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ABSTRACT 

An adaptive tracking control problem is investigated for a 

class of nonlinear system with non-symmetric actuator dead-

zone fault. Based on adaptive compensation algorithm, a new 

adaptive controller specially designed is employed without 

constructing the dead-zone inverse. This paper studies the 

dead-zone fault model is more universal. The restrictions that 

the dead-zone slopes and the boundaries are equal and 

symmetrical are removed. The dead-zone model parameters 

are all unknown and the model of nonlinear system also have 

unknown parameters. The proposed adaptive controller can 

eliminate the effect of simulation show the proposed method. 

The result simulation show the effectiveness of the proposed 

method. 

General Terms 

Data Acquisition  

Keywords 

Actuator fault, Non-symmetric dead-zone, Adaptive 

compensation. 

1. INTRODUCTION 
In the process of actual industrial control, the ideal linear 

system does not exist and there will be non-linear 

characteristics to a certain extent, due to wear, aging, and 

other defects of machine components or errors and 

interference of the system itself. The control systems with 

dead-zone is the most common in these nonlinear phenomena. 

The nonlinear systems with dead zone due to the presence of a 

large number of non-linear characteristics, and internal control 

systems with uncertain parameters, and actuator dead zone is 

unknown so that the study of such systems becomes very 

complicated. In some areas there is a lot of research of 

nonlinear parameters and uncertain factors, traditional control 

methods is clearly unable to achieve the performance 

requirements. Faced with these complexities, how to design a 

controller to resolve the contradiction between the high-

performance and the dead, to achieve system stability, rapidity, 

accuracy has become the goal of many researchers. 

In recent years, with the dead zone more and more attention, 

emerging new design approach in which the most important is 

adaptive controller design. Many of existing adaptive 

approaches use an inverse dead-zone nonlinearity to minimize 

the effects of dead-zone (zhou, when, &zheng, 2006). As an 

alternative, a robust adaptive control scheme was developed 

in Wang, Su, and Hong (2004) without constructing the dead-

zone inverse, where the dead-zone is modelled as a 

combination of a line and a disturbance-like term. However, 

this scheme requires symmetric dead-zones inputs. In fact, 

practical systems may be subjected to non-symmetric dead-

zone control inputs. To overcome this limitation, a new 

adaptive control strategy is proposed to deal with non-

symmetric dead-zone inputs case without constructing the 

dead-zone inverse in Ibrir, Xie, and Su (2007). Due to the non 

–symmetric property of the dead-zone input, the controlled 

system shall be represented as an uncertain nonlinear system 

subject to linear input with time-varying coefficient and an 

external perturbation that depends upon the dead-zone 

parameters. However, this strategy requires the upper and 

lower limits of dead-zone is known. To overcome this 

limitation, this paper design a new Adaptive controller. By 

introducing parameters, eliminating the limitation that the 

upper and lower limits of dead-zone is known in Ibrir, Xie, 

and Su (2007). And by selecting the appropriate parameters 

can weaken the chattering of controller. This has a more 

profound practical significance. 

2. SYSTEMS WITH DEAD-ZONES  
Consider the uncertain nonlinear system subjected to a non-

symmetric dead-zone input nonlinearity:  
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Fig 1: Non-symmetric dead-zone nonlinearity 

The non-symmetric dead-zone input is shown in Fig.1. The 

parameters 
l

m and 
r

m stand for the right and the left slope of 

the dead-zone characteristic
l

b and
r

b represent the break-
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points of the input nonlinearity. In this section, the following 

assumptions are considered. 

Assumption 1. The system states vector is accessible for 

measurements. 

Assumption 2. The coefficients 
l r l

m m b, , and 
r

b are strictly 

positive and unknown. There is a positive constant 0  , and  

r l
m m  ,  

According to the above notation, the dead-zone (1) can be 

redefined as a slowly time-varying input-dependent function 

of the following form: 

      u m t u d t     (3) 

Where 
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Based on the new representation (3) of the dead-zone, the 

controlled system involves an external perturbation  d t  and 

unknown input coefficient term  m t  that is always positive 

and bounded. The control objective is to design an adaptive 

feedback such that for any bounded initial conditions 0

nx   

of system (1), one has 

      1
lim , 1 ,

i

i ref
x

x t y t n 
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Where  is some sufficiently small positive constant and 

 ref refy y t is a known n -differentiable bounded trajectory. 

The task is to make  sufficiently small for any bounded 

perturbations terms  m t and  d t while insuring a smooth 

control law. We summarize the design in the following 

statement. 

3. ADAPTIVE CONTROLLER DESIGN 
Define the tracking error 
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The control objective is to design an adaptive feedback such 

that for any bounded initial conditions 0

nx   of system (1), 

one has 

  lim
x

e t 


   (8) 

Where  is some sufficiently small positive constant. 

Theorem 1 Consider system (1) subject to the non-symmetric 

dead-zone input nonlinearity (2). For given strictly positive 

constants 1 : 10 0.5  and 2 : 2 0  ,let P be n n  

symmetric and positive define matrix that verifies the 

following linear matrix inequalities for 0  : 

  12 1 2 0T TP A P PA PBB P        (9) 
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Where  ref refy y t  is well-defined time-dependent trajectory 

and globally bounded over -the-time interval  0,   . 

And let: 
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Define the adaptive controller 
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Proof .Lyapunov function as the following: 
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For all 0t  , 3 0V   and V is piecewise continuous . Then 

according to (3), the dynamics of the error  e t is shown as 

follows: 
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Form (15): 
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Since ˆˆ 0, 0,   and ,r lm m   ,then  0 m t  ,it 

can deduce that: 
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Form (18)-(22), it can then deduce that  
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Form (12) and (23), it can get that 
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Since ˆ 0  , then  
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Form (24), (25) and (26), it can get that: 
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The external perturbation  d t is bounded whatever the 

applied controller u is. Then by putting
0sup ( )t d t  , and 
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Conclusion, the first derivative of the system (1) is bounded. 

Then we known that the system error is also bounded. 
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When 1t : 

 

 
   

 

   

2

1 2

2

1 2

ˆ,
ˆ

ˆ, 2

ˆ
ˆ, (0) 0

ˆ 2

ˆ ˆ, (0) 0, 0

ˆ ( )

T T

T T

T T T

T T

T T T

T

T

ref

x e PBB Pe
e PBB Pe

x B Pe e PBB Pe

e PBB Pe

B Pe e PBB Pe

B Pe

f x B Pe

f x f e y

 


   




  

   

 

 
 

 
 

  



 





 



 (31) 

Due to the Lyapunov function V  is the decreasing function, 

and refy ,  f x is bounded. Then ˆ ˆ ˆ, , ,e u  is bounded. 
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obtain that ˆ ˆ ˆ, , ,e u  is bounded for 0t  . 

Form (15), it can obtain that: 
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Since 1 20, 0   , then  
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Form (32)-(34), it can obtain that: 

  ˆ ˆˆ ,T

refu B Pe e Y         (35) 

Since ˆ ˆ ˆ, , ,e u  is bounded for 0t  , then the right of (35) 

is bounded overall situation. 

4. ILLUSTRATIVE EXAMPLE  
Consider the nonlinear uncertain plant subject to the non-

symmetric dead-zone nonlinearity: 

 
     

1 2

2

2 1 2 2 1

,

0.25 2 0.5cos( )

x x

x x x x t u 



       




  (36) 

Where  u is an output of a non-symmetric dead-zone. The 

parameters to be simulated are: 1 1,  and 2 1  . In the 

simulated, parameters of the dead-zone are 1, 0.7l rm m  , 

3, 1l rb b  . According to these parameters, we have set

1 0.2  , and 2 0.6  . For 1  , the solution of the LMIs (9) 

gives
18.3476 16.2509

16.2509 16.2509
P

 
  
 

. Choosing the desired 

trajectory  sinrefy t and 5  , simulation results, with 

initial values as  0 1
T

B  ,    0 1 1
T

X  ,  ˆ 0 0.1  , 

 ˆ 0 0.1  ,  1
ˆ 0 0.1  ,  2

ˆ 0 0.2  , are shown in Fig. 2. 

 

Fig. 2. The tracking error e  and control signal u  for 

1 0.2  , 2 0.6   

Form Fig. 2, it can easily verify that the response of the 

second derivative of the reference is inside [-1, 1]. According 

to these simulations, we see that the adaptive law is capable of 

handling the effect of non-symmetric dead-zone control input 

with a minimal information on the dead-zone nonlinearity. In 

Fig. 3, then change the control parameters by taking 2 0.3 

and keeping the previous adaptive scheme with the same 

initial conditions and the same control parameters 1 0.2  . In 

Fig. 4, we take 2 0.8  and other parameters keep constant.  
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Fig. 3. The tracking error e  and control signal u for 

1 0.2  , 2 0.3   

 

Fig. 4. The tracking error e  and control signal u for 

1 0.2  , 2 0.8   

Analyzing the Fig. 2 and Fig. 3, it can obtain that the 

chattering phenomena of controller aggravated while the 

tracking error of system weakened when 2 take a smaller 

value. 

Analyzing the Fig. 2 and Fig. 4, it can obtain that the 

chattering phenomena of controller weakened while the 

tracking error of system aggravated when 2 take a bigger 

value. 

5. CONCLUSION 
This thesis design a new adaptive controller for a nonlinear 

system with non-symmetric actuator dead-zone fault basing 

on adaptive compensation algorithm. And the dead-zone 

parameters are unknown and non-symmetric. What is more, 

the limitation that the upper and lower limits of dead-zone is 

also unknown. By simulation, the proposed control law 

ensures bounded-error trajectory tracking with a smooth 

controller. 
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