 

than the ones for the other algorithms, then its considered to 

be more scalable.  But this aspect of a graph appearing 

“better” than others has not been defined, and clearly can‟t 

be used to conclude which algorithm is more scalable than 

which other. Secondly, it is not only the running time that 

can be affected by huge data sizes, but also any other 

performance criterion, usually the accuracy. Third just like 

explained above, oneshould vary the various aspects of data 

sizes i.e. the number of text documents, the number of 

attributes (or terms), and the number of groups/topics (or 

classes).  Fourth, it‟s important for scalability to be measured 

also from the analytical domain by approximating an 

algorithms run time depending on a given data size from its 

logic.Fifth, is the ambiguity of the usual scalability definition 

i.e. “the ability to cluster documents of increasing sizes 

without affecting performance”. The question is “is the most 

scalable algorithm the one with the least rate of decrement of 

performance as data sizes increase or the one with the 

highest (average) performance as the data sizes 

increase”?And if one is to combine the two aspects, what 

would be the formula? Last and just like in accuracy, it is 

possible to have un-clustered data sets. But the difference 

here is that in the case of scalability, failure to cluster larger-

sized data sets should lead to lesser scalability, i.e. the data 

sets‟ sizes should be considered in the formula for un-

clustered data.These last two ambiguities are illustrated 

below by assuming running seven algorithms (named A1, 

A2, A3, A4, A5, A6, and A7) on four data sets of increasing 

sizes (named A, B, C, and D), and obtaining the accuracy, 

average accuracy, and standard deviation (stdev) values 

shown below (using a high-value metric).  

Table 2: Sample scalability of 4 algorithms 

ACCURACIES OF 7 ALGORITHMS ON 4 DATA SETS 

OF INCREASING SIZES 

(size(A)<size(B)<size(C)<size(D))  

Algorithm A B C D Avg Stdev 

A1 47 43 39 35 41 

5.16397

8 

A2 40 40 40 40 40 0 

A3 80 70 60 50 65 

12.9099

4 

A4 60 59 58 57 58.5 

1.29099

4 

A5 62 62 62 62 62 0 

A6 82 81 80   81 1 

A7 5 4 3 2 3.5 

1.290

994 
 

 
 

Figure 2: Visualizing scalability of 4 algorithms 
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It can be seen that algorithms with the least rate of decrease 

of accuracy are A2 and A5 (stdev=0). But it would be clearly 

unfair to rank them equal with the same scalability because 

algorithm (A5) has higher values of accuracy (i.e. 62). Also, 

both A3 and A4 have higher values of accuracy (thus higher 

average accuracy) than A2 despite that they have higher rate 

of reduction of accuracy than A2. It‟s clearly unfair to 

consider A2 as more scalable than A3, A4 just because it has 

a lower rate of reduction of accuracy as data sizes increase. 

Still, it would be clearly unfair to decide that A3 has higher 

average accuracy than A5 and so is more scalable, when 

visual inspection of the graph shows that A3‟s performance 

is clearly affected more by large data sizes (especially if we 

could include more data with higher sizes than D‟s size). 

Thus, a fair measure of scalability should include both 

aspects of the rate of decrease in performance and the 

average performance. Still another issue is if A6 is more 

scalable than many of the other algorithms since it has the 

highest average accuracy and also a lower rate of reduction 

of accuracy (or lower stdev) than A1, A3, A4, and 

A7(because A6 is not able to cluster at all data set D,i.e. it 

can‟t cluster data of very large sizes - the most desirable for 

scalability). The question is should it be completely ruled out 

of scalability comparison or ranked as the least scalable? 

And in both cases, is it really fair to rank it lower than A7 

just because it has a missing value for high data size when it 

can cluster very well medium data sizes? The question is 

what formula or exact criteria would address these issues. 

Solving the ambiguities for scalability on accuracy 

Thus, oneshould combine the average performance and the 

rate of reduction of the as the data sizes increase (e.g. using 

stdev). Here,  both the algorithms with the highest averages 

and those with the least standard deviationshould be favored 

by getting the difference of the later from the former, i.e.  

Scalability on accuracy = ( average accuracy - stdev ) 

 

For low-value metrics, this mathematically means  

Scalability on accuracy = ( average accuracy + stdev) 

 

Unless otherwise stated, a high-value metric is assumed 

henceforth. And this formula assumes that the scalability of 

algorithms decreases with increasing size. Yes it‟s strange to 

see an opposite case. But in case such a case occurs (i.e. 

meaning an algorithm‟s scalability increases with increasing 

data size, implying it‟s highly scalable), we will add the 

standard deviation to the accuracy as 

Scalability on accuracy = ( average accuracy + stdev) 

 

( because stdev measures are always positive whether the 

observed values are increasing or decreasing), or as follows 

for a low-value metric. 

Scalability on accuracy = ( average accuracy - standard 

deviation ) 

 

The issue of un-clustered data is addressedby incrementing 

the average value just like in accuracy and efficiency 

comparison, but proportionally to the sizes of the un-

clustered sets, rather than their number,as 

Scalability on accuracy = ( average + stdev ) + ( ( 

average + stdev ) * unclustered data sizes / total data 

sizes ) 

which can be simplified to 

Scalability on accuracy = ( average + stdev ) * ( 1+ ( 

unclustered data sizes / total data sizes ) ) 

 

(for a low-value metric) and 

Scalability on accuracy = ( average - stdev ) - ( ( 

average - stdev ) * unclustered data sizes / total 

data sizes ) 

 

(for a high-value metric), which is logically the same as 

Scalability on accuracy = ( average - stdev ) * ( 

clustered data sizes / total data sizes ) 

 

But in case there is an algorithm with no clustered data set at 

all, since it has missing values for all data sets, the formula is 

not applied nor is the computation of average value. It is 

simply rank last. Also, an algorithm that fails to cluster many 

data sets but clusters only one should be disqualified from 

the formula because it‟s stdev will be unfairly low i.e. 0 

(unfairly making it the algorithm with the least rate of 

reduction of performance, yet this stdev value of 0 is as a 

result of its inability to cluster data sets rather than good 

performance). And in these formulae, one can either use the 

exact data size values or rank levels of the sizes of the data 

sets (e.g. rank 1 for A, 2 for B, 3 for C, and 4 for D). But in 

the later case, the data sizes should be chosen such that the 

sizes increase in a near-uniform manner (e.g. size(A)=500, 

size(B)=1000, size(C)=1500, size(D)=2000). And 

consequently,  ranking of the algorithms is done such that 

those with the highest scalability measures (for a high-value 

metric) or with the lowest scalability measures (for a low-

value metric) win. 

Solving the ambiguities for scalability on efficiency 

Similar procedure, recordings and calculations as above 

(computing scalability on accuracy) are done, this time 

computing scalability on efficiency. In this case, the metric is 

the running time (which is a low-value metric). 

Getting overall scalability ranking 

The overall scalability ranking of the algorithms is gotten by 

summing the two ranks of each algorithm (i.e. in accuracy 

and efficiency). The algorithms with the least sums of ranks 

are the overall winners. 

Summary of comparing scalability 

This study therefore proposesevaluating an algorithm‟s 

scalability fromthe empirical domain,whereby one uses the 

same arrangement as in accuracy comparison except for data 

sizes i.e. use data sets with varying sizes, with varying SSE 

values, of both synthetic and benchmark types, and with no 

hardness added. Default parameter values for the algorithms 

(or K=number of classes for distance-based algorithms) are 

used.  The data sets should be of varying sizes in the number 

of documents, the number of attributes, and the number of 

classes. Let the sizes increase in almost-uniform manner in 

each of the three aspects. Run each algorithm on each data 

set, and record the accuracy and the efficiency (running time) 

each time. Apply statistical measures to obtain both the 

average and the rate of reduction (e.g. using stdev) of both 

the accuracy and the efficiency for each algorithm as the data 

sizes increase. Obtain the scalability measure of each 

algorithm based on accuracy using the above formulae.Note 

that the clustered size is the total size (or total ranks) of the 

clustered data sets while total size is the total size (or the 

total ranks) of the data sets. The ranks of the data sets are 

either values that are directly proportional to the sizes (or the 
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ranges of sizes) of the data sets or the actual sizes. For 

example, rank 1 may refer to size 500, rank 2 to size 1000, 

rank 3 to size 3000, etc. Alternatively, rank 1 may refer to 

any size of between 1and 500, rank 2 to sizes 501 to 1000, 

etc. Referring to data sets‟ sizes in terms of their ranges may 

be specifically easier in comparing algorithms. Then rank the 

algorithms based on scalability on accuracy such that the 

most scalable algorithm (ranked 1) has the best scalability 

measure – lowest (for a low-value metric) or highest (for a 

high-value metric). In case some algorithms have missing 

values in either all the data sets or all the data sets except 

one, do not apply the formulae on them, but simply rank 

them the last.Then repeat the above procedure and formulae 

of obtaining scalability measure, but in this case based on 

efficiency rather than accuracy, and using a low-value metric 

(i.e. the running time). Rank the algorithms based on 

scalability on efficiency such that the most scalable 

algorithm (ranked 1) has the least scalability measure 

(meaning the least running time).  

Finally, obtain the overall scalability comparison by adding 

the two ranks for each algorithm (i.e. scalability based on 

accuracy rank and scalability based on efficiency rank). The 

most scalable algorithm has the least sum. In case of a tie, for 

each of the tying algorithms,  compute the algorithm‟s 

percentage of the scalability measure out of the total measure 

of the tying algorithms. This is done for both accuracy and 

efficiency. Then get the difference of the percentages for 

both accuracy and efficiency. Note the aspect with the higher 

difference (out of accuracy and efficiency), and pick the 

algorithm with the best rank for that aspect as the overall 

winner, since this means that that algorithm beats the other 

with a higher margin, than the other algorithm beats this 

winning algorithm. 

 

Also, apply the analytical domain and express the expected 

running time using the big O notation, as well as the 

descriptive domaintodescribe how the assumptions, goals, 

process, or characteristics of an algorithm contribute to its 

observed scalability.  

2.3.4 Flexibility (or robustness) 
Apart from testing the accuracy, efficiency, and scalability of 

algorithms, it‟s important to test if the performance of the 

algorithms is affected by data of different hardness.This is 

one criterion that has not been included in the research of 

most researchers (or has not been appropriately measured), 

yet is also important because an algorithm may perform the 

best in ordinary-type data yet perform poorly if the data has 

high hardness levels. This study identifies the various aspects 

of hardness as irregularities of shapes, irregularities of 

densities, and noise levels. And in those few researches that 

have included this criterion, only the change in efficiency of 

algorithms has been approximated. But we explain that just 

like in scalability, we need also to measure the rate of change 

of accuracy. Many algorithms will have much lower 

accuracy with harder data, such that it‟s important to 

consider how much the accuracy is affected for different 

algorithms, so as to make a better decision since many 

applications encounter hardness of data.  And the same 

issues as in scalability apply here, i.e.combining averages 

with the rate of change of performance as data hardness 

increase, and missing values. 

Thus, the study proposes comparing algorithms‟ robustness 

empirically just like in scalability except that it is the data 

hardness rather than size that is varied. Butit is noted that it 

may be hard to obtain data of varying levels in each of the 

three aspects of hardness (the available data may only be in 

terms of noise levels). And most data generators allow 

setting hardness levels in only one aspect, i.e. noise. In this 

case, one should compare the other aspects of hardness under 

the descriptive domain. One should run each algorithm using 

data of increasing levels of hardness and measure the 

accuracy and efficiency each time, and then calculatethe 

average accuracy and the average efficiency, as well as their 

standard deviations, and then calculate the robustness on 

accuracy as 

Robustness on accuracy = ( average + stdev ) + ( ( 

average + stdev ) * unclustered data sizes / total data 

sizes ) 

 (for a low-value metric) and 

Robustness on accuracy = ( average - stdev ) * ( 

clustered data sizes / total data sizes ) 

 

(for a high-value metric). The robustness on efficiency 

should also be calculated using the same formula (for low-

value metric). Then rank the algorithms just like in 

scalability ranking.Also, from the descriptive domain, 

deduce the algorithm‟s flexibility in all the three aspects . 

2.3.5: Overall empirical comparison 

Finally, have a final empirical ranking of the algorithms 

based on the total rank value for each algorithm based on the 

four aspects of empirical comparisons i.e. accuracy, 

efficiency, scalability, and robustness.In case of a tie, use 

procedure similar to scalability/robustness ranking above for 

tying algorithms. 

2.3.6: Other performance criteria 

Other performance criteria are to be evaluated or compared 

under the descriptive domain. This is by describing the 

characteristics of the algorithms. They are; 

 The approach: By stating the algorithm‟s approach. 

 Text representation model: By stating the text 

representation model used by an algorithm.  

 Usability: By describing the number of input 

parameters. The best algorithms have the least number 

of parameters. 

 Robustness: By explaining the algorithm‟s ability to 

cluster data of irregular shapes and irregular densities. 

 Interpretability: By stating whether or not an 

algorithm produces cluster labels. Those algorithms that 

produce cluster labels are better in this aspect. 

 Applicability: By stating whether or not an algorithm 

can produce overlapping clusters. It is better for an 

algorithm to produce labels to make the produced 

clusters more understandable.  

 The hierarchy: By stating if the algorithm is 

hierarchical or partitioning in terms of the 

organizational structure of the produced clusters. And if 

hierarchical, we state if it‟s divisive or agglomerative in 

nature. 

 The redundancy reduction: By stating whether or not 

an algorithm does redundancy reduction or not, and if 

so, we state the method used. An algorithm that does 

redundancy reduction is more efficient, and so performs 

better. 

3. CONCLUSIONS 
It is concluded that TC algorithms‟ evaluation and 

comparison has not been previously done satisfactory. It is 

suggested that applying this methodology will ensure that 
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such evaluations and comparisons are done using formal 

procedures that will yield dependable results. Another study 

will be done to apply this methodology and do a 

comprehensive comparison of some TC algorithms. 

4. REFERENCES 
[1] Chen, J 2005, Comparison of Clustering Algorithms and 

its Application to Document Clustering, PhD Thesis, 

Princeton University. 

[2] Chen, Y, Qin, B, Liu, T, Liu, Y, & Li, S 2010,„The 

Comparison of SOM and K-means for Text Clustering‟, 

International Journal of Computer and Information 

Science, vol. 3, no. 2.  

[3] Prelic, A, Bleuler, S, Zimmermann, P, Wille, A, 

Buhlmann, P, Gruissem, W, Hennig, L, Thiele, L, 

&Zitzler, E 2006, „A systematic comparison and 

evaluation of biclustering methodsfor gene expression 

data‟, Oxford University Press, vol. 22, no. 9. 

 

[4] Greene, D 2007, A State-of-the-Art Toolkit for 

Document Clustering, PhD Thesis, University of 

Dublin. 

[5] Amigo, E, Gonzalo, J, Artiles, J &Verdejo, F 2009, A 

comparison of Extrinsic Clustering Evaluation Metrics 

based on Formal Constraints, Technical Report, 

Departamento de Lenguajes y SistemasInformaticos, 

UNED, Madrid, Spain, viewed 19 January 2015, 

http://nlp.uned.es/docs/amigo2007a.pdf. 

[6] Akinola, S &Oyabugbe O 2015, „Accuracies and 

Training Times of Data Mining Classsifications 

Algorithms: An Empirical Comparative Study‟,  Journal 

of software Engineering and Applications, vol. 8, 470-

477. 

[7] Shahzad, W 2010, Classification and Associative 

Classification Rule Discovery Using Ant Colony 

Optimization, PhD Thesis, FAST National University of 

Computer & Emerging Sciences. 

 

 

IJCATM : www.ijcaonline.org 


