
International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

36

An Effective Approach for Designing Suitable Test

Cases for Small Laboratory Program: An Article

Madhumita Pal Mohanta
Dept. of MCA & CSE,

St Mary’s Technical Campus
Kolkata,Barasat, India

Samir Malakar
Department of MCA,

MCKV Institute of Engineering,
Howrah, India

ABSTRACT

Effective but simple testing mechanisms to develop software

testing skills at learning stage is an utmost required. Testing

techniques can mostly be unexplored while learning any

programming languages. Programs written seem to be correct

and no directed testing is performed, therein the bugs present

are not explored by the learners. This paper proposes simple

testing approaches for small programs that can be exercised

while learning any programming language.

General Terms

Software Testing, Software Engineering.

Keywords

Software testing, Software engineering, test case design,

testing, test cases for small programs

1. INTRODUCTION
Testing in computer science is a process of evaluating a single

program or a set of programs with the intention to improve the

correctness and performance in all aspects of the system. It is

an effective and real-life practice for improving the reliability

of a system. Testing is being performed at every stage in

software(S/W) development life cycle (SDLC).

Testing is broadly classified into three categories, namely unit

testing (UT), integration testing (IT) and system testing (ST).

UT is carried out by the developing team on the individual

units of source code developed by the developers for

validating their progression to the next level. IT is the testing

of combined parts of an application to check whether the

functions behave as per the requirement as individual or

combined. Once all the components are integrated, the

application as a whole is tested (i.e., ST) to see whether it

meets requirement standards. Out of these testing

mechanisms, unit testing plays a vital role for early detection

of error and eventually it optimizes the testing cost as well as

cost of the final product. It is better to learn unit testing

mechanisms or test case design for unit testing while learning

any programming language.

Test case generation for above mentioned all testing

mechanisms is the most intellectual and demanding task. It is

the most critical one, since it has a strong impact on the

effectiveness and efficiency of the whole testing process [6].

As testing is labour-intensive and expensive, a number of

works have been introduced to automate the testing process

for cost reduction and improvement of software quality [6-

12]. These automated test case generation tools provide good

test quality in less time as compared of a manual approach,

but they do not provide detailed knowledge about the

techniques that are used for generation of test cases. As a

result, a big gap found between the automated testing

applications and practical usability of test case generation

mechanisms, proposed by researchers.

Many research works for generation of test cases and test

coverage has been proposed for UT. The motivation for the

current work is to provide a simple but effective test case

design approach, which can be adopted for testing small

program(s) while learning. The approach must provide

practical benefits to the learners along with simplicity so that

it can be practiced before receiving advanced software

engineering knowledge [13].

Testing is generally unexplored at the outset of any

programming language learning. As a result, learners are

totally unaware of all possible errors or bugs which are hidden

in their code segment. Towards such aim this paper provides a

simple test case design approach for small programs that

learners should practice during their learning process. This

experience of test case design at a very basic level will be

very beneficial in long run.

2. PROPOSED MECHANISM
The overall sequential testing process and consequent test

case design for testing laboratory code segment is presented

by a flow diagram in Fig 1. This approach will give complete

test coverage for testing of programs in any language.

Throughout the article „C‟ language code segment is

considered.

2.1 Problem Analysis
The first step towards testing a code needs the problem

domain knowledge for which the program was built up.

Problem domain knowledge mainly consist the input domain

of the program and the expected output to achieve. Without

proper clarity of the problem domain, any test conducted may

found to be erroneous in future. Careful examination of the

problem statement will help the learners to find exact problem

domain.

2.2 Static White Box (SWB)Testing
The next step for testing is the SWB testing [14]. This process

includes careful and methodical reviews of the S/W design,

architecture and code without executing it. The reason to

perform SWB testing is to find bugs early that would be

difficult to uncover or isolate later stages of testing. For small

programs under this testing process, the following inspection

and reviews need to be carried out to find possible bugs.

A) Check for recommended style for program writing [16].

Proper program writing style will considerably helpful to find

and reduce syntactical and semantic errors in the program.

B)To verify the variable declarations, definitions and uses.

C) To ensure right logic implementation as compiler cannot

detect logical error.

Syntax error checking or some other error checking (like, use

of a variable without declaration, proper use of parentheses,

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

37

etc.) will be checked by the compiler during compilation of the code.

Fig 1: Flow diagram of overall testing process

2.3 Dynamic Black Box (DBB) Testing
The third step for testing is to perform DBB testing [14]. In

this process, testing is done under program execution without

having an insight into the details of underlying code. Proper

design of test cases is highly expected for such testing which

will be given as inputs to the program in execution. The

corresponding outputs are checked to find bugs or errors if

present. A number of techniques has been proposed [14,15]

for generation of test cases, out of which two major

techniques, namely, (1) Equivalence Partitioning and (2)

Boundary Value Analysis, should be practiced for dynamic

black box testing.

2.3.1 Test case generation by Equivalence

Partitioning (EP)
EP is a method for deriving test cases from all possible classes

of input domain set called Equivalence Classes. Each member

of the equivalence class causes the same kind of processing

and output to occur. Thus, instead of testing every input, only

one test case from each partitioned classes is considered for

testing [15]. To perform EP, one needs to follow two steps,

namely (1) Identifying equivalence classes and (2) Designing

suitable test cases therein.

2.3.1.1 Identification of Equivalence classes
Two types of classes can always be identified. They are

a) Valid Equivalence Classes(VEC) which consider

valid input set for the program and

b) Invalid Equivalence Classes (IEC) which consider

invalid input set for the program that may leads to

unexpected behaviour in the program.

2.3.1.2 Identification of test cases
A few guidelines are given below to identify test cases from

the obtained equivalence classes. They are

(a) Assign a unique identification number to each equivalence

classes.

(b) Write a new test case covering as many of the uncovered

valid equivalence classes as possible.

(c) Write a test case that covers one and only one of the

uncovered invalid equivalence classes, until all invalid

equivalence classes have been covered by test cases [15].

EP method is clarified here with Example 1.

Example 1: Let a program that reads three input values (say

A, B, C) of integer type with a range [1, 20] and prints the

largest number. The partition of the input domain as valid and

invalid input, i.e., the equivalence classes can be prepared as

below.

Valid equivalence classes:

C1 = {<A, B, C> | A, B, C ∈ℤ∧ 1<= A <= 20}

C2 = {<A, B, C> | A, B, C ∈ℤ∧ 1<= B <= 20}

C3 = {<A, B, C> | A, B, C ∈ℤ∧ 1<= C<= 20}

Invalid equivalence classes:

C4 = {<A, B, C> | A, B, C ∈ℤ∧ A<1}

C5 = {<A, B, C> | A, B, C ∈ℤ∧ A>20}

C6 = {<A, B, C> | A, B, C ∈ℤ∧ B<1}

C7 = {<A, B, C> | A, B, C ∈ℤ∧ B>20}

C8 = {<A, B, C> | A, B, C ∈ℤ∧ C<1}

C9 = {<A, B, C> | A, B, C ∈ℤ∧ C>20}

The Test cases and the expected outcomes are depicted in

Table 1.

Table1. Instance of a test case design using equivalence

partitioning mechanism

Test

Case

ID

Variables Expected

Result

Classes

Covered By

the Test cases
A B C

1 12 19 5 B is greatest C1,C2,C3

2 0 12 17 Invalid Input C4

3 35 15 18 Invalid Input C5

4 16 0 18 Invalid Input C6

5 16 46 11 Invalid Input C7

6 12 8 0 Invalid Input C8

7 6 10 47 Invalid Input C9

2.3.2 Test case generation by Boundary Value

Analysis (BVA)
Test cases can be derived from the boundaries of equivalence

classes. Boundary conditions are special because

programming, by its nature, is vulnerable to problems at its

edges [14]. For BVA, test for values on and at either sides of

each boundary of equivalence classes are done. The test case

design by BVA is explained using example 2.

Example 2:Let in an examination grading system, if the

student scores 0 to less than 40 then assign E Grade, if the

student scores between 40 to 49 then assign D Grade, if the

student scores between 50 to 69 then assign C Grade, if the

student scores between 70 to 89 then assign B Grade, and if

the student scores between 90 to 100 then assign A Grade.

Also consider that marks are awarded as a whole number.

Analyzing above problem the following equivalence classes

are identified.

Valid equivalence classes:

C1: 0<=Grade<=39

C2: 40<= Grade<= 49

C3: 50<= Grade<= 69

C4: 70<= Grade <= 89

C5: 90<= Grade<= 100

Invalid equivalence classes:

C6: Grade <0

C7: Grade > 100

Now based on BVA the following input values to test

boundaries of equivalence classes are shown in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

38

Table2. Instance of a test case design using BVA

Test

Case

ID

Variable Expected Result

Grade

1 -1 Invalid Input

2 0 E Grade

3 1 E Grade

4 38 E Grade

5 39 E Grade

6 40 D Grade

7 41 D Grade

8 48 D Grade

9 49 D Grade

10 50 C Grade

11 51 C Grade

12 68 C Grade

13 69 C Grade

14 70 B Grade

15 71 B Grade

16 88 B Grade

17 89 B Grade

18 90 A Grade

19 91 A Grade

20 99 A Grade

21 100 A Grade

22 101 Invalid Input

2.4 Dynamic White Box (DWB) testing
DWB testing [14] is designed to serve the testing process of a

system by having an insight view of the code as well as

executing the same. The steps for DWB test case design are

shown in a flow diagram in Fig 2. It includes (1) Basis Path

testing, (2) Multiple condition testing, (3) Loop testing and

(4)Data flow testing. These are the major testing schemas.

Though these steps are shown sequentially in Fig 2 for

learner‟s simplicity, but any sequence can be followed for

experienced developers.

Fig. 2 Flow diagram for dynamic white box testing

2.4.1 Basis path testing
Test cases are designed based on independent paths in the

flow graph of the code. A flow graph presents the flow of

control in the program. To draw the flow graph, all statements

of the program are numbered sequentially. The different

numbered statements serve as nodes of the flow graph. An

edge from one node to another node exists if the execution of

the statement representing the first node can result in the

transfer of control to the other node. Independent path is any

path through a program that introduces at least one new set of

processing statements (i.e. nodes). McCabe‟s Cyclomatic

Complexity [2] is a S/W metric which provides the maximum

number of linearly independent paths that are present in a

flow graph. For a given graph G the Cyclomatic Complexity

V (G) is calculated by any one of the following

a. The number of regions in the graph;

b. V (G) = e-n+2, where „e‟ is the number of edges,

and „n‟ is the number of nodes;

c. V (G) = p+1, where „p‟ is the number of decision

node.

Calculation of V (G) is described using example 3.

Example 3:

1 while(x!=y){

2 if(x>y)

3 x=x-y;

4 else y=y-x;

5 }

6 return x;

 Fig. 3 Flow graph of Example 3

The Cyclomatic Complexity V(G) of the flow graph in Fig 3

can be obtained as V(G) = the number of regions in the graph

= |{R1,R2,R3}| = 3. Therefore, the maximum number of

linearly independent path in G is 3. One can choose the

following three independent paths in G as:

Path1 (1->6);

Path2 (1->2->3->5->1->6);

Path3 (1->2->4->5->1->6).

Based on these independent paths the test cases that can be

designed are:

TC1 [For the Path1]

Input: x=y Expected Output: x

TC2 [For the Path2]

Input: x>y Expected Output: x-y

TC3 [For the Path3]

Input: x<y Expected Output; y-x

2.4.2 Multiple condition testing
Multiple Condition testing generates test cases for each

possible combination of the conditions in a decision. For the

decision (x<0 OR y<0) having two conditions, the test cases

will be generated for each of the combination (False, False),

(False, True), (True, False) and (True, True). Multiple

condition testing is the most desirable structural coverage

measure. But in some cases, for a decision with „n‟ inputs it

requires „2n‟ tests which may be impractical [3].

G:

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

39

2.4.3 Loop testing
Error often occurs at the beginning and end of a loop in a

program. Thus separate testing is needed for every loop in the

program. The loops are broadly classified into four categories

namely simple loops, nested loops, concatenated loops and

unstructured loops [17].

For simple loop, perform the following test:

(a) Skip the loop entirely.

(b) Once pass through the loop.

(c) Two passes through the loop.

(d) m passes through the loop where m<n.

(e) n-1, n, n+1 passes through the loop, where „n‟ is the

maximum number of allowable passes through the loop.

Choice of n depends on test case designers and complexity of

the program.

(a) Simple Loop (b) Nested Loop

(c) Concatenated Loop (d) Unstructured Loop

Fig 4: Schematic diagram of four categories of loop

structure

Fig 4(a) shows a schematic diagram of a typical simple loop.

For Nested loop, with the increase of level of nesting, the

number of probable tests also increases. This testing may

seems to continue indefinitely. But to have a practical number

of testing, it is recommended to practice the following

approach:

(a) Start at the innermost loop, and set all other loops to

minimum values.

(b) Conduct simple loop tests for the innermost loop holding

the outer loop at their minimum iteration parameter value.

(c) Work outward, performing tests for the next loop.

(d) Continue until all loops have been tested.

Fig 4(b) shows a schematic diagram of a typical nested loop.

For Concatenated loop, testing are done using simple loop

tests if each loop is independent from the other else nested

loops tests are performed. Fig 4(c) shows a schematic diagram

of a typical concatenated loop.

In case of Unstructured Loop, the loop should be redesigned

into one among the above three types of loop or a

combination of them [6]. Fig 4(d) shows a schematic diagram

of a typical unstructured loop.

2.4.4 Data flow testing
Data flow testing is performed with the intention to uncover

bugs in data usage during the execution of the code.

Following steps should be considered for generating test cases

in data flow testing.

(a) First, design the data flow graph. For this, find all the

definition nodes and usage nodes for all the variables in the

program and mark them in the flow graph.

Variables are defined by declaring and assigning values and

they are used in expressions for certain operation. For

example statement „x = y+z;‟ defines variable x and uses

variables y and z. Similarly statement „scanf (“%d %d”,

&x,&y);‟ defines variables x and y. Statement „printf(“output

: %d”, x+y);‟ uses variables x and y. Declaration „int x, y,

A[10];‟ defines three variables x, y and A(where A is an

array). Similarly statement „if(x>y)‟ uses variables x and y.

Further, Usage node can be either a predicate usage node (p-

use) or a computational usage node (c-use). Use of a variable

(e.g. „x‟) that occurs in an assignment statement (e.g.

„z=x+1;‟) or in an output statement (printf (“output : %d”, x);

) or as a parameter within a function call (e.g. „f(x);‟) or in

subscript expressions (e.g. A[x]), are classified as c-use. The

occurrence of a variable in an expression used as a condition

in a branch statement or a loop statement such as an „if‟ or a

„while‟ is considered as a p-use. For example, in the statement

„while (z>x‟) both the variables z and x are of p-use.

(b) Trace all-use paths from the data flow graph.

All- uses states that at least one definition-clear path (dc-path)

from every definition of every variable to every use of that

definition be exercised under some test [1, 15]. A definition

clear path (dc-path) with respect to a variable is a path

between the definition node and the usage node such that no

other node in that path is a defining node of that variable.

Tracing all-use paths are described using example 4.

Example 4:

void test(){

1 intx ;

2 int y=0;

3 scanf(“%d”,x);

4 if(x>0){

5 y=40;

6 if(x>20)

7 {

8 if(x<=30)

9 y=y+10;

10 else

11 {

12 y=y+x +50;

13 if(y>100)

14 y=y+100;

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

40

15 }

16 }

17 }

18 printf(“Final y is : %d”, y);

19 return;

 }

The data flow graph of the above example is obtained by

marking all the definition nodes and usage nodes for all the

variables of the program in the flow graph as shown in Fig 5.

Fig 5: Data flow graph for Example 4

All the definition nodes and usage nodes for all the variables

in the program are listed in Table 3.

From the data flow graph in Fig 5, the data flow testing paths

for All-uses strategy (criterion) are listed in Table 4.

Test cases are designed (shown in Table 5) such that all the

paths derived in Table 4 must be exercised under some test

cases.

Table 3. List of definition nodes and usage nodes for all

variables in Fig 5

Variables Defined At Used At

x 1,3 4,6,8,12

y 2,5,9,12,14 9,12,13,14,18

Table 4. Instance of All–use paths for all variables

Variable All-uses paths

x

P1: 3->4

P2: 3->4->5->6

P3: 3->4->5->6->7->8

P4: 3->4->5->6->7->8->10->11->12

y

P5: 5->6->7->8->9

P6: 5->6->7->8->10->11->12

P7: 12->13

P8: 12->13->14

P9: 14->15->16->17->18

Table 5.Instance of a test case design using All–use paths

3. CASE STUDY
A systematic approach of the proposed mechanism is shown

below that will help programmer to develop the test cases for

small programs by considering example 5.

Example 5: The following program finds the remainder of a

positive integer when divided by another non-zero positive

integer.

void remainder()

 {

1 inta,b;

2 scanf("%d %d", &a, &b);

3 if(a<0 || b<=0)

4 a=-1; // -1 Represents invalid inputs

5 else

6 if(a>=0 && b>0){

7 while(a>=b)

8 a=a-b;

9 }

10 printf("remainder is %d", a);

 }

Step 1. After analysing the problem, the inputs are one

positive integer and the other non-zero positive integer. The

output to be shown is the remainder of the first number when

divided by the second number

Step 2. SWB testing needs inspection mainly for proper logic
implementation of the problem. Also visual checking for

proper variable definition and the use of that variable needs to
be done. Syntax checking will be done by the compiler during

compilation of the code.

Step 3. Test cases for DBB testing are generated by using EP

and BVA.

Step 3.1. Test case generation by EP

For the variables in the code (a & b), the range of the integers

will depend on the c compiler. For a 16 bit Compiler like

Turbo C or Turbo C++ the range is -32768 to 32767. For a 32

bit compiler like Visual Studio or gcc the range would be -

2147483648 to 2147483647. The following equivalence

classes are identified for the above program under test

(assuming c compiler as Visual c++).

Valid equivalence classes:

C1 = {<a, b> | a, b ∈ℤ∧ 0<=a<=2147483647}

C2 = {<a, b> | a, b ∈ℤ∧ 1<=b<=2147483647}

Invalid equivalence classes:

C3 = {<a, b> | a<0 ∧ 1<=b<=2147483647}

C4 = {<a, b> | a>2147483647 ∧ 1<=b<=2147483647}

C5 = {<a, b> | 0<=a<=2147483647 ∧ b<=0}

C6 = {<a, b> | 0<=a<=2147483647 ∧ b>2147483647}

Test

Case

ID

x Expecte

d Result

Path covered

1 40(x>30) y=130 P1, P2, P3, P4 ,P6,

P7, P8, P9

2 25(20<x<=30) y=50 P5

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

41

The test cases generated from the above equivalence classes

are shown in Table 6.

Step 3.2. Test case generation by BVA

From the equivalence classes derived in Step 3.1, boundaries

of all the classes are identified and the test cases generated

from each boundary are listed in Table 7.

Table 6.List of test cases using Equivalence Partitioning

mechanism

Test

Case

ID

Variables Expected

Result

Classes

Covered By

the Test

cases

a b

1 159 10 9(Valid Input) C1,C2

2 -30 5 -1(Invalid Input) C3

3
21474

83660
25 -1(Invalid Input) C4

4 40 -25 -1(Invalid Input) C5

5 35
21474

83670
-1(Invalid Input) C6

Table 7. List of test cases using BVA

Test

Case

ID

Variables Expected

Result
a b

6 -1 10 -1(Invalid

Input)

7 0 10 0(Valid Input)

8 1 10 1(Valid Input)

9 2147483646 10 6(Valid Input)

10 2147483647 10 7(Valid Input)

11 2147483648 10 -1(Invalid

Input)

12 100 0 -1(Invalid

Input)

13 100 1 0(Valid Input)

14 100 2 0(Valid Input)

15 100 2147483646 100(Valid

Input)

16 100 2147483647 100(Valid

Input)

17 100 2147483648 -1(Invalid

Input)

Step 4. Test cases for DWB testing are generated by using

Basis Path testing, Multiple Condition Testing, Loop Testing

and Data Flow Testing.

Step 4.1. Basis Path testing

Test cases are generated based on independent paths in the

flow graph of the code segment. The flow graph of example 5

is shown in Fig 6.

The Cyclomatic complexity of the flow graph in Fig 6 is

V(G)= e-n+2= 12- 10+2 =4. Thus maximum number of

linearly independent path is 4.

The independent paths that can be obtained from the graph G

in Fig 6 are:

Path 1(1->2->3->4->9->10)

Path 2(1->2->3->5->6->9->10)

Path 3(1->2->3->5->6->7->9->10)

Path 4(1->2->3->5->6->7->8->7->9->10)

Fig 6: Flow graph for the code segment in Example 5

Based on the independent paths, the test cases that can be

generated are listed in Table 8.

Here Path 2 cannot be covered since all the probable values of

„a‟ and „b‟ has been considered already.

Step 4.2. Multiple Condition Testing

For the compound condition in statement 3 the test cases that

can be generated are listed in Table 9

For the compound condition in statement 6 the test cases that

can be generated are listed in Table 10.

Table 8.List of test cases using Basis Path testing

Test

Case

ID

Variables Expected

Result

Path

Covered By

the Test

cases

Remarks

a b

18 -30 5

-

1(Invalid

Input)

Path 1

Same as

Test

Case ID

2

19 1 10
1(Valid

Input)
Path 3

Same as

Test

Case ID

8

20 5 4
1(Valid

Input)
Path 4

Step 4.3. Loop Testing

In example 5, only statement 7 contains a simple loop. The

test cases for the simple loop in the statement 7 are listed in

Table 11.

Step 4.4. Data Flow Testing

Analyzing the definition nodes and usage nodes for all the

variables in example 5, the data flow graph is shown in Fig. 7.

All the definition nodes and usage nodes for all the variables

in the program are listed Table 12.

Data flow testing paths for All-uses strategy (criterion) for the

data flow diagram in Fig 7 are listed in Table 13.

Test cases that cover all the paths listed in Table 13 are shown

in Table 14.

G:

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

42

Fig 7: Data flow Graph for the code in Example 5

Table 9.List of test cases for the compound condition in

statement 3 of example 5

Test

Case

ID

Variables Expected

Result

Combinatio

n Covered

By the Test

cases

Remarks

a b

21 159 10 9(Valid

Input)

(False,

False)

Same as

Test Case

ID 1

22 40 -25 -1(Invalid

Input)

(False,

True)

Same as

Test Case

ID 4

23 -30 5 -1(Invalid

Input)

(True,

False)

Same as

Test Case

ID 2

24 -100 -100 -1(Invalid

Input)

(True, True)

Table 10.List of test cases for the compound condition in

statement 6 of example 5

Test

Case

ID

Variables Expected

Result

Combination

Covered By

the Test

cases

Remarks

a b

25 -

100

-

100

-1(Invalid

Input)

(False, False) Same as

Test Case

ID 24

26 -30 5 -1(Invalid

Input)

(False, True) Same as

Test Case

ID 2

27 40 -25 -1(Invalid

Input)

(True, False) Same as

Test Case

ID 4

28 159 10 9(Valid

Input)

(True, True) Same as

Test Case

ID 1

Table 11.List of test cases for the simple loop in statement 7 of example 5

Test

Case ID

Variables Expected Result Test Covered By the Test cases Remarks

a b

29 1 10 1(Valid Input) Skip the loop entirely
Same as Test

Case ID 8

30 5 4 1(Valid Input) Only one pass through the loop
Same as Test

Case ID 20

31 10 4 2(Valid Input) Two passes through the loop

32 159 10 9(Valid Input)

m passes through the loop where m<n, n =

maximum number allowable passes through

the loop

Same as Test

Case ID 1

33 2147483646 1 0(Valid Input) n-1 passes through the loop -

34 2147483647 1 0(Valid Input) n passes through the loop -

35 2147483648 1 -1(Invalid Input) For n+1 passes through the loop -

Table 12. List of definition nodes and usage nodes for all

the variables of example 5

Variables Defined At Used At

a 1,2,4,8 3,6,7,8,10

b 1,2 3,6,7,8

4. CONCLUSION
In this work, systematic and complete test coverage for testing

of small program(s) is presented. As one proceeds on

generating the test cases using various techniques, some

repetition of the same test cases may occur, which are

eliminated. The final test case set, for any program, is the

collection of all the generated test cases using the proposed

mechanism, without any repetition. The approach, as

discussed here, is basically learner oriented and can easily be

acquired by practicing them without advance knowledge of

S/W engineering and testing.

International Journal of Computer Applications (0975 – 8887)

Volume 139 – No.2, April 2016

43

Table 13. List of all-use paths for all the variables of

example 5

Variables All-uses paths

a

P1 : 2->3

P2 : 2->3->5->6

P3 : 2->3->5->6->7

P4 : 2->3->5->6->7->8

P5 : 4->9->10

P6 : 8->7->9->10

b

P7 : 2->3

P8 : 2->3->5->6

P9 : 2->3->5->6->7

P10 : 2->3->5->6->7->8

Table 14. List of a test cases based on All–use paths

Test

Case

ID

a b Expecte

d Result

Path

Covered By

the Test

cases

Remarks

36 159 10
9(Valid

Input)

P1, P2, P3,

P4, P6, P7,

P8, P9, P10

Same as

Test

Case ID

1

37 40 -25

-1

(Invalid

Input)

P5

Same as

Test

Case ID

4

5. REFERENCES
[1] H. Zhu, P. A. V. Hall, and J. H. R. May, Software unit

test coverage and adequacy, ACM Computing Surveys,

vol. 29, no. 4, pp. 366-427, 1997.

[2] T. J. McCabe, A complexity measure, IEEE Trans.

Softw. Eng. SE-2.4, pp. 308-320, 1976.

[3] J. H. Kelly, S. V. Dan, J. C. John, and K. R. Leanna, A

Practical tutorial on modified condition/decision

coverage, NASA/TM-2001-210876, NASA, (May), pp.

7-14, 2001.

[4] S. Rapps and E. J. Weyuker, Data flow analysis

techniques for test data selection. IEEE, pp. 272-278.

[5] Bieman, J. M. and Schultz, J. L. 1992. An Empirical

Evaluation (and Specication) of the All-du-paths Testing

Criterion (Extended Version), IEE/BCS Software. Eng.

J., 7(1) (Jan.), pp. 43-51, 1982.

[6] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen,

W. Grieskamp, M. Harman, M. J. Harrold, and P.

McMinn, An orchestrated survey on automated software

test case generation. Journal of Systems and Software,

vol. 86, no. 8, 1978 – 2001, 2013.

[7] A. J. H. Simons and C. D. Thomson, Benchmarking

Effectiveness for Object-Oriented Unit Testing, in „ICST

Workshops‟, IEEE Computer Society,pp. 375-379,

2008.

[8] B. Garcia, J. C. Duenas, and H. A. Parada G., Automatic

functional and structural test case generation for web

applications based on agile frameworks, Proc. of the 5th

International Workshop on Automated Specification and

Verification of Web Systems (WWV09). Hagenberg,

Austria, July. 2009.

[9] Y. Cheon, and G. T. Leavens, A Simple and Practical

Approach to Unit Testing: The JML and JUnit Way,

ECOOP 2002, LNCS 2374, pp. 231-255, 2002.

[10] L. Williams, G. Kudrjavets, and N. Nagappan, On the

Effectiveness of Unit Test Automation at Microsoft,

IEEE International Symposium on Software Reliability

Engineering (ISSRE), pp. 81- 89, 2009.

[11] K. Beck, TheJUnit Pocket Guide, 1st ed., O‟Reilly,

Beijing, 2004.

[12] A. J. H. Simons, JWalk: a tool for lazy, systematic

testing of Java classes by design introspection and user

interaction. Automated Software Engineering, 14 (4),

December, ed. B. Nuseibeh, (Springer, USA), pp. 369-

418, 2007.

[13] S. H. Edwards, Using Test-Driven Development in the

Classroom: Providing Students with Automatic, Concrete

Feedback on Performance. EISTA, International Institute

of Informatics and Systemics, pp. 421–426, 2003.

[14] R. Patton, Software Testing, 2nd ed., Pearson India,

2005.

[15] N. Chauhan, Software Testing: Principles and Practices,

Oxford University Press, 2010.

[16] (1994) C Style Guide, Nasa. [Online]. Available:

http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-

style.pdf

[17] I. M. Jovanovic, Software Testing Methods and

Techniques. The IPSI BgD Transactions on Internet

Research, vol. 30, 2008.

IJCATM : www.ijcaonline.org

