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ABSTRACT 

Effective but simple testing mechanisms to develop software 

testing skills at learning stage is an utmost required. Testing 

techniques can mostly be unexplored while learning any 

programming languages. Programs written seem to be correct 

and no directed testing is performed, therein the bugs present 

are not explored by the learners. This paper proposes simple 

testing approaches for small programs that can be exercised 

while learning any programming language.   
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1. INTRODUCTION 
Testing in computer science is a process of evaluating a single 

program or a set of programs with the intention to improve the 

correctness and performance in all aspects of the system. It is 

an effective and real-life practice for improving the reliability 

of a system. Testing is being performed at every stage in 

software(S/W) development life cycle (SDLC). 

Testing is broadly classified into three categories, namely unit 

testing (UT), integration testing (IT) and system testing (ST). 

UT is carried out by the developing team on the individual 

units of source code developed by the developers for 

validating their progression to the next level. IT is the testing 

of combined parts of an application to check whether the 

functions behave as per the requirement as individual or 

combined. Once all the components are integrated, the 

application as a whole is tested (i.e., ST) to see whether it 

meets requirement standards. Out of these testing 

mechanisms, unit testing plays a vital role for early detection 

of error and eventually it optimizes the testing cost as well as 

cost of the final product. It is better to learn unit testing 

mechanisms or test case design for unit testing while learning 

any programming language. 

Test case generation for above mentioned all testing 

mechanisms is the most intellectual and demanding task. It is 

the most critical one, since it has a strong impact on the 

effectiveness and efficiency of the whole testing process [6]. 

As testing is labour-intensive and expensive, a number of 

works have been introduced to automate the testing process 

for cost reduction and improvement of software quality [6-

12]. These automated test case generation tools provide good 

test quality in less time as compared of a manual approach, 

but they do not provide detailed knowledge about the 

techniques that are used for generation of test cases. As a 

result, a big gap found between the automated testing 

applications and practical usability of test case generation 

mechanisms, proposed by researchers. 

Many research works for generation of test cases and test 

coverage has been proposed for UT. The motivation for the 

current work is to provide a simple but effective test case 

design approach, which can be adopted for testing small 

program(s) while learning. The approach must provide 

practical benefits to the learners along with simplicity so that 

it can be practiced before receiving advanced software 

engineering knowledge [13].  

Testing is generally unexplored at the outset of any 

programming language learning. As a result, learners are 

totally unaware of all possible errors or bugs which are hidden 

in their code segment. Towards such aim this paper provides a 

simple test case design approach for small programs that 

learners should practice during their learning process. This 

experience of test case design at a very basic level will be 

very beneficial in long run. 

2. PROPOSED MECHANISM 
The overall sequential testing process and consequent test 

case design for testing laboratory code segment is presented 

by a flow diagram in Fig 1. This approach will give complete 

test coverage for testing of programs in any language. 

Throughout the article „C‟ language code segment is 

considered. 

2.1 Problem Analysis  
The first step towards testing a code needs the problem 

domain knowledge for which the program was built up. 

Problem domain knowledge mainly consist the input domain 

of the program and the expected output to achieve. Without 

proper clarity of the problem domain, any test conducted may 

found to be erroneous in future. Careful examination of the 

problem statement will help the learners to find exact problem 

domain. 

2.2 Static White Box (SWB)Testing 
The next step for testing is the SWB testing [14]. This process 

includes careful and methodical reviews of the S/W design, 

architecture and code without executing it. The reason to 

perform SWB testing is to find bugs early that would be 

difficult to uncover or isolate later stages of testing. For small 

programs under this testing process, the following inspection 

and reviews need to be carried out to find possible bugs.  

A) Check for recommended style for program writing [16]. 

Proper program writing style will considerably helpful to find 

and reduce syntactical and semantic errors in the program. 

B)To verify the variable declarations, definitions and uses. 

C) To ensure right logic implementation as compiler cannot 

detect logical error. 

Syntax error checking or some other error checking (like, use 

of a variable without declaration, proper use of parentheses, 
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etc.) will be checked by the compiler during compilation of the code. 

 

  

 

Fig 1: Flow diagram of overall testing process 

 

2.3 Dynamic Black Box (DBB) Testing 
The third step for testing is to perform DBB testing [14]. In 

this process, testing is done under program execution without 

having an insight into the details of underlying code. Proper 

design of test cases is highly expected for such testing which 

will be given as inputs to the program in execution. The 

corresponding outputs are checked to find bugs or errors if 

present. A number of techniques has been proposed [14,15] 

for generation of test cases, out of which two major 

techniques, namely, (1) Equivalence Partitioning and (2) 

Boundary Value Analysis, should be practiced for dynamic 

black box testing.  

2.3.1 Test case generation by Equivalence 

Partitioning (EP) 
EP is a method for deriving test cases from all possible classes 

of input domain set called Equivalence Classes. Each member 

of the equivalence class causes the same kind of processing 

and output to occur. Thus, instead of testing every input, only 

one test case from each partitioned classes is considered for 

testing [15]. To perform EP, one needs to follow two steps, 

namely (1) Identifying equivalence classes and (2) Designing 

suitable test cases therein. 

2.3.1.1 Identification of Equivalence classes 
Two types of classes can always be identified. They are  

a) Valid Equivalence Classes(VEC) which consider 

valid input set for the program and  

b) Invalid Equivalence Classes (IEC) which consider 

invalid input set for the program that may leads to 

unexpected behaviour in the program. 

2.3.1.2 Identification of test cases 
A few guidelines are given below to identify test cases from 

the obtained equivalence classes. They are  

(a) Assign a unique identification number to each equivalence 

classes.  

(b) Write a new test case covering as many of the uncovered 

valid equivalence classes as possible.  

(c) Write a test case that covers one and only one of the 

uncovered invalid equivalence classes, until all invalid 

equivalence classes have been covered by test cases [15].  

EP method is clarified here with Example 1. 

Example 1: Let a program that reads three input values (say 

A, B, C) of integer type with a range [1, 20] and prints the 

largest number. The partition of the input domain as valid and 

invalid input, i.e., the equivalence classes can be prepared as 

below. 

Valid equivalence classes: 

C1 = {<A, B, C> | A, B, C ∈ℤ∧ 1<= A <= 20} 

C2 = {<A, B, C> | A, B, C ∈ℤ∧ 1<= B <= 20} 

C3 = {<A, B, C> | A, B, C ∈ℤ∧ 1<= C<= 20} 

Invalid equivalence classes: 

C4 = {<A, B, C> | A, B, C ∈ℤ∧ A<1} 

C5 = {<A, B, C> | A, B, C ∈ℤ∧ A>20} 

C6 = {<A, B, C> | A, B, C ∈ℤ∧ B<1} 

C7 = {<A, B, C> | A, B, C ∈ℤ∧ B>20} 

C8 = {<A, B, C> | A, B, C ∈ℤ∧ C<1} 

C9 = {<A, B, C> | A, B, C ∈ℤ∧ C>20} 

The Test cases and the expected outcomes are depicted in 

Table 1. 

Table1. Instance of a test case design using equivalence 

partitioning mechanism 

Test 

Case 

ID 

Variables Expected 

Result 

Classes 

Covered By 

the Test cases 
A B C 

1 12 19 5 B is greatest C1,C2,C3 

2 0 12 17 Invalid Input C4 

3 35 15 18 Invalid Input C5 

4 16 0 18 Invalid Input C6 

5 16 46 11 Invalid Input C7 

6 12 8 0 Invalid Input C8 

7 6 10 47 Invalid Input C9 

 

2.3.2 Test case generation by Boundary Value 

Analysis (BVA) 
Test cases can be derived from the boundaries of equivalence 

classes. Boundary conditions are special because 

programming, by its nature, is vulnerable to problems at its 

edges [14]. For BVA, test for values on and at either sides of 

each boundary of equivalence classes are done. The test case 

design by BVA is explained using example 2.  

Example 2:Let in an examination grading system, if the 

student scores 0 to less than 40 then assign E Grade, if the 

student scores between 40 to 49 then assign D Grade, if the 

student scores between 50 to 69 then assign C Grade, if the 

student scores between 70 to 89 then assign B Grade, and if 

the student scores between 90 to 100 then assign A Grade. 

Also consider that marks are awarded as a whole number. 

Analyzing above problem the following equivalence classes 

are identified. 

Valid equivalence classes:  

C1: 0<=Grade<=39 

C2: 40<= Grade<= 49 

C3: 50<= Grade<= 69 

C4: 70<= Grade <= 89 

C5: 90<= Grade<= 100 

Invalid equivalence classes:  

C6: Grade <0 

C7: Grade > 100 

Now based on BVA the following input values to test 

boundaries of equivalence classes are shown in Table 2. 
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Table2. Instance of a test case design using BVA 

Test 

Case 

ID 

Variable Expected Result 

Grade 

1 -1 Invalid Input 

2 0 E Grade 

3 1 E Grade 

4 38 E Grade 

5 39 E Grade 

6 40 D Grade 

7 41 D Grade 

8 48 D Grade 

9 49 D Grade 

10 50 C Grade 

11 51 C Grade 

12 68 C Grade 

13 69 C Grade 

14 70 B Grade 

15 71 B Grade 

16 88 B Grade 

17 89 B Grade 

18 90 A Grade 

19 91 A Grade 

20 99 A Grade 

21 100 A Grade 

22 101 Invalid Input 

 

2.4 Dynamic White Box (DWB) testing 
DWB testing [14] is designed to serve the testing process of a 

system by having an insight view of the code as well as 

executing the same. The steps for DWB test case design are 

shown in a flow diagram in Fig 2. It includes (1) Basis Path 

testing, (2) Multiple condition testing, (3) Loop testing and 

(4)Data flow testing. These are the major testing schemas. 

Though these steps are shown sequentially in Fig 2 for 

learner‟s simplicity, but any sequence can be followed for 

experienced developers. 

 

 

Fig. 2 Flow diagram for dynamic white box testing 

2.4.1 Basis path testing 
Test cases are designed based on independent paths in the 

flow graph of the code. A flow graph presents the flow of 

control in the program. To draw the flow graph, all statements 

of the program are numbered sequentially. The different 

numbered statements serve as nodes of the flow graph. An 

edge from one node to another node exists if the execution of 

the statement representing the first node can result in the 

transfer of control to the other node. Independent path is any 

path through a program that introduces at least one new set of 

processing statements (i.e. nodes). McCabe‟s Cyclomatic 

Complexity [2] is a S/W metric which provides the maximum 

number of linearly independent paths that are present in a 

flow graph. For a given graph G the Cyclomatic Complexity 

V (G) is calculated by any one of the following  

a. The number of regions in the graph; 

b. V (G) = e-n+2, where „e‟ is the number of edges, 

and „n‟ is the number of nodes;  

c. V (G) = p+1, where „p‟ is the number of decision 

node.  

Calculation of V (G) is described using example 3. 

Example 3: 

1 while(x!=y){ 

2 if(x>y) 

3 x=x-y; 

4 else y=y-x; 

5 } 

6 return x; 

 

    Fig. 3 Flow graph of Example 3 

The Cyclomatic Complexity V(G) of the flow graph in Fig 3 

can be obtained as V(G) = the number of regions in the graph 

= |{R1,R2,R3}| = 3. Therefore, the maximum number of 

linearly independent path in G is 3. One can choose the 

following three independent paths in G as:  

Path1 (1->6); 

Path2 (1->2->3->5->1->6); 

Path3 (1->2->4->5->1->6). 

Based on these independent paths the test cases that can be 

designed are: 

TC1 [For the Path1]  

Input: x=y Expected Output: x 

TC2 [For the Path2]  

Input: x>y Expected Output: x-y 

TC3 [For the Path3]  

Input: x<y Expected Output; y-x 

2.4.2 Multiple condition testing 
Multiple Condition testing generates test cases for each 

possible combination of the conditions in a decision. For the 

decision (x<0 OR y<0) having two conditions, the test cases 

will be generated for each of the combination (False, False), 

(False, True), (True, False) and (True, True). Multiple 

condition testing is the most desirable structural coverage 

measure. But in some cases, for a decision with „n‟ inputs it 

requires „2n‟ tests which may be impractical [3]. 

G: 
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2.4.3 Loop testing 
Error often occurs at the beginning and end of a loop in a 

program. Thus separate testing is needed for every loop in the 

program. The loops are broadly classified into four categories 

namely simple loops, nested loops, concatenated loops and 

unstructured loops [17].  

For simple loop, perform the following test:  

(a) Skip the loop entirely.  

(b) Once pass through the loop. 

(c) Two passes through the loop. 

(d) m passes through the loop where m<n. 

(e) n-1, n, n+1 passes through the loop, where „n‟ is the 

maximum number of allowable passes through the loop. 

Choice of n depends on test case designers and complexity of 

the program. 

 

 

 
(a) Simple Loop (b) Nested Loop 

  
(c) Concatenated Loop (d) Unstructured Loop 

Fig 4: Schematic diagram of four categories of loop 

structure 

Fig 4(a) shows a schematic diagram of a typical simple loop. 

For Nested loop, with the increase of level of nesting, the 

number of probable tests also increases. This testing may 

seems to continue indefinitely. But to have a practical number 

of testing, it is recommended to practice the following 

approach:  

(a) Start at the innermost loop, and set all other loops to 

minimum values. 

(b) Conduct simple loop tests for the innermost loop holding 

the outer loop at their minimum iteration parameter value. 

(c) Work outward, performing tests for the next loop. 

(d) Continue until all loops have been tested.  

Fig 4(b) shows a schematic diagram of a typical nested loop.  

For Concatenated loop, testing are done using simple loop 

tests if each loop is independent from the other else nested 

loops tests are performed. Fig 4(c) shows a schematic diagram 

of a typical concatenated loop.  

In case of Unstructured Loop, the loop should be redesigned 

into one among the above three types of loop or a 

combination of them [6]. Fig 4(d) shows a schematic diagram 

of a typical unstructured loop. 

2.4.4 Data flow testing 
Data flow testing is performed with the intention to uncover 

bugs in data usage during the execution of the code. 

Following steps should be considered for generating test cases 

in data flow testing. 

(a) First, design the data flow graph. For this, find all the 

definition nodes and usage nodes for all the variables in the 

program and mark them in the flow graph.  

Variables are defined by declaring and assigning values and 

they are used in expressions for certain operation. For 

example statement „x = y+z;‟ defines variable x and uses 

variables y and z. Similarly statement „scanf (“%d %d”, 

&x,&y);‟ defines variables x and y. Statement „printf(“output 

: %d”, x+y);‟ uses variables x and y. Declaration „int x, y, 

A[10];‟ defines three variables x, y and A(where A is an 

array). Similarly statement „if(x>y)‟ uses variables x and y. 

Further, Usage node can be either a predicate usage node (p-

use) or a computational usage node (c-use). Use of a variable 

(e.g. „x‟) that occurs in an assignment statement (e.g. 

„z=x+1;‟) or in an output statement ( printf (“output : %d”, x); 

) or as a parameter within a function call (e.g. „f(x);‟) or in 

subscript expressions (e.g. A[x]), are classified as c-use. The 

occurrence of a variable in an expression used as a condition 

in a branch statement or a loop statement such as an „if‟ or a 

„while‟ is considered as a p-use. For example, in the statement 

„while (z>x‟) both the variables z and x are of p-use.  

(b) Trace all-use paths from the data flow graph. 

All- uses states that at least one definition-clear path (dc-path) 

from every definition of every variable to every use of that 

definition be exercised under some test [1, 15]. A definition 

clear path (dc-path) with respect to a variable is a path 

between the definition node and the usage node such that no 

other node in that path is a defining node of that variable. 

Tracing all-use paths are described using example 4. 

Example 4: 

void test( ){ 

1 intx ; 

2 int y=0; 

3 scanf(“%d”,x); 

4 if(x>0){ 

5  y=40; 

6  if(x>20) 

7  { 

8   if(x<=30) 

9    y=y+10; 

10   else 

11    { 

12    y=y+x +50; 

13    if(y>100) 

14     y=y+100; 
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15   } 

16  } 

17 } 

18 printf(“Final y is : %d”, y); 

19 return; 

 } 

The data flow graph of the above example is obtained by 

marking all the definition nodes and usage nodes for all the 

variables of the program in the flow graph as shown in Fig 5.

Fig 5: Data flow graph for Example 4 

All the definition nodes and usage nodes for all the variables 

in the program are listed in Table 3. 

From the data flow graph in Fig 5, the data flow testing paths 

for All-uses strategy (criterion) are listed in Table 4. 

Test cases are designed (shown in Table 5) such that all the 

paths derived in Table 4 must be exercised under some test 

cases. 

Table 3. List of definition nodes and usage nodes for all 

variables in Fig 5 

Variables Defined At Used At 

x 1,3 4,6,8,12 

y 2,5,9,12,14 9,12,13,14,18 

Table 4. Instance of All–use paths for all variables 

Variable All-uses paths 

x 

P1: 3->4 

P2: 3->4->5->6 

P3: 3->4->5->6->7->8 

P4: 3->4->5->6->7->8->10->11->12 

y 

P5: 5->6->7->8->9 

P6: 5->6->7->8->10->11->12 

P7: 12->13 

P8: 12->13->14 

P9: 14->15->16->17->18 

Table 5.Instance of a test case design using All–use paths 

 

3. CASE STUDY  
A systematic approach of the proposed mechanism is shown 

below that will help programmer to develop the test cases for 

small programs by considering example 5. 

Example 5: The following program finds the remainder of a 

positive integer when divided by another non-zero positive 

integer. 

void remainder()  

    { 

1 inta,b; 

2 scanf("%d %d", &a, &b); 

3 if(a<0 || b<=0) 

4  a=-1;  // -1 Represents invalid inputs 

5 else 

6  if(a>=0 && b>0){ 

7   while(a>=b) 

8    a=a-b; 

9 } 

10 printf("remainder is %d", a); 

      } 

Step 1. After analysing the problem, the inputs are one 

positive integer and the other non-zero positive integer. The 

output to be shown is the remainder of the first number when 

divided by the second number 

Step 2. SWB testing needs inspection mainly for proper logic 
implementation of the problem. Also visual checking for 

proper variable definition and the use of that variable needs to 
be done. Syntax checking will be done by the compiler during 

compilation of the code. 

Step 3. Test cases for DBB testing are generated by using EP 

and BVA. 

Step 3.1. Test case generation by EP 

For the variables in the code (a & b), the range of the integers 

will depend on the c compiler. For a 16 bit Compiler like 

Turbo C or Turbo C++ the range is -32768 to 32767. For a 32 

bit compiler like Visual Studio or gcc the range would be -

2147483648 to 2147483647. The following equivalence 

classes are identified for the above program under test 

(assuming c compiler as Visual c++). 

Valid equivalence classes: 

C1 = {<a, b> | a, b ∈ℤ∧ 0<=a<=2147483647} 

C2 = {<a, b> | a, b ∈ℤ∧ 1<=b<=2147483647} 

Invalid equivalence classes: 

C3 = {<a, b> | a<0 ∧ 1<=b<=2147483647} 

C4 = {<a, b> | a>2147483647 ∧ 1<=b<=2147483647} 

C5 = {<a, b> | 0<=a<=2147483647 ∧ b<=0} 

C6 = {<a, b> | 0<=a<=2147483647 ∧ b>2147483647} 

Test 

Case 

ID 

x Expecte

d Result 

Path covered 

1 40(x>30) y=130 P1, P2, P3, P4 ,P6, 

P7, P8, P9 

2 25(20<x<=30) y=50 P5 
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The test cases generated from the above equivalence classes 

are shown in Table 6. 

Step 3.2. Test case generation by BVA 

From the equivalence classes derived in Step 3.1, boundaries 

of all the classes are identified and the test cases generated 

from each boundary are listed in Table 7. 

Table 6.List of test cases using Equivalence Partitioning 

mechanism 

Test 

Case 

ID 

Variables Expected 

Result 

Classes 

Covered By 

the Test 

cases 

a b 

1 159 10 9(Valid Input) C1,C2 

2 -30 5 -1(Invalid Input) C3 

3 
21474

83660 
25 -1(Invalid Input) C4 

4 40 -25 -1(Invalid Input) C5 

5 35 
21474

83670 
-1(Invalid Input) C6 

Table 7. List of test cases using BVA 

Test 

Case 

ID 

Variables Expected 

Result 
a b 

6 -1 10 -1(Invalid 

Input) 

7 0 10 0(Valid Input) 

8 1 10 1(Valid Input) 

9 2147483646 10 6(Valid Input) 

10 2147483647 10 7(Valid Input) 

11 2147483648 10 -1(Invalid 

Input) 

12 100 0 -1(Invalid 

Input) 

13 100 1 0(Valid Input) 

14 100 2 0(Valid Input) 

15 100 2147483646 100(Valid 

Input) 

16 100 2147483647 100(Valid 

Input) 

17 100 2147483648 -1(Invalid 

Input) 

 

Step 4. Test cases for DWB testing are generated by using 

Basis Path testing, Multiple Condition Testing, Loop Testing 

and Data Flow Testing. 

Step 4.1. Basis Path testing 

Test cases are generated based on independent paths in the 

flow graph of the code segment. The flow graph of example 5 

is shown in Fig 6. 

The Cyclomatic complexity of the flow graph in Fig 6 is 

V(G)= e-n+2= 12- 10+2 =4. Thus maximum number of 

linearly independent path is 4.  

The independent paths that can be obtained from the graph G 

in Fig 6 are: 

Path 1(1->2->3->4->9->10) 

Path 2(1->2->3->5->6->9->10)  

Path 3(1->2->3->5->6->7->9->10)  

Path 4(1->2->3->5->6->7->8->7->9->10) 

 

 

 

Fig 6: Flow graph for the code segment in Example 5 

Based on the independent paths, the test cases that can be 

generated are listed in Table 8. 

Here Path 2 cannot be covered since all the probable values of 

„a‟ and „b‟ has been considered already. 

Step 4.2. Multiple Condition Testing 

For the compound condition in statement 3 the test cases that 

can be generated are listed in Table 9 

For the compound condition in statement 6 the test cases that 

can be generated are listed in Table 10. 

Table 8.List of test cases using Basis Path testing 

Test 

Case 

ID 

Variables Expected 

Result 

Path 

Covered By 

the Test 

cases 

Remarks 

a b 

18 -30 5 

-

1(Invalid 

Input) 

Path 1 

Same as 

Test 

Case ID 

2 

19 1 10 
1(Valid 

Input) 
Path 3 

Same as 

Test 

Case ID 

8 

20 5 4 
1(Valid 

Input) 
Path 4  

 

Step 4.3. Loop Testing 

In example 5, only statement 7 contains a simple loop. The 

test cases for the simple loop in the statement 7 are listed in 

Table 11. 

Step 4.4. Data Flow Testing 

Analyzing the definition nodes and usage nodes for all the 

variables in example 5, the data flow graph is shown in Fig. 7. 

All the definition nodes and usage nodes for all the variables 

in the program are listed Table 12. 

Data flow testing paths for All-uses strategy (criterion) for the 

data flow diagram in Fig 7 are listed in Table 13. 

Test cases that cover all the paths listed in Table 13 are shown 

in Table 14. 

G: 
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Fig 7: Data flow Graph for the code in Example 5 

 

Table 9.List of test cases for the compound condition in 

statement 3 of example 5 

Test 

Case 

ID 

Variables Expected 

Result 

Combinatio

n Covered 

By the Test 

cases 

Remarks 

a b 

21 159 10 9(Valid 

Input) 

(False, 

False) 

Same as 

Test Case 

ID 1 

22 40 -25 -1(Invalid 

Input) 

(False, 

True) 

Same as 

Test Case 

ID 4 

23 -30 5 -1(Invalid 

Input) 

(True, 

False) 

Same as 

Test Case 

ID 2 

24 -100 -100 -1(Invalid 

Input) 

(True, True)  

 

Table 10.List of test cases for the compound condition in 

statement 6 of example 5 

Test 

Case 

ID 

Variables Expected 

Result 

Combination 

Covered By 

the Test 

cases 

Remarks 

a b 

25 -

100 

-

100 

-1(Invalid 

Input) 

(False, False) Same as 

Test Case 

ID 24 

26 -30 5 -1(Invalid 

Input) 

(False, True) Same as 

Test Case 

ID 2 

27 40 -25 -1(Invalid 

Input) 

(True, False) Same as 

Test Case 

ID 4 

28 159 10 9(Valid 

Input) 

(True, True) Same as 

Test Case 

ID 1 

Table 11.List of test cases for the simple loop in statement 7 of example 5 

Test 

Case ID 

Variables Expected Result Test Covered By the Test cases Remarks 

a b 

29 1 10 1(Valid Input) Skip the loop entirely 
Same as Test 

Case ID 8 

30 5 4 1(Valid Input) Only one pass through the loop 
Same as Test 

Case ID 20 

31 10 4 2(Valid Input) Two passes through the loop  

32 159 10 9(Valid Input) 

m passes through the loop where m<n, n = 

maximum number  allowable passes through 

the loop 

Same as Test 

Case ID 1 

33 2147483646 1 0(Valid Input) n-1 passes through the loop - 

34 2147483647 1 0(Valid Input) n passes through the loop - 

35 2147483648 1 -1(Invalid Input) For n+1 passes through the loop - 

Table 12. List of definition nodes and usage nodes for all 

the variables of example 5 

Variables Defined At Used At 

a 1,2,4,8 3,6,7,8,10 

b 1,2 3,6,7,8 

 

4. CONCLUSION 
In this work, systematic and complete test coverage for testing 

of small program(s) is presented. As one proceeds on 

generating the test cases using various techniques, some 

repetition of the same test cases may occur, which are 

eliminated. The final test case set, for any program, is the 

collection of all the generated test cases using the proposed 

mechanism, without any repetition. The approach, as 

discussed here, is basically learner oriented and can easily be 

acquired by practicing them without advance knowledge of 

S/W engineering and testing. 
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Table 13. List of all-use paths for all the variables of 

example 5 

Variables All-uses paths 

a 

P1 : 2->3 

P2 : 2->3->5->6 

P3 : 2->3->5->6->7 

P4 : 2->3->5->6->7->8 

P5 : 4->9->10 

P6 : 8->7->9->10 

b 

P7 : 2->3 

P8 : 2->3->5->6 

P9 : 2->3->5->6->7 

P10 : 2->3->5->6->7->8 

Table 14. List of a test cases based on All–use paths 

Test 

Case 

ID 

a b Expecte

d Result 

Path 

Covered By 

the Test 

cases 

Remarks 

36 159 10 
9(Valid 

Input) 

P1, P2, P3, 

P4, P6, P7, 

P8, P9, P10 

Same as 

Test 

Case ID 

1 

37 40 -25 

-1 

(Invalid 

Input) 

P5 

Same as 

Test 

Case ID 

4 
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