
International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.4, April 2016 

1 

Incorporating Features Enhancement Archetype in 

Software Reliability Growth Modeling and Optimal 

Release Time Determination

Adarsh Anand 
Department of Operational 

Research, University of Delhi,  
Delhi 110007, India 

 
 

Deepika 
Department of Operational 

Research, University of Delhi,  
Delhi 110007, India 

 

 

Ompal Singh 
Department of Operational 

Research, University of Delhi,  
Delhi 110007, India 

 

 

ABSTRACT 
Requirement Analysis is one of the important phases of any 

Software Development Life Cycle (SDLC). The competitive 

market scenario has made clients dynamic and informative 

and so in between demand of changing or addition of new 

functionalities is a very common scenario that firms faces 

now-a-days. But this up-gradation of the system often brings 

new complexities that might alter/increase the total fault count 

in the software system. The add-ons or the interfacing of the 

modules with other applications is cumbersome task and adds 

to the load of the testing team. Taking this feature 

intensification affect (after a certain time point) into account, 

in this paper, an optimal release time of the software has been 

identified. The proposal has been validated on real life 

software failure data set and results show the impact of feature 

enhancement. 

Keywords 
Software Reliability Growth Models (SRGM), Features 

Enhancement, Release policy. 

1. INTRODUCTION 
In this competitive environment the role of software is 

expanding very rapidly; software products get integrated and 

more organization uses networks for critical business 

operations. For large scale or international software 

companies, successful development of a software system 

depends on its software components. For example, NASA is 

increasingly dependent upon systems in which software is a 

major component, and many of these systems are critical to 

the success of NASA‟s mission. These systems must execute 

successfully for a specified time under specified conditions, 

that is, they must be reliable. The capability to provide 

accurate measurement of the reliability of the software in 

these systems before NASA accepts them is an essential part 

of ensuring that NASA software will meet its mission [28]. 

Actually, compared with hardware, software is more difficult 

to measure the reliability that can be achieved. Reliability 

depends on how the software is used so it cannot be specified 

absolutely [4]. The software development and testing teams 

play a key role in the reliability, quality and the satisfaction of 

the customer for the defect free operation. Software testing is 

a major part of quality control during the development of 

software that requires rigorous testing. Agile software testing 

practice plays a key role to ensure the delivery of the bug free 

software by considering that the testing is not a separate 

phase, but an integral part of software development, along 

with coding. Once software is up for release in the market it 

has to be free from defects. Assessment of software reliability 

is an important task to predict and evaluate the reliability of 

the software system [13]. Many SRGMs have been developed 

and have been used for determining software reliability during 

testing; they belong to two categories such as exponential and 

S-shaped. Goel and Okumoto proposed Non homogenous 

Poisson Process (NHPP) based SRGM which is purely 

exponential and under the assumption that the faults are 

uniformly distributed where each fault has an equal chance of 

detection. The two stage problem or S-shaped model was 

introduced by Yamada et al [30].Yamada et al. described the 

fault removal in two stage process: failure observation and 

corresponding removal of cause for failure. Other S-shaped 

model have been discussed by Ohba [21] Bittani et al. [1] 

Kapur et al. [9,10 and 12], Kumar et al. [18]. In many 

software development project it is observed that relation 

between the mean value numbers of error removed and the 

testing time is S-shaped. 

Software is developed using the tools and techniques of 

Software reliability engineering (SRE) that enables the 

developers to deliver enough reliability to the software 

avoiding both excessive costs and development time. 

Software development involves a set of ordered task; each 

task can be called as a generic process and the process of 

software development is known as Software development life 

cycle (SDLC). The IEEE computer dictionary has defined 

SDLC as the period of time in which the software is 

conceived, developed and used [13]. The software life cycle 

process model describes life of the software from the 

conceptualization stage to the final implementation and 

maintenance stage. Many life cycle process models have been 

described in the software engineering literature. The generic 

process framework applicable to the vast majority of software 

includes the following stages: Analysis and specification, 

Software development, Verification and validation, 

maintenance and evolution. Each framework activity is 

populated by a set of software engineering actions such as 

software project tracking and control, risk management, 

quality assurance and measurement, technical reviews, 

reusability measurement, etc. Following the generic 

framework activities every software development and 

engineering organization describes a unique set of activities. 

Requirement analysis forms the foundation stage for building 

successful software. It concludes with a feasibility study of 

user requirements, cost benefit estimation, and documentation 

of collected information and feasibility report. A well 

developed specification can reduce the occurrence of faults in 

the software and minimizes the cost [13]. The development 

cycle is an important component of any Software 

Development Life Cycle (SDLC). Software is released in the 

market at the end of testing phase of SDLC. With larger 

development and testing efforts, better quality of the software 

can be ensured.  



International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.4, April 2016 

2 

Within this shell of software engineering, lies an important 

decision making for the firms about when to stop testing and 

release the software in the market. This class of problem has 

been termed as software release time problem (SRTP) in 

software reliability literature and many researchers have come 

up with their mathematical propositions to analyze the 

duration of testing phase of software[13, 23]. There are many 

attributes and important factors that a firm has to think of 

before making the final release decision. As, shipping the 

software too early might result in pendency of faults in the 

software and on the other hand, if testing proceeds a very long 

time, the surety of reliable product increases but the cost of 

testing, contract penalty and loss of market initiative may 

constitute and even larger portion of the cost of late delivery. 

Hence, both, economic factors and technical factors have to be 

taken care of while deciding the optimal release time of the 

software. 

Many authors have previously discussed the importance of 

immediate launch of the product in the market [28]. Smith and 

Reinertsen [27] observed that an incremental approach to 

product innovation is important to reduce the release time of 

the product. Chang [33] studied the sequential software 

release policy based on a state space model. During last 

decade, numerous number of optimization models have also 

been developed in the field of software reliability. Although 

many cost models have been developed in past starting from 

the model developed by Goel and Okumoto [13] to Singh at al 

[13] etc. Goel and Okumoto [24] introduced a simplest 

optimal release time model in two ways. Firstly, they 

discussed an unconstrained cost objective. Secondly, they 

considered the unconstrained reliability objective. Later other 

researchers have addressed this approach with different 

scenarios. Yamada and Osaki [31] developed a release time 

problem with cost minimization objective under constraint 

based on exponential, modified exponential and S-shaped 

SRGMs. Kimura et al. [17] proposed a software release time 

problem in which they have considered the present value and 

warranty period during which the developer has to pay the 

cost for fixing any faults detected. Huang [3] proposed an 

optimal release policy based on cost and reliability 

incorporating testing effort and efficiency. Kapur and Garg 

[16] proposed a release time problem based on penalty cost 

using the concept of releasing of the software at appropriate 

delivery time. Further Kapur and Garg [7] developed a release 

policy for maximizing the expected gain function subject to 

achieving a given level of failure intensity considering 

modified exponential and S-shaped test effort based SRGMs. 

Yun and Bai [34] proposed that software release time 

problems should assume software life cycle to be random as 

several factors such as availability of alternative competitive 

product in the market, a better announcement by the developer 

himself etc. plays a key role for determining the length of 

software life cycle. Further, Kapur et al. [5] developed a multi 

objective optimization problem for determination of release 

time considering two simultaneous objective functions as 

reliability maximization and cost minimization, the assigned 

weights to the two objective functions according to their 

relative importance. Many studies have been proposed and 

much work is under progress to determine the software 

reliability quantitatively [13, 23].  

Later on some researchers have also worked on software 

random life cycle, release time problem based on penalty cost, 

warranty and risk cost, bi-criterion release time problem, 

release policy based on before and after change point, multi 

release software release time problem etc. [6, 8, 15, 22, 23]. 

Singh et al. [25] proposed a software release time problem for 

multi versions of software incorporating the concept of 

stochastic differential equation. Further Singh et al. [26] 

introduced a bi-criteria released problem for multi version of 

software using genetic algorithm. Kapur et al. [11] developed 

scheduled delivery time problem for multi up-gradation of 

software considering the cost of debugging in warranty 

period. Further Singh et al. [25] developed an optimal release 

time problem for uncertainty based successive software 

releases.  

Software products which are introduced in the market can be 

one-off type (i.e no enhancement in the software) or can be 

product which is periodically upgraded with new features. To 

optimize the goals, companies try to reduce the risk by 

staggering the new ideas to a sequence of product- features 

introduced over a period of time. Many authors have proposed 

software reliability growth models to measure the failure rate 

of software. All the models are based on the assumption that 

when the software is first manufactured, the initial number of 

faults is high but then it decreases as the fault components are 

identified and removed. The software then enters the useful 

life phase when more faults are removed. Thus, the traditional 

software reliability growth model failed to capture the error 

growth due to the software enhancement in the testing phase. 

In the useful life phase as the software firm introduces new 

add-ons or features on the basis of the user needs, software 

will experience a drastic increase in failure rate each time an 

upgrade is made.  

Due to the features enhancement the complexities of software 

is likely to be increased as the functionality of software is 

enhanced. Even fixing bugs may induce more software failure 

by fetching other defects into software. In this paper, a 

software reliability growth model has been proposed under the 

assumption that software will experience a drastic increase in 

the number of failures when an upgrade is made at a certain 

time by the software firm. The objective is to optimize the 

release time of the software incorporating features 

enhancement during testing phase and operational phase. 

Numerical solution has shown that the optimal release policy 

with features improvement reduces the relevant cost by a 

significant amount. Carrying these assumptions, further, the 

rest article is designed as follow: section 2 consists of 

notations that have been used in mathematical modeling. 

Section 3 presents a brief overview of Kapur and Garg model. 

The proposed modeling framework is presented in Section 4 

which provides the concept of fault removal process. Further, 

Section 5 shows data analysis & model validation for real 

software failure data set and the mathematical expression for 

cost minimization is supplemented in Section 6. Numerical 

illustration of the proposed mathematical cost and conclusion 

are given in Section 7 and 8 respectively. Lastly, 

acknowledgment and the list of references have been 

provided. 

2. NOTATION 
a  Expected number of faults in the software 

1b  Detection rate before the time „ ’  

2b  Detection rate after the time „ ’ 

( )m t  Expected number of faults removed by time „ t ‟  

  Time at which new add-ons are added to software 

  Constant rate of fault addition due to new 

features add-ons in the software 



International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.4, April 2016 

3 

1  Learning parameter before the time „ ‟ 

2  Learning parameter after the time „ ‟  

*T  Optimal time to stop testing or release time 

1c  Cost of removing one fault before time  

2c  Cost of removing one fault after time 

3c  Cost per unit testing time 

3. KAPUR AND GARG MODEL [8]: A 
REVIEW 

The model is based on the assumption that the debugging 

team can also remove some additional errors while removing 

errors without causing any failure. 

Using the logistic rate function, the K-G model can be 

described by following mathematical structure: 

( )
( ( ))

1 bt

dm t b
a m t

dt e 
 


  (1) 

where ( )m t  is the cumulative number of faults removed in 

the software by time „ t ‟, a  total number of faults present in 

the software, b  is the constant fault detection rate and   is 

the learning parameter. 

4. MODEL DEVELOPMENT 
The formulation of the proposed model is based on the 

following assumptions. 

1. Failure/fault removal phenomenon is modeled by NHPP. 

2. Software is subject to failures during execution caused by 

faults remaining in the software. 

3. Failure rate is equally affected by all the faults remaining 

in the software. 

4. Fault detection/removal rate change at any time moment. 

5. Up-gradation is done continuously after a fix time . 

Here, a software reliability growth model incorporating the 

effect of adding new features has been proposed in the 

software system. Before adding any additional feature in the 

system (i.e. before the time τ) the initial fault content in the 

software system remain constant and are detected and 

eliminated during the testing phase, and the number of faults 

remaining in the software system gradually decrease as the 

testing phase goes on. On the other hand adding new features 

like preface of new format or change in the testing team or 

change in expenditure pattern in the software introduces more 

faults in the system. Enhancement in the functionality of the 

software increases the fault count which requires rigours 

testing of the software. It is considered that firm has started 

incorporating additional features after a certain time „ ‟and 

each additional feature increases the fault content at the rate „

 ‟.The model for different situation can be given by the 

following differential equations: 

1

2

1

1

2

2

( ( )) 0
1( )

( (1 ) ( ))
1

b t

b t

b
a m t t

edm t

bdt
a t m t t

e




 







   

 
   
 

     (2)

 

where   is the rate of fault addition due to adding new 

features in the software; which lies between 0 to 1. As a part 

of the assumption, α increases with time because from 

management perspective; it is always required that new add-

ons are added to the software version as soon as possible and 

as frequently as possible; which can actively allow us to have 

competitive advantage over often rivals.    

under the initial condition 

0, ( ) 0

, ( ) ( )

t m t

t m t m 

 

 
 

On solving the equation (2), the mean value function is 

obtained as follows: 

  

1

1

2

2

2

2 1

1 2 2

1

( )

2

( )2

2 1

( ) ( )

1

1

(1 )(1 )

( )
1

(
1 1

) ( )

b t

b t

b t

b

b t

b t b

b b t b t

e
a t

e

e
b

m t
ea

e t
e e

e t e








  









 

 





 



 

 

    

  
  

 


     
  

  
       

  
 
 

(3)

 
Hence the mean value function of the proposed framework is 

expressed by (3) and from this equation it can be observed 

that the parameter   (i.e. rate of fault addition due to 

additional features added) plays a significant role during 

estimation of the expected number of faults removal. 

5. DATA ANALYSIS AND MODEL 
VALIDATION 

The proposed model has been validated on the fault removal 

data set of P1 system from Yang [31]. The fault removal time 

of system P1was about 86 months and the cumulative number 

of faults removed was 4312. The time point after which new 

functionalities are added is taken as 32th month i.e. ( 32)    

The proposed model has been compared with K-G model on 

the basis of different comparison criteria. Five comparison 

criterion such as MSE, Bias,
2R , Variation and RMSPE been 

considered to compare the models. The parameter values of 

the developed model have been calculated using SPSS tool 

based on non-linear least square method are given in Table 1. 

Table 2 summarizes the value of all the comparison criteria 

for each of the models for fault removal dataset. The predicted 

and estimated values seem to be closely rated claiming a fine 

fitness curve as shown in Fig. 1. Fig. 2 represents the 

pictorially comparison between proposed model and K-G 

model. 

 

 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.4, April 2016 

4 

Table1. Model Parameter Estimation Results 

Parameter K-G Model Proposed Model 

a 4394 4400 

b1 0.102 0.026 

b2 - 0.087 

β1 339.62 16.433 

β2 - 153.29 

α - 0.001 

Table 2. Model Comparison Results 

Comparison 

Criteria 
K-G Model Proposed Model 

MSE 7881.42 7784.87 

Bias -17.87 -4.76 

Variation 87.46 88.61 

RMSPE 89.27 88.74 

R2 0.997 0.997 

 

 

Figure 1: Goodness of Fit Curve 

 

Figure 2: Comparison criteria for Proposed Approach and 

K-G Model 

 

 

6. OPTIMAL SCHEDULING 
As discussed above; the optimal software release time is a key 

factor for the firm. Through the use of SRGMs optimal release 

time of the software can be formalized and solved 

numerically. Here in this section the optimal software release 

time policy under the assumption that the software product is 

enhanced with new features has been discussed. Often, the 

introduction of new features or techniques, change in the 

testing team or change in the consumption pattern of testing 

resources may alter the fault removal rate. In such case, the 

optimal stopping time for testing with a desired level of 

reliability needs to be determined. To formulate the release 

time problem and minimize the cost incurred during testing 

and debugging under the assumption that the software product 

is enhanced with new features. The expected software cost 

function for the testing and operational phase can be written 

as: 

1 2 3( ) ( ) ( ( ) ( ))
1

t
C T C m C m t m C 



 
     

 
        (4) 

Here ( )m t  is the mean value function for the fault removal 

process. And the total cost ( ( )C T ) comprises of following 

costs: First component in (4) describes the cost of removing 

one fault before time . Second component indicates the cost 

of removing faults after time . Third component presents the 

cost of testing per unit time. Here (1 )t   is a time point 

where the time span is significantly large so more and more 

number of faults can be removed and the software can be 

considered perfectly debugged. 

In addition, an optimal release time problem based on the 

methodology has been discussed to minimize the total 

expected cost of testing subjected to a reliability level to be 

achieved till the time of release of the software. The optimal 

release time problem can be formulated as follow: 

 

1 2 3

0

( ) ( ) ( ( ) ( ))
1

( )

( )
where R(t)

0

B

Min

t
C T C m C m t m C

Subject to C T C

R t R

m t

a

T

 





       


 


 



 



    (5) 

where BC  is the available budget. 

During the testing process, maximizing software reliability is 

a major concern of management. A simple index to measure 

the reliability is the ratio of the number of cumulative detected 

faults at time „ t ‟ to the mean value of initial faults in the 

software [19]. Hence, the reliability for release can be 

represented by „ ( )m t a ‟ and reliability is an increasing 

function of time, it reaches its maximum when time goes to 

infinity i.e. „ ( )m t a ‟ is the measurement of reliability.  

The above formulated equation (5) is the set of optimization 

problem which can help the firm in determining the optimal 

release time of the software under the effect of features 

intensification. 

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100

C
u

m
u

la
ti

v
e 

N
u

m
b

er
 o

f 
F

a
u

lt
s

Time

Actual

Proposed Approach

K-G Model

MSE Bias Variation RMSPE R-square

K-G Model

Proposed Approach



International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.4, April 2016 

5 

7. NUMERICAL ILLUSTRATION 
For the applicability of the above formulated methodology of 

determining the optimal release time and the determination of 

associated cost of testing. As stated earlier the data set from 

the system P1 reported by Yang [32] has been considered. 

Using this data set the parameters of proposed fault removal 

phenomena given in equation (4) are estimated (using SPSS) 

to be 4400a  , 1 .026b  , 2 .087b  , 1 16.43  ,

2 153.29  . Assumed cost parameters are 1 $5C  , 

2 $9C  , 3 $7C  and time after which new features are 

added i.e. 32  . Further, assumed total budget 

$60,000BC  and the reliability requirement by the release 

time is 0.77. The release time problem based on following 

data can be analyzed using an optimization solver (LINGO). 

On solving the equation (5), using the optimization tool, 

optimal value of the release time is 69.59T    and expected 

cost is ( ) 29759.93C T  . Taking features intensification 

affect (after a certain point), the policy suggests that the 

software should be tested for a period of about 69 months. 

Numerical solution has shown that the optimal release policy 

with features improvement reduces the relevant cost by a 

significant amount. 

8. CONCLUSION 
Software market is tremendously globalized and rapidly 

expanding. Competition among firms require new features 

like preface of new format, change in the testing team or 

change in expenditure pattern to be inculcated in the software. 

Enhancement in the functionality of the software increases the 

fault count which requires rigours testing of the software. The 

time spend by the software in the testing phase will cost a firm 

in many ways. Early release will result into goodwill loss 

whereas delay will lead the firm under more competitive 

scenario and will also impact its market share. Thus timely 

release and determination of related testing period is very 

essential. In this situation, the optimal release time for testing 

with a required level of reliability needs to be determined. The 

objective of this paper was to propose the software reliability 

growth model that associates the effect of intensification of 

features in the software system during testing and debugging. 

Numerical solution has shown that the optimal release policy 

with features improvement reduces the relevant cost by a 

significant amount. Five different comparison criteria are 

considered for the analysis and to compare the models. The 

proposal has been validated on real life software failure data 

set and results have shown the impact of feature enhancement. 

9. ACKNOWLEDGEMENT 
The research work presented in this paper is supported by 

grants to the first and third author from University of Delhi, 

R&D Grant No. RC/2015/9677, Delhi, India. The authors 

sincerely thank the reviewers for providing valuable 

suggestions that resulted in clear presentation of the proposal. 

10. REFERENCES 
[1] Bittani, S., Bolzen, P., Pedrotti, E. and Scattolini. R. 

1988. “A flexible modeling approach for software 

reliability growth” Software Reliabilty Modelling and 

Identification (Ed.) G. Goos and J. Harmanis, Springer 

Verlag, Berlin, pp. 101-104. 

[2] Goel, A.L. and Okumoto, K. 1979. “Time dependent 

error detection rate model for software reliability and 

other performance measures”, IEEE Transactions on 

Reliability, 28(3). 

[3] Huang, C.Y. 2004. “Performance analysis of software 

reliability growth models with testing effort and change- 

point”, The Journal of Systems and Software 76, pp. 181-

194. 

[4] Huang, C.Y. 2005. “Cost reliability optimal release 

policy for software reliability models incorporating 

improvement in testing efficiency”, The Journal of 

System Software, 77, pp. 139-155. 

[5] Kapur, P.K., Agarwal, S. and Garg, R.B. 1994. “Bi-

criterion Release Policy for Exponential Software 

Reliability Growth Models”, Recherche Operationanelle 

/ Operational Research, 28, pp.165-180. 

[6] Kapur, P.K., Garg, R.B. and Bhalla, V.K. 1993. “Release 

Policy with Random Software Life Cycle and Penalty 

Cost”, Microelectronics Reliability, 33(1), pp. 7-12. 

[7] Kapur, P.K. and Garg R.B. 1991. “Optimal software 

release policies for software System with testing effort”, 

International Journal System Science, 22(9), pp. 1563-

1571. 

[8] Kapur, P.K. and Garg, R.B. 1992. “A Software 

Reliability Growth Model for an Error Removal 

Phenomenon”, Software Reliability Journal, pp. 291-294. 

[9] Kapur, P.K., Garg, R.B. and Kumar, S. 1999. 

“Contribution to hardware and software reliability” 

Singapore World Scientific Publishing Co. Ltd. 

[10] Kapur, P.K., Goswami, D. N. and Gupta, A. 2004.  “ A 

Software reliability Growth model for distributed 

development Environment with learning Function and 

Errors of Different Severity” Published in the proceeding 

Mathematical Modeling Application Issue and Analysis. 

BITS Pilani, 8-9th October, pp. 99-110.  

[11] Kapur, P.K., Pham, H. Singh, J. N. P. and Sachdeva, N. 

2014. “When to Stop Testing Multi up-gradations of 

Software based on Cost Criteria”, International Journal 

of Systems Science: Operations & Logistics, Volume 1, 

Issue 2, pp. 84-93. 

[12] Kapur, P.K., Jha, P.C. and Gupta, A. 2004. “Optimal 

Release Policy of a Software Fuzzy Enviroment” 

Published in the Proceeding Mathematical Modeling , 

Application Issue and Analysis, held BITS Pilani, 8-9th 

Oct pp. 125-134. 

[13] Kapur, P.K., Pham, H., Gupta, A. and Jha, P.C. 2011. 

“Software reliability assessment with OR application”, 

Springer, Berlin. 

[14] Kapur, P.K., Sachdeva, N. and Singh, J. N. P. 2014.  

“Optimal Cost-A Criterion to Release Multiple versions 

of software”, International Journal of System Assurance 

Engineering and Management, Volume 5, Issue 2, pp. 

174-180. 

[15] Kapur, P.K. and Garg, R. B. 1990. “Optimal Software 

Release policies for Software reliability Growth models 

under Imperfect Debugging”, Recherche Operationanelle 

/Operational Research, 24, pp. 295-305. 

[16] Kapur, P.K. and Garg, R.B. 1989. “Cost reliability 

optimum release policies for software system under 

penalty cost”, International Journal System Science, 20, 

pp. 2547-2562. 



International Journal of Computer Applications (0975 – 8887) 

Volume 139 – No.4, April 2016 

6 

[17] Kimura, M., Toyota, T. and Yamada, S. 1999. 

“Economic analysis of software release problems with 

warranty cost and reliability requirement”, Reliability 

Engineering and system safety, 66, pp. 49-55. 

[18] Kumar, D., Kapur, P.K., Sehgal, V.K. and Jha, P.C. 2007 

“ On the development of Software Reliability Growth 

Models with two types of Imperfect debugging” 

Communications in Dependability and Quality 

Management An International Journal, Volume 10, 

Number 3, pp. 105-122,  Ohba described the software 

failure occurrence phenomenon with mutual dependency 

of faults. 

[19] Lin, C.T. and Huang C.Y. 2008. “Enhancing and 

measuring the predictive capabilities of testing-effort 

dependent software reliability models”, Journal of 

Systems and Software 81, pp. 1025-1038. 

[20] McDaid, K. and Wilson, S. P. 2001. “Deciding how long 

to test software”, The Statistician, 50(2), pp. 117-134.  

[21] Ohba, M. 1984. “Software reliability analysis models” 

IBM Journal of Research and development, 28, pp. 428-

443. 

[22] Pham, H. 1996. “A Software Cost Model with Imperfect 

Debugging, Random Life Cycle and Penalty Cost, 

International Journal System Science, 27, pp. 455-463. 

[23] Pham, H. 1999. “Software reliability”, Springer, 

Singapore. 

[24] Pham, H. and Zhang, X. 1999. “A software cost model 

with warranty and risk costs”, IEEE Trans Comp 48(1), 

pp. 71-75. 

[25] Singh, O., Aggrawal, D. and Kapur, P. K. 2012  

“Reliability Analysis and Optimal Release time for a 

Software using Multi Attribute Utility Theory”, 

Communications in Dependability and Quality 

Management-An International Journal, Serbia, Vol. 5, 

No. 1, pp. 50-64. 

[26] Singh, O., Kapur, P. K. and Anand, A. 2012.  “A Multi 

Attribute Approach for Release time and Reliability 

Trend Analysis of a Software”, International Journal of 

System Assurance and Engineering Management 

(IJSAEM), Vol. 3, Issue 3, pp. 246-254. 

[27]  Smith, Preston G., and Donald G. Reinertsen. 1998. 

“Developing products in half the time: new rules, new 

tools”, New York, NY: Van  Nostrand Reinhold. 

[28] Stalk, G. 1998. “Time- the next source of competitive 

advantage”, Harvard Business Rev 66, pp. 41-51. 

[29] Wallace, D. and Coleman, C. 2001. “Application and 

improvement of software reliability models”. Technical 

Report, Software Assurance Technology Centre, NASA 

Goddard Space Flight Centre (GSFC). 

[30] Yamada, S. Obha, M. and Osaki, S. 1983. “S-shaped 

software reliability growth modeling for software error 

detection” IEEE Trans. On Reliability, R-32(5), pp. 475-

484. 

[31] Yamada, S. and Osaki, S. 1987. “Optimal software 

release policies with simultaneous cost and reliability 

requirements” European Journal of Operational 

Research, 31, pp. 46-51. 

[32] Yang, K.Z. 1996. “An infinite server queueing model for 

software readiness assessment and related performance 

measures”, Ph.D. Dissertation, Department of Computer 

Engineering, Syracuse University, Syracuse, NY. 

[33] Yen- Chang, C. 2004. “A sequential software release 

policy”, Ann Inst Statist Math 56 (1), pp. 193-204. 

[34] Yun, W.Y. and Bai, D.S. 1990. “Optimum Software 

Release Policy with Random Life Cycle”, IEEE 

Transactions on Reliability, 39(2), pp. 338-353. 

 

IJCATM : www.ijcaonline.org 


