
International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

12

A Text Clustering Comparison Methodology

F.M. Kwale
(Lecturer),

Dept. of Mathematics &
Computer Science,

University of Eldoret,
P.O. Box 1125-30100,

ELDORET-KENYA.

P.W. Wagacha
(Associate Professor),
School of Computing &

Informatics,
University of Nairobi,

P.O. Box 30197-00100,
NAIROBI-KENYA.

A. Mwaura
(Senior Lecturer),

School of Computing &
Informatics,

University of Nairobi,
P.O. Box 30197-00100,

NAIROBI-KENYA.

ABSTRACT
Text Clustering is a problem of dividing text documents into

groups, such that documents in one group are more similar

than those in other groups. Although comparisons of the

different algorithms have been done in an attempt to choose

some over the others, such comparisons have been found to

be either too limited or inadequate. In such comparisons,

either the researchers (who are usually the authors of the

algorithms being compared with others) did not apply a

formal comparison methodology, or the comparisons were

based on inadequate data, metrics and procedures.Also, the

comparisons always focus on only the aspects where their

algorithms are superior to the other algorithms. The few

algorithms being compared with theirs obviously seem to be

carefully selected such that they are the ones performing

lesser than theirs on those aspects.Thus, there is still a large

gap on the most suitable methodology for comparing the

algorithms.

In this paper, a methodology for fairly comparing text

clustering algorithms is proposed.

Keywords
Clustering, Text Clustering, Metrics.

1. INTRODUCTION
Text clustering (TC) is an area currently receiving a lot of

attention. Previous comparisons of TC algorithms are clearly

very limited. According to [1], most authors of newly-

proposed algorithms claim success of their algorithms based

on comparisons with older algorithms using a few hand-

crafted examples, showing only where the old fails and the

new one succeeds.

It is important to note that the process of comparing some

products (e.g. TC algorithms) includes evaluating them.

Therefore, we include both the aspects of evaluation and

comparisons of TC algorithms.Evaluating a product (e.g. an

algorithm) can simply be understood to be the process of

ascertaining how good (or well performing) the product is.

Note that the performance of a product has various criteria.

Consequently, comparing two or more products is simply

checking which one evaluates higher either based on a

particular performance criteria or in overall.

Evaluating and comparing algorithms in TC is still a big

challenge nowadays. Various identified reasons for this are;

 Nature of comparison: Most researchers have

compared algorithm only empirically. But it‟s evident that

some aspects of algorithms need to be compared

descriptively and not empirically, for example the

complexity of running time of an algorithm. And an

algorithm may be better than another descriptively and not

empirically, and so which of the two comparison types to use

is a challenge.

 Nature of data: The nature (or hardness) of text

documents can vary based on various factors. This study

identifiedthese to be the irregularities of shapes of clusters,

irregularities of densities of points in a group, as well as the

noise level (unusual values including erroneous data/missing

values, outliers, or unknown values). And it has been noted

that the performance of a TC algorithm may vary by using

data of different hardness. And in that case, it‟s important to

have either a standard data or data sets with varying hardness

for fair comparisons.

 Sizes of data: The performance of a TC algorithm, and

consequently the comparison results may vary with varying

data sizes. It‟s therefore important to consider a standard size

of the data sets for all the algorithms. And the various

aspects of the data sizes were identified as the total number

of text documents, the total number of attributes (or terms),

and the number of groups/topics (or clusters).

 Source of data: Sources of data include personally

generated data sets or benchmark data sets (of real-world

data sets that are readily available and have been grouped

into clusters, so an algorithms clustering is compared with

the already known clusters). It is still not agreed which of the

three types of sources is more appropriate to use in

evaluating TC algorithms. However, it is noted that the

source of data has an impact on the conclusion of a TC

algorithms comparison. Each of the two types of sources has

advantages and disadvantages. Thus during a comparison, we

need to combine the two sources where possible to ensure a

fair comparison.

 Evaluation criteria and metrics:Many researchers

have commended on the performance of TC algorithms

based on unclear or limited criteria. For example, some claim

superiority of an algorithm due to lesser running time only,

and others on accuracy (and using unjustified metric). In

such research, there is no comprehensive look at the various

criteria for the performance of a TC algorithm. Also, there is

no justification of the use of the metrics (e.g. purity, rand

index, etc). It has been noted from literature review that

using a different metric in a comparison may in many cases

alter the conclusions. Therefore, the choice of the evaluation

criteria and metrics should be justified.

 Parameter settings:Different algorithms have

different parameters. For example, K Means algorithm has

one parameter i.e. k (i.e. the number of desired clusters).

From this research, using different values of each algorithm‟s

parameters during a TC comparison makes each algorithm

perform very differently andchanges the comparison

conclusions alot. And it is also evident that it‟s hard to

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

13

decide an optimal value for each parameter. [2]agrees with

this for K Means algorithm by saying that the clustering

results may be different if the different value of parameter k

is used.Therefore, it is proposed that one should settle at

particular parameter values for a fair comparison

2. THE METHODOLOGY
In the real sense, a TC comparison methodology that

accommodates the different TC approaches is very difficult

to propose. This is because different approaches have

different ways of perceiving clusters of data sets, different

similarity measurement methods, as well as different

parameter requirements. As [3] agrees with this by saying

“Comparing clustering methods in general is difficult as the

formalization in terms of an optimization problem strongly

depends on the scenario under consideration and accordingly

varies for different approaches”. However, this studydoes

propose common comparison settings that can be a

compromise of the different approaches.

2.1 TC Comparison Domains
This study proposes a formal way of looking at the process

of comparing TC algorithms.From literature, the various

objectives in clustering can be identified as appropriate

document representation, accuracy, efficiency, robustness,

scalability, interpretability and cluster labeling, avoiding

input parameters, simplicity, and applicability. Consequently,

the basis (or criteria) of evaluating or comparing algorithms

is derivable from these objectives. And one needs to exhaust

these objectives as much as possible in fair comparisons.

Also, it can be observed that some of these objectives can be

determined empirically, e.g. accuracy. This is by running the

algorithms on sample data sets and observing the results

empirically to determine an algorithm‟s expected

performance. Others can only be done descriptively, by

describing the various behaviors of an algorithm, e.g. the

number of parameters. Other objectives can be determined in

both ways (i.e. empirically and descriptively). For example,

the accuracy of an algorithm can be measured not only

empirically, but by studying the algorithm‟s characteristics

and concluding possibilities of weaknesses of effectively

clustering the data. But other objectives can be determined

by doing some calculations. For example, scalability of an

algorithm or software is usually done by calculating the

expected number of steps from the algorithm‟s statements

and logic depending on the data inputs, and consequently

expressed this using the big O notation. This is generalized

as analytical comparison. And these are the various

approaches that one can evaluate a TC algorithm. Therefore,

the identified three domains (or approaches) for evaluating

and comparing TC clustering algorithms are descriptive

domain, analytical domain and empirical domain.

2.1.1: Descriptive domain

This study proposes comparing algorithms descriptively

using the attributes assumptions, goals, process, and

characteristics. These are important since one is able to

know the exact nature of each algorithm under comparison.

Each algorithm makes assumptions concerning what

constitutes a cluster (e.g. to a density-based algorithm, a

cluster is assumed to be a group of concentrated VSM points

surrounded by empty space). And each algorithm is meant to

achieve particular goal(s), e.g. the goal of DBSCAN

algorithm (density-based) is to find groups of VSM points,

each with a minimum of Minpts points within the radius Eps.

Thirdly, each algorithm follows a unique exact process of

achieving the goal. The process of the DBSCAN algorithm

for example, involves finding all neighbor points within

distance Eps of a starting point p, and either forming a

cluster (if the number of the neighbors is at least Minpts), or

else considering p as noise. The algorithm then repeats the

evaluation process for all neighbors recursively. Lastly, each

algorithm has some characteristics that describe its behavior.

For example, one characteristic of DBSCAN algorithm is

that it has two parameters, i.e. Eps and Minpts. And the

various characteristics of an algorithm can be derived from

the objectives in clustering (given immediately above).

2.1.2: Analytical domain
TC algorithms should also be compared by analyzing their

expected performanceusing some mathematical model(s).

For example, the expected running time of an algorithm can

be approximated from the known process by calculating the

best case and the worst case of an algorithm (i.e. the least

possible running time and the highest possible running time

respectively). Also,the big O notation should be given to

express the scalability of an algorithm,e.g. an algorithm of

order 2 i.e. O(2) has the highest power being 2.

2.1.3: Empirical domain
Finally, TC algorithms should be compared or evaluated

based on observed results based on some scenario. The

algorithm is run using the scenario and using appropriate

settings, and the results empirically observed. This is done

using appropriate metrics and data sets. The measures that

can be observed under this domain include accuracy,

efficiency, scalability, and robustness.

2.2 Performance Criteria
Thus, TC algorithms should be compared using the above

criteria (in section 2.1).Butit‟s obvious that some criteria

have higher priorities than others. For example, it‟s obvious

that the key-most requirement for any process is its ability to

accomplish what it‟s expected to do with sufficient accuracy.

But this should be within reasonable time. Some algorithms

have been found to take too long time to cluster some data

set (e.g. 10 hours instead of few seconds), such that it‟s

completely not practical for most applications. Thus,

accuracy and efficiency are primary performance factors. But

two other criteria that are related to accuracy and efficiency

are scalability and robustness. The size of data sets affects a

lot the performance of algorithms. For example, an algorithm

may take a few seconds to cluster a small data size, and yet

take even a full day to cluster a data set of typical larger size,

i.e. being less scalable. Alternatively the larger data size may

make the algorithm produce wrong results, i.e. be less

accurate. Another algorithm may even fail entirely to cluster

such larger data. And in such cases, it may not be important

to consider such an algorithm as accurate or efficient only

when dealing with small data sizes, and not with larger sizes

which are typical in text mining. Similarly, the hardness of

data (either irregularity of shapes, irregularities of densities

or level of noise) affects algorithms‟ accuracy and efficiency.

An accurate or efficient algorithm on normal data may either

produce wrong results when dealing with harder data or be

less efficient in such data. Other criteria (interpretability and

cluster labeling, usability, and applicability) are clearly

secondary to the above four.Also, it is important to note that

each of the criteria can be done under one or more of the

above domains. For example, one can measure the salability

of an algorithm analytically using the big O notation, or by

using a simulation and observing the time taken by the

algorithm on particular scenario. Also, interpretability of

clusters of an algorithm can be described as a behavior of the

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

14

algorithm (e.g. either the algorithm produces cluster labels or

not) i.e. under descriptive domain. This algorithm‟s behavior

can also be empirically observed i.e. under empirical domain.

2.3 Comparing Performance
Here, this study proposes the exact method of

evaluating/comparing the performance of any given

algorithms‟ for each of the above criteria. For each

performance criterion, it specifies the domain(s) under which

the comparison needs to be done (i.e. to address the issue of

the type of comparison), then describes how to evaluate or

compare the performance.For any criterion under

thedescriptive domain, the specified are the assumptions,

goals, process, and characteristics of each algorithm. For any

criterion under the analytical domain, the study describes the

mathematical model that needs to be used in approximating

the performance, typically the big O notation. For a criteria

under the empirical domain, the study addresses each of the

six TC comparison (mainly empirical) issues discussed in

part 1 (Introduction) i.e. the nature of comparisons, the

source of data, the size of data, the nature (or hardness) of

data, the metric used, and the parameter values used.

However, the nature of comparison is already addressed by

the domain used, and so is excluded here. The criteria that

can be measured under this domain are accuracy, efficiency,

scalability, and robustness. However, it‟s still possible to

measure other criteria here, e.g. one can also measure

usability by running an algorithm and observing the number

of parameters it requires (instead of just stating this – the

number of parameters of most algorithms is already known).

But for the purpose of this methodology being proposed, the

study limits the criteria here to the above four.The figure

below illustrates the comparison rules.

Figure 1: Framework for TC Evaluation/Comparison

It is noted that the items under the empirical domain (i.e.

metrics, parameters, data sets size, data sets source, and data

sets hardness) are those identified as the key issues in

algorithms‟ empirical comparisons in part 1 above. This

implies that they have causal effect on the performance of an

algorithm, and thus the comparison results. The following is

the proposedmethod of evaluating or comparingeach

criterion.

2.3.1: Accuracy
Algorithms‟ accuracy should be evaluated or compared from

the simulation domain by clustering the documents using

each algorithm on each of particular data sets and observing

a particular metric‟s value for each data set. Concerning the

chosen metric, the study settles at external metrics because

they are independent of the approach used, unlike the

internal measures. [4]agrees with this by saying that the

external measures are independent on the text representation

method and metrics used during the text clustering process.

And to justify which of the external measures to use, the

study identifies the following constraints: Homogeneity and

completeness. For a metric to satisfy homogeneity, it should

prefer clusterings whereby items in a cluster are much as

possible from one class. According to [5], this means that if

A is a clustering with a particular cluster C containing items

from two classes c1 and c2, while B is a clustering same as A

except that items in C are instead in two clusters

corresponding to classes c1 and c2, then a metric should yield

better value for distribution B for it to be said to be

homogenous. For a metric to satisfy completeness, it should

prefer clusterings whereby items belonging to a class are as

much as possible be clustered together. According to [5], this

means that if A is a clustering whereby two clusters C1 and

C2 contain items of the same class c, while B is a clustering

same as A except that clusters C1 and C2 are combined into a

single cluster C, then a metric should yield better value for

distribution B for it to be said to be complete. Thus, the

chosen metric should satisfy both homogeneity and

completeness requirements. Concerning data sizes, the study

suggests the use of almost-near data sizes (typically small or

medium sized data sets). This avoids testing scalability

instead of accuracy (i.e. the data sizes usually have a causal

effect on the accuracy of an algorithm). Regarding the data

source, synthetic and benchmark data sets should be

combined so as to take the benefits of each of the two types.

The data sets chosen should be used for each algorithm in the

comparison. Concerning parameters, it is noted that from

theory, these have more causal effect on the accuracy of

algorithms more than the other factors under the empirical

domain (i.e. data sets sizes, source, hardness, and metrics).

An algorithm may produce very different results using

different parameters. Also, unlike the other factors, it‟s hard

to determine the best set of parameter values to use in a

comparison, since different data sets have different

distributions of data points. For example in DBSCAN, there

is no ideal radius (Eps) that should be used for all data sets

because different data sets will have different distances

between the data points.It is noted that though the default

parameter values are not the best for all data sets, if we can

use different data sets with vrying data distributions in terms

of the distances among the points, the default parameter

values (or K=number of classes for distance-based

algorithms) represent good approximation of the most

appropriate parameter values on average. And a good metric

that tells of the distances among the data points is the SSE.

For example, data points that are very far from one another

Data

Metrics

EMPIRICA

L

Size

Performance Criteria

Document representation, accuracy, efficiency,

robustness, scalability, interpretability, usability,

applicability, text representation method, approach,

hierarchy, overlapping nature, redundancy reduction.

DESCRIPTIVE

Assumptions,

goals, process,

characteristics

Parameters

Hardness Source

ANALYTICAL

 BigO notation

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

15

have higher SSE values and vice versa. Alternatively rather

than using default parameters with data of varying

distributions, one can comfortably set appropriate parameters

to correspond to the actual SSE approximated value for each

data set. For example for DBSCAN, one should set

Eps=(SSE/number of instances)0.5, which corresponds to the

approximated inter-points distance.Andthe calculation of the

average accuracy for each algorithm out of the accuracies in

all the data sets should be done. This should be followed by

ranking the algorithms such that those with the best average

accuracy win.Also where appropriate, the descriptive domain

is applied to describe how the assumptions, goals, process, or

characteristics of an algorithm contribute to its observed

accuracy (either high accuracy or low accuracy).

But an issue with calculating average accuracies and ranking

the algorithms based on the average accuracies is the un-

clustered data sets. From experience, an algorithm may not

cluster at all some data set during the performance

comparison (e.g. it may fail after a short time giving fail

message, or may just hang, or may take indefinitely very

long time to cluster without stopping). The question is what

accuracy value to assign that algorithm for that data set?

Ordinarily, one assigns accuracy value of 0 for that algorithm

on that data set such that the average accuracy value for that

algorithm is lowered. But the problem here is that some

accuracy metrics have the best algorithms with the lower

values (e.g. within cluster sum of square, percentage of

wrongly clustered instances, etc), and so giving such

algorithm value 0 will erroneously mean it‟s the most

accurate in that data set, and the average is also lowered

(improved). And this studyrefers to such a metric as a low-

value metric, and the opposite a high-value metric.So

alternatively, one can use the style of just leaving missing

values for the un-clustered data sets (and computing averages

excluding the un-clustered data). But the problem here is that

still, an algorithm with missing values may get better average

accuracy as a result (since the average is computed excluding

the un-clustered data sets).This study therefore proposes a

simple and fair formula for un-clustered accuracies. The

accuracy of such un-clustered data sets should be

consideredas missing values. One should then calculate the

average accuracy for that algorithm out of all clustered data

sets (excluding the un-clustered data sets), but then increase

this average value proportionally to the number of un-

clustered data sets. This is done by incrementing the average

value by the ratio of the number of un-clustered data sets

over the total number of the data sets multiplied by the

average value, i.e.

Accuracy = average accuracy + (average accuracy *

unclustered data sets / total data sets)

This means that for the algorithms that cluster all data sets,

the formula is

Accuracy = average accuracy

But in case there is an algorithm with no clustered data set at

all, since it has missing values for all data sets, the formula

simply shouldn‟t be appliednor computing even the average

value. One should simply rank it (or them) last. Also, this

idea of having missing values should also happen when using

a high-value metric. In this case, an algorithm with missing

values should have lower average rather than higher one as a

result. So the formula becomes

Accuracy = average accuracy - (average accuracy *

unclustered data sets / total data sets)

Which is logically the same as

Accuracy = average accuracy * clustered data sets /

total data sets

For example, assume two algorithms (A1 and A2) obtaining

the following accuracy values (using a low-value metric) for

three data sets A, B, and C respectively: (2, 4) and (2, 4, 3)

i.e. both algorithms have the same accuracies for data A and

B but A1 does not cluster data C. Using a high-value metric,

the comparison will be

Table1: Sample accuracy comparison of2 algorithms

Data set A1 A2

A 2 2

B 4 4

C 3

Average 3 3

Measure 2 3

Rank 2 1

Here, the accuracy measure of A1 is computed as (3-

(3*1/3))=2 or (3*2/3)=2. Thus, A1 average accuracy is

reduced proportionally to the number of un-clustered data.

2.3.2: Efficiency
The efficiency of an algorithm is its ability to process using

minimum computer resources, mainly the CPU and the

memory. These are empirically measured using the CPU‟s

time taken to process the algorithm‟s task and the memory

size used by the algorithm respectively. However, the

execution time is the most crucial metric for determining

algorithms‟ efficiency comparison and evaluation. And many

researchers have computed the efficiency of algorithms by

running them using various data sets of any size, then

computing the average running times, and observing the

algorithm with the least average as the winner. Also, many

have confused efficiency with scalability by measuring

running times as data sets increase, such that what they

actually measure is scalability. This study explains that the

efficiency test of an algorithm should include only the

normal-sized data sets. Just like in testing accuracy where the

factors of empirical domain are maintained constants for all

algorithms under comparison (including metrics, data sets

sizes, and data sources), the same should be done

here.Another aspect that lacks with previous research is lack

of considerations of the correlation between accuracy and

efficiency during efficiency comparisons of algorithms,

leading to wrong conclusions. An algorithm may take lesser

time to cluster a data set not because of its high efficient

nature, but because of its inability to cluster the data fully

(detecting more groups/clusters of data obviously requires

more time).

i.e. low accuracy of an algorithm on some given data may

make it take less time to cluster the data. And an algorithm

may obviously take more time to produce better clusters.

For example, the comparative study results of three

classification algorithms by [6] concluded that there is a

tradeoff between accuracy and efficiency such that the most

accurate algorithms in their study had the highest time

complexity (lowest efficiency) and vice versa. Consequently,

even the efficiency will vary with different parameter values,

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

16

since efficiency is correlated to accuracy. And consequently,

one should at least talk of an algorithm‟s efficiency at a

particular accuracy level (or at particular values of

parameters). But measuring the efficiency of each algorithm

at a particular level of accuracy (e.g. 90%)requires that one

sets the factors (mainly the parameters) of each algorithm

that will yield that accuracy level. Problems here are that

even with all possible values of parameters, some algorithms

may fail to yield the required accuracy level, and that one

needshuge number of runs searching for the required level of

accuracy using different parameter values. Alternatively,

since the efficiency is correlated to accuracy, this

studysuggests doing the accuracy and efficiency measures

together using the same accuracy comparison runs explained

above. This means using data with different SSE values, and

consequently considering the default parameter values to be

a good approximation of the best parameter settings for all

the data sets.

Thus, this study proposescomparing an algorithm‟s

efficiency from the simulation domain by observing the time

taken (in seconds) to fully cluster the documents using the

algorithm. One should use the exact arrangement as in

accuracy comparison i.e. the same data sets of small to

medium sizes with varying SSE levels, but with no noise

added, of both synthetic and benchmark types, and default

parameter values for the algorithms (or K=number of classes

for distance-based algorithms). One should run each

algorithm on each data set and record the time taken to

cluster in each run, and then calculate the average efficiency

for each algorithm out of the efficiencies in all the data sets.

And the missing values issue should be addressed similar to

the accuracy comparison above, whereby the efficiency

metric (running time) is a low-value metric. In this case, one

should calculate the efficiency measure as

Efficiency = average efficiency + (average efficiency

* unclustered data sets / total data sets)

Then the algorithms should be ranked such that those with

the best average efficiency (i.e. the lowest average running

times) win.Also where appropriate, one should apply the

descriptive domain to describe how the assumptions, goals,

process, or characteristics of an algorithm contribute to its

observed efficiency (either high efficiency or low

efficiency).

2.3.3: Scalability

The scalability of an algorithm as defined by some

researchers has ambiguities,e.g. the ability of a TC algorithm

to cluster documents of increasing sizes. [7]for example,

defines the scalability of a model-building algorithm as

follows: „This is the ability to construct the model efficiently

even for a large amount of high dimensional data‟. From

literature, the testing and comparisons of algorithms‟

performance has been weak, limited and unclear. First, most

researchers have tested scalability of their newly-proposed

algorithm empirically by running the algorithm and others

being compared with using data sets of different sizes

(mainly the number of documents). They then represented

this using a graph, and visually observed how the running

time of the algorithm varies with the different data sets sizes.

If the graph of the proposed algorithm „seems‟ to be better

than the ones for the other algorithms, then its considered to

be more scalable. But this aspect of a graph appearing

“better” than others has not been defined, and clearly can‟t

be used to conclude which algorithm is more scalable than

which other. Secondly, it is not only the running time that

can be affected by huge data sizes, but also any other

performance criterion, usually the accuracy. Third just like

explained above, oneshould vary the various aspects of data

sizes i.e. the number of text documents, the number of

attributes (or terms), and the number of groups/topics (or

classes). Fourth, it‟s important for scalability to be measured

also from the analytical domain by approximating an

algorithms run time depending on a given data size from its

logic.Fifth, is the ambiguity of the usual scalability definition

i.e. “the ability to cluster documents of increasing sizes

without affecting performance”. The question is “is the most

scalable algorithm the one with the least rate of decrement of

performance as data sizes increase or the one with the

highest (average) performance as the data sizes

increase”?And if one is to combine the two aspects, what

would be the formula? Last and just like in accuracy, it is

possible to have un-clustered data sets. But the difference

here is that in the case of scalability, failure to cluster larger-

sized data sets should lead to lesser scalability, i.e. the data

sets‟ sizes should be considered in the formula for un-

clustered data.These last two ambiguities are illustrated

below by assuming running seven algorithms (named A1,

A2, A3, A4, A5, A6, and A7) on four data sets of increasing

sizes (named A, B, C, and D), and obtaining the accuracy,

average accuracy, and standard deviation (stdev) values

shown below (using a high-value metric).

Table 2: Sample scalability of 4 algorithms

ACCURACIES OF 7 ALGORITHMS ON 4 DATA SETS

OF INCREASING SIZES

(size(A)<size(B)<size(C)<size(D))

Algorithm A B C D Avg Stdev

A1 47 43 39 35 41

5.16397

8

A2 40 40 40 40 40 0

A3 80 70 60 50 65

12.9099

4

A4 60 59 58 57 58.5

1.29099

4

A5 62 62 62 62 62 0

A6 82 81 80 81 1

A7 5 4 3 2 3.5

1.290

994

Figure 2: Visualizing scalability of 4 algorithms

0

20

40

60

80

100

A B C D

A1

A2

A3

A4

A5

A6

A7

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

17

It can be seen that algorithms with the least rate of decrease

of accuracy are A2 and A5 (stdev=0). But it would be clearly

unfair to rank them equal with the same scalability because

algorithm (A5) has higher values of accuracy (i.e. 62). Also,

both A3 and A4 have higher values of accuracy (thus higher

average accuracy) than A2 despite that they have higher rate

of reduction of accuracy than A2. It‟s clearly unfair to

consider A2 as more scalable than A3, A4 just because it has

a lower rate of reduction of accuracy as data sizes increase.

Still, it would be clearly unfair to decide that A3 has higher

average accuracy than A5 and so is more scalable, when

visual inspection of the graph shows that A3‟s performance

is clearly affected more by large data sizes (especially if we

could include more data with higher sizes than D‟s size).

Thus, a fair measure of scalability should include both

aspects of the rate of decrease in performance and the

average performance. Still another issue is if A6 is more

scalable than many of the other algorithms since it has the

highest average accuracy and also a lower rate of reduction

of accuracy (or lower stdev) than A1, A3, A4, and

A7(because A6 is not able to cluster at all data set D,i.e. it

can‟t cluster data of very large sizes - the most desirable for

scalability). The question is should it be completely ruled out

of scalability comparison or ranked as the least scalable?

And in both cases, is it really fair to rank it lower than A7

just because it has a missing value for high data size when it

can cluster very well medium data sizes? The question is

what formula or exact criteria would address these issues.

Solving the ambiguities for scalability on accuracy

Thus, oneshould combine the average performance and the

rate of reduction of the as the data sizes increase (e.g. using

stdev). Here, both the algorithms with the highest averages

and those with the least standard deviationshould be favored

by getting the difference of the later from the former, i.e.

Scalability on accuracy = (average accuracy - stdev)

For low-value metrics, this mathematically means

Scalability on accuracy = (average accuracy + stdev)

Unless otherwise stated, a high-value metric is assumed

henceforth. And this formula assumes that the scalability of

algorithms decreases with increasing size. Yes it‟s strange to

see an opposite case. But in case such a case occurs (i.e.

meaning an algorithm‟s scalability increases with increasing

data size, implying it‟s highly scalable), we will add the

standard deviation to the accuracy as

Scalability on accuracy = (average accuracy + stdev)

(because stdev measures are always positive whether the

observed values are increasing or decreasing), or as follows

for a low-value metric.

Scalability on accuracy = (average accuracy - standard

deviation)

The issue of un-clustered data is addressedby incrementing

the average value just like in accuracy and efficiency

comparison, but proportionally to the sizes of the un-

clustered sets, rather than their number,as

Scalability on accuracy = (average + stdev) + ((

average + stdev) * unclustered data sizes / total data

sizes)

which can be simplified to

Scalability on accuracy = (average + stdev) * (1+ (

unclustered data sizes / total data sizes))

(for a low-value metric) and

Scalability on accuracy = (average - stdev) - ((

average - stdev) * unclustered data sizes / total

data sizes)

(for a high-value metric), which is logically the same as

Scalability on accuracy = (average - stdev) * (

clustered data sizes / total data sizes)

But in case there is an algorithm with no clustered data set at

all, since it has missing values for all data sets, the formula is

not applied nor is the computation of average value. It is

simply rank last. Also, an algorithm that fails to cluster many

data sets but clusters only one should be disqualified from

the formula because it‟s stdev will be unfairly low i.e. 0

(unfairly making it the algorithm with the least rate of

reduction of performance, yet this stdev value of 0 is as a

result of its inability to cluster data sets rather than good

performance). And in these formulae, one can either use the

exact data size values or rank levels of the sizes of the data

sets (e.g. rank 1 for A, 2 for B, 3 for C, and 4 for D). But in

the later case, the data sizes should be chosen such that the

sizes increase in a near-uniform manner (e.g. size(A)=500,

size(B)=1000, size(C)=1500, size(D)=2000). And

consequently, ranking of the algorithms is done such that

those with the highest scalability measures (for a high-value

metric) or with the lowest scalability measures (for a low-

value metric) win.

Solving the ambiguities for scalability on efficiency

Similar procedure, recordings and calculations as above

(computing scalability on accuracy) are done, this time

computing scalability on efficiency. In this case, the metric is

the running time (which is a low-value metric).

Getting overall scalability ranking

The overall scalability ranking of the algorithms is gotten by

summing the two ranks of each algorithm (i.e. in accuracy

and efficiency). The algorithms with the least sums of ranks

are the overall winners.

Summary of comparing scalability

This study therefore proposesevaluating an algorithm‟s

scalability fromthe empirical domain,whereby one uses the

same arrangement as in accuracy comparison except for data

sizes i.e. use data sets with varying sizes, with varying SSE

values, of both synthetic and benchmark types, and with no

hardness added. Default parameter values for the algorithms

(or K=number of classes for distance-based algorithms) are

used. The data sets should be of varying sizes in the number

of documents, the number of attributes, and the number of

classes. Let the sizes increase in almost-uniform manner in

each of the three aspects. Run each algorithm on each data

set, and record the accuracy and the efficiency (running time)

each time. Apply statistical measures to obtain both the

average and the rate of reduction (e.g. using stdev) of both

the accuracy and the efficiency for each algorithm as the data

sizes increase. Obtain the scalability measure of each

algorithm based on accuracy using the above formulae.Note

that the clustered size is the total size (or total ranks) of the

clustered data sets while total size is the total size (or the

total ranks) of the data sets. The ranks of the data sets are

either values that are directly proportional to the sizes (or the

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

18

ranges of sizes) of the data sets or the actual sizes. For

example, rank 1 may refer to size 500, rank 2 to size 1000,

rank 3 to size 3000, etc. Alternatively, rank 1 may refer to

any size of between 1and 500, rank 2 to sizes 501 to 1000,

etc. Referring to data sets‟ sizes in terms of their ranges may

be specifically easier in comparing algorithms. Then rank the

algorithms based on scalability on accuracy such that the

most scalable algorithm (ranked 1) has the best scalability

measure – lowest (for a low-value metric) or highest (for a

high-value metric). In case some algorithms have missing

values in either all the data sets or all the data sets except

one, do not apply the formulae on them, but simply rank

them the last.Then repeat the above procedure and formulae

of obtaining scalability measure, but in this case based on

efficiency rather than accuracy, and using a low-value metric

(i.e. the running time). Rank the algorithms based on

scalability on efficiency such that the most scalable

algorithm (ranked 1) has the least scalability measure

(meaning the least running time).

Finally, obtain the overall scalability comparison by adding

the two ranks for each algorithm (i.e. scalability based on

accuracy rank and scalability based on efficiency rank). The

most scalable algorithm has the least sum. In case of a tie, for

each of the tying algorithms, compute the algorithm‟s

percentage of the scalability measure out of the total measure

of the tying algorithms. This is done for both accuracy and

efficiency. Then get the difference of the percentages for

both accuracy and efficiency. Note the aspect with the higher

difference (out of accuracy and efficiency), and pick the

algorithm with the best rank for that aspect as the overall

winner, since this means that that algorithm beats the other

with a higher margin, than the other algorithm beats this

winning algorithm.

Also, apply the analytical domain and express the expected

running time using the big O notation, as well as the

descriptive domaintodescribe how the assumptions, goals,

process, or characteristics of an algorithm contribute to its

observed scalability.

2.3.4 Flexibility (or robustness)
Apart from testing the accuracy, efficiency, and scalability of

algorithms, it‟s important to test if the performance of the

algorithms is affected by data of different hardness.This is

one criterion that has not been included in the research of

most researchers (or has not been appropriately measured),

yet is also important because an algorithm may perform the

best in ordinary-type data yet perform poorly if the data has

high hardness levels. This study identifies the various aspects

of hardness as irregularities of shapes, irregularities of

densities, and noise levels. And in those few researches that

have included this criterion, only the change in efficiency of

algorithms has been approximated. But we explain that just

like in scalability, we need also to measure the rate of change

of accuracy. Many algorithms will have much lower

accuracy with harder data, such that it‟s important to

consider how much the accuracy is affected for different

algorithms, so as to make a better decision since many

applications encounter hardness of data. And the same

issues as in scalability apply here, i.e.combining averages

with the rate of change of performance as data hardness

increase, and missing values.

Thus, the study proposes comparing algorithms‟ robustness

empirically just like in scalability except that it is the data

hardness rather than size that is varied. Butit is noted that it

may be hard to obtain data of varying levels in each of the

three aspects of hardness (the available data may only be in

terms of noise levels). And most data generators allow

setting hardness levels in only one aspect, i.e. noise. In this

case, one should compare the other aspects of hardness under

the descriptive domain. One should run each algorithm using

data of increasing levels of hardness and measure the

accuracy and efficiency each time, and then calculatethe

average accuracy and the average efficiency, as well as their

standard deviations, and then calculate the robustness on

accuracy as

Robustness on accuracy = (average + stdev) + ((

average + stdev) * unclustered data sizes / total data

sizes)

 (for a low-value metric) and

Robustness on accuracy = (average - stdev) * (

clustered data sizes / total data sizes)

(for a high-value metric). The robustness on efficiency

should also be calculated using the same formula (for low-

value metric). Then rank the algorithms just like in

scalability ranking.Also, from the descriptive domain,

deduce the algorithm‟s flexibility in all the three aspects .

2.3.5: Overall empirical comparison

Finally, have a final empirical ranking of the algorithms

based on the total rank value for each algorithm based on the

four aspects of empirical comparisons i.e. accuracy,

efficiency, scalability, and robustness.In case of a tie, use

procedure similar to scalability/robustness ranking above for

tying algorithms.

2.3.6: Other performance criteria

Other performance criteria are to be evaluated or compared

under the descriptive domain. This is by describing the

characteristics of the algorithms. They are;

 The approach: By stating the algorithm‟s approach.

 Text representation model: By stating the text

representation model used by an algorithm.

 Usability: By describing the number of input

parameters. The best algorithms have the least number

of parameters.

 Robustness: By explaining the algorithm‟s ability to

cluster data of irregular shapes and irregular densities.

 Interpretability: By stating whether or not an

algorithm produces cluster labels. Those algorithms that

produce cluster labels are better in this aspect.

 Applicability: By stating whether or not an algorithm

can produce overlapping clusters. It is better for an

algorithm to produce labels to make the produced

clusters more understandable.

 The hierarchy: By stating if the algorithm is

hierarchical or partitioning in terms of the

organizational structure of the produced clusters. And if

hierarchical, we state if it‟s divisive or agglomerative in

nature.

 The redundancy reduction: By stating whether or not

an algorithm does redundancy reduction or not, and if

so, we state the method used. An algorithm that does

redundancy reduction is more efficient, and so performs

better.

3. CONCLUSIONS
It is concluded that TC algorithms‟ evaluation and

comparison has not been previously done satisfactory. It is

suggested that applying this methodology will ensure that

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.13, April 2016

19

such evaluations and comparisons are done using formal

procedures that will yield dependable results. Another study

will be done to apply this methodology and do a

comprehensive comparison of some TC algorithms.

4. REFERENCES
[1] Chen, J 2005, Comparison of Clustering Algorithms and

its Application to Document Clustering, PhD Thesis,

Princeton University.

[2] Chen, Y, Qin, B, Liu, T, Liu, Y, & Li, S 2010,„The

Comparison of SOM and K-means for Text Clustering‟,

International Journal of Computer and Information

Science, vol. 3, no. 2.

[3] Prelic, A, Bleuler, S, Zimmermann, P, Wille, A,

Buhlmann, P, Gruissem, W, Hennig, L, Thiele, L,

&Zitzler, E 2006, „A systematic comparison and

evaluation of biclustering methodsfor gene expression

data‟, Oxford University Press, vol. 22, no. 9.

[4] Greene, D 2007, A State-of-the-Art Toolkit for

Document Clustering, PhD Thesis, University of

Dublin.

[5] Amigo, E, Gonzalo, J, Artiles, J &Verdejo, F 2009, A

comparison of Extrinsic Clustering Evaluation Metrics

based on Formal Constraints, Technical Report,

Departamento de Lenguajes y SistemasInformaticos,

UNED, Madrid, Spain, viewed 19 January 2015,

http://nlp.uned.es/docs/amigo2007a.pdf.

[6] Akinola, S &Oyabugbe O 2015, „Accuracies and

Training Times of Data Mining Classsifications

Algorithms: An Empirical Comparative Study‟, Journal

of software Engineering and Applications, vol. 8, 470-

477.

[7] Shahzad, W 2010, Classification and Associative

Classification Rule Discovery Using Ant Colony

Optimization, PhD Thesis, FAST National University of

Computer & Emerging Sciences.

IJCATM : www.ijcaonline.org

