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ABSTRACT 

Image compression has a wide range of application since it 

leads to reduction in storage space and easy transmission. 

Piecewise smooth image consists of sharp edge boundaries 

and smooth interior surfaces. This paper deals with 

compression of Piecewise smooth images using Graph Fourier 

Transform and Discrete Cosine Transform. In order to obtain 

better quality of reconstructed image blocks contains edge 

boundaries are transformed using DCT and smooth regions 

are transformed using both weighted GFT and unweighted 

GFT. In order to reduce the computational complexity, low 

pass filter and down sample a high resolution pixel block to 

obtain a low resolution one at the encoder, so that LR-GFT 

can be employed. At the decoder upsampling and 

interpolation are performed so that sharp edge boundaries can 

be preserved. 
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1. INTRODUCTION 
Most of the information consists of different types of 

redundancies. Removal of these redundancies will not affect 

the quality of the original message. Image compression is a 

process of reducing the amount of data required to represent a 

given quantity of information without any loss of its contents. 

Most images contain information that is ignored by the human 

visual system. Since increase in image related applications 

have created an issue of image storing and transmission, data 

compression it is one of the most used techniques in the field 

of image processing.Image compression mainly consists of 

three steps. At the encoder side divide the input image into 

different blocks, apply different transformations and finally 

entropy coding on the coefficients. All inverse operations are 

performed at the decoder side. Depending upon distinct 

transformations and entropy coding techniques, there are so 

many compression techniques are available.  

In transform coding, initially DCT was most commonly used 

image compression technique. DCT provides simplicity and 

good performance in compression. As it is applied on blocked 

image correlation across the block boundaries cannot be 

eliminated. It leads to blocking artifacts specifically at low bit 

rate. This drawback was overcome by wavelet transform [2]. 

Image compression using wavelet transform is popular as it 

gives time domain and frequency domain analysis of data. 

Wavelet transform can be directly applied to whole image 

without blocking it or it can be applies after dividing the input 

image into blocks. Wavelet based coding is more robust under 

transmission and decoding errors [3]. Recent trend is to use 

hybrid technique for image compression. In hybrid image 

compression technique, one transform is combined with 

another transform to incorporate the advantages of both 

transforms. In this work Graph Fourier Transform and 

Wavelet Transform are used for the compression of Piecewise 

smooth images. 

   

Fig 1: Examples of PWS images: (a) a depth map of an 

image sequence Teddy; (b) a computer-graphics image 

Dude. 

2. MULTIRESOLUTION GRAPH 

FOURIER TRANSFORM SYSTEM 
This section provides an overview of proposed coding system 

for compression of PWS images as shown in Figure 2. For a 

given a PWS image, the encoding and decoding procedures 

are as follows. 

 

 

Fig 2: Block diagram of the proposed system 

2.1 Encoder 
At the encoder, first we will detect prominent boundaries 

(large inter-pixel intensity difference) in the HR image via 

hard thresholding of image gradients using sobel operator. 

Here the threshold is set based on the mean and variance of 

the input image, so that the boundary detection is adaptive to 

the image statistics. Then we will encode HR boundaries 

losslessly using Huffman coding for H.264 intra prediction 

and interpolation at the decoder. Then apply Huffman coding 

for the entire image, which avoids initialization for each block 

and efficiently encodes long continuous boundaries in the 

image. Then for each K N K N  target pixel block 

considering a down sampling factor K = 2 and we execute the 

following three steps. 
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First, this paper performs intra prediction. H.264 intra 

prediction mode efficiently minimizes the prediction error by 

predicting within the limit of detected HR boundaries, thus 

reducing bits required for coding of the residual signal. 

Second, this method try two types of transforms for transform 

coding of the residual block. It performs,  i) fixed DCT on the 

original HR residual block (HR-DCT) and  ii) a pre-computed 

LR GFT (LR-GFT) on the down-sampled LR residual block. 

Then choose best transform for each block which gives 

minimum error. Before transform coding using LR-GFT, 

however, first adaptively low-pass-filter and down-sample the 

K N K N  block uniformly. Low-pass filtering is first 

used to avoid the effects of aliasing caused by down-

sampling. An edge-adaptive low-pass filtering is performed in 

the pixel domain in order to preserve of sharp boundaries. 

Specifically, a pixel is low-pass-filtered by taking average of 

its neighboring pixels on HR boundaries within a 

(2 1) (2 1)K K    window centering at the pixel which is 

to-be-filtered. The main advantage of this edge-adaptive low-

pass filtering is that filtering across arbitrary-shape boundaries 

will not exist, so pixels across boundaries will not corrupt 

each other through filtering. For the employment of the HR-

DCT and LR-GFT pre-compute the optimal transforms and 

store them in a lookup table a priori. During coding, try each 

of the transforms and choose the one which gives the better 

performance. In frequency domain two types of transforms, 

HR-DCT and LR-GFT are employed to adapt to various block 

characteristics. 

HR-DCT is sufficient for blocks where edge-adaptive low-

pass filtering would result in significant amount of energy 

loss. If energy loss is negligible during low pass filtering, LR-

GFT would result in a larger coding gain. If a given block is 

smooth then the LR-GFT will default to the DCT in LR, and it 

would give a larger gain than HR-DCT due to down-

sampling. 

After optimal transform is chosen from the two transform 

candidates, quantize and entropy-encode the resulting 

transform coefficients for further transmission to the decoder. 

The transform index recognizing the selected transform is also 

encoded, so that suitable inverse transform can be achieved at 

the decoder. 

 

2.2 Decoder 
At the decoder, first perform inverse quantization and inverse 

transform for the reconstruction of the residual block. The 

transform index is used to distinguish the transform chosen at 

the encoder for transform coding. Secondly, if LR-GFT is 

employed, up-sample the reconstructed K N K N  LR 

residual block to the original resolution K N K N , and 

then fill in missing pixels via image-based edge-adaptive 

interpolation, where a pixel x is interpolated by taking average 

of its neighboring pixels on the same side of boundaries 

within a (2 1) (2 1)K K    window centering at pixel x. 

Finally, the K N K N  block is reconstructed by adding 

the intra predictor to the residual block. 

3. GRAPH FOURIER TRANSFORM 

FOR IMAGES 
A graph { , , }G V E W  consists of a finite set of vertices V 

with cardinality of N, a set of edges E connecting vertices, 

and a weighted adjacency matrixW . W Is a real N N   

matrix, where ,Wi j  is the weight assigned to the edge ( , )i j  

connecting vertices i  and j . Here we are considering only 

undirected graphs, which correspond to symmetric weighted 

adjacency matrices, i.e., , ,
W Wi j j i

 . We also assume 

weights are non-negative, i.e., 0,Wi j  . 

 

 

Fig 3: An example of constructing GFT from a 2x2 pixel 

block[1] 

Since we have different variants of Laplacian matrices, here 

we are using unnormalized combinatorial graph Laplacian, 

which is defined as L D W  , where D  is the degree 

matrix - a diagonal matrix whose i th diagonal element is the 

sum of all elements in the i th row of W , i.e,. 

,1,
ND Wi jji j

  . Since Laplacian matrix is a real 

symmetric matrix, it adopts a set of real eigenvalues 

 
0,1,....., 1l l N


 

with a complete set of orthonormal 

eigenvectors
l l l

   , for l=0,1,…, N-1. We employ this 

Laplacian matrix mainly for two reasons. 

First, because elements in each row of   add to zero by 

construction, 0 is guaranteed to be an eigenvalue with 

[1……1]T as the corresponding eigenvector. This means a 

frequency domain interpretation of GFT, where the 

eigenvalues ls are the graph frequencies, which have a DC 

component, which is beneficial for the compression of PWS 

images where most of the regions are smooth. 

Second, GFT defaults to the well known DCT when defined 

for a line graph (corresponding to the 1D DCT) or a 4-

connectivity graph (2D DCT) with all edge weights equal to 1 

[27]. That means GFT is at least as good as the DCT in sparse 

signal depiction if the weights are chosen in this way. Because 

of the above two desirable properties, the unnormalized 

Laplacian matrix is used in this work. 

The graph Laplacian can be used to describe the total 

variation of the signal with respect to the graph; i.e., for any 

signal 
Nx R  residing on the vertices of a graph with the 

graph Laplacian  , we can write 

1 2
( ),

1 12

N NT
x x W x xi j i j

i j
   

 
              (1)

 

T
x x  is small when x has similar values at each pair of 

vertices i and j connected by an edge, or when the weight Wi,j 

is small for an edge connecting i  and j with dissimilar 

values. Thus, a signal is smooth (mostly low-frequency 

components) with respect to a graph if the edge weights 

capture the similarity of connected pixels in the signal. Since 
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T
x x  is small if a signal is smooth on the graph (thus a 

sparse representation in the GFT domain). 

The eigenvectors  
0,1,....., 1l l N


 

 of the Laplacian matrix 

are then used to define the GFT. Formally, for any signal 

N
x R  residing on the vertices of G , its GFT ˆ

N
x R  is 

defined  as 

ˆ( ) , ( ) ( ), 0,1, ...., 1.
1

N
x l x n x n l Nl l

n
    

          (2)

 

The inverse GFT follows as 

1
ˆ( ) ( ) ( ), 1, 2, .....,

0

N
x n x l n n Nl

l



 
             (3)

 

Having defined the GFT, we an example of how to construct a 

GFT from a given unweighted graph, defined for a pixel block 

is given below. Given a N N  pixel block, first treat 

each pixel in the block as a vertex in a graph G  and connect 

it to its four immediate neighbors, resulting in a 4-

connectivity graph which is shown in Figure 3 for an 

illustration. Second, if there is a large discrepancy in values 

between two neighboring pixels, eliminate their connection. 

Given the connectivity graph, then define the adjacency 

matrix W, where 1
, ,

W W
i j j i

   if pixel positions i and j 

are connected, and 0 otherwise. The degree matrix D can then 

be computed. In the third step, using computed W and D, 

compute the graph Laplacian matrix L D W  . Then stack 

pixels in the N N  patch into a length-N vector x and 

compute the GFT according to (2). 

4. EXAMPLES FOR OPTIMAL GFTS 

FOR DIFFERENT BLOCKS 
Figure 4 shows the two flavors of GFTs to capture various 

correlations in pixel blocks. Figure 4(a) shows an example for 

block containing pixel pairs which having both strong and 

zero correlations. UGFT is selected during mode decision 

based on RD costs, where the given block is divided into two 

separate partitions and a connected graph is obtained in each 

partition. The resulting transform representation is one DC 

coefficient for the description of each partition, as shown at 

the bottom of Figure 4(a). 

 

 

 

Figure 4: An illustration of UGFT and WGFT. (a) An 

example block containing pixel pairs with strong and zero 

correlations, and its signal representation in the UGFT 

domain. (b) An example block containing pixel pairs with 

strong and weak correlations, and its signal representation 

in the WGFT domain. 

Figure 4(b) shows an example for block containing pixel pairs 

with strong and weak correlations. As a result WGFT is 

chosen from mode decision, where a graph containing edge 

weights c (here c = 0.13) is constructed on the block. The 

resulting transform coefficients consist of one large DC term 

and one small AC term, shown at the bottom of Figure 4(b). 

Figure 5: Figure 3.4: An illustration of optimal UGFTs at 

different rates. For a given pixel block, the figure shows 

the optimal graph construction (all the edges connecting 

pixels are assigned weight 1) and resulting transform 

coefficients at (a) high bit rate, (b) medium bit rate and (c) 

low bit rate. 

Next, is an illustrative example of optimal UGFTs for the 

same block but at different target bit rates. Given a pixel block 

with three smooth regions as shown in Figure 5, the minimal 

representation cost at high bit rates is achieved when it is 

divided into three connected components corresponding to the 

three smooth regions. This is because this obtained UGFT 

results in only three DC coefficients, which leads to the 

minimal and significantly smaller cost of quantized transform 

coefficients (compared to other UGFTs which yields in many 

high frequency coefficients) at high bit rates, which together 

with the description cost results in the minimal representation 

cost. At medium rates, the larger quantization parameter (QP) 

quantizes more coefficients to set to zero, and a simpler 

UGFT with similar quantized transform coefficient cost but 
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smaller transform description cost would be more attractive, 

resulting in the graph in Figure 5(b). Finally, at low rates, the 

large QP quantizes most coefficients to zero, and the simplest 

UGFT is best, as shown in Figure 5(c). 

5. DEFINITION OF SEARCH SPACE 

FOR GFTS 
Here considering pixels that are neighbors in the 4-

connectivity graph as random variables, and consider a 

discrete set of probable weights to be chosen for each edge 

connecting two pixels. These weights correspond to three 

representative classes of the correlation between two pixels: 

1) strong correlation between the pixels, which models pixel 

pairs occupying in smooth regions of the 

foreground/background; 2) zero correlation between the two 

pixels, occurring when they bestride sharp boundaries 

between the foreground and background; and 3) weak 

correlation between the pixels that correspond to distinctly 

different parts of the same foreground/background object. See 

Figure 6 for an illustration. Correspondingly, the weights are 

assigned to be C = f1, 0, cg, where c is a carefully chosen real 

value between 0 and 1. Having defined the edge weight set, 

for ease of computation we further divide the optimization 

problem into two sub-problems with two corresponding non-

overlapping GFT search spaces: 

1. Unweighted GFT (UGFT), with C = f1, 0g for blocks that 

can be well described by pixel pairs with strong and zero 

correlations only; and 

2. Weighted GFT (WGFT), with C = f1, cg for blocks that can 

be well described by pixel pairs with strong and weak 

correlations only. 

 
Figure 6: An intuitive illustration of how different 

transforms adapt to pixel blocks with different pixel 

correlations in the depth map of Ballet 

If a block can be described by pixel pairs having strong 

correlation only (i.e., a smooth block), then the GFT defaults 

to the DCT. See Figure 3.5 for an illustration. In a nutshell, 

the WGFT cogitates only graphs that describe a single 

connected component (i.e., only one DC coefficient in any 

WGFT representation of the signal). The UGFT considers 

graphs of numerous connected components, where each 

component is connected by edges and having edge weight as 

1. A connected component with a pair of disconnected 

neighboring pixels occurs rarely in practice, and thus is not 

considered in the UGFT optimization. For a given input 

coding block we will search both the transform space for the 

best possible signal representation. 

6. FAST IMPLEMENTATION OF GFTS 
This section consists of a method for fast implementation of 

GFT for practical deployment. The online Eigen 

decomposition for the construction of GFT is a problem to 

real time implementation, which can be avoided by pre-

calculating and storing most suitabe GFTs in a table for 

simple lookups. First detail the construction of GFT lookup 

table, and then we compare the complexity of table lookup 

against that of online eigen-decomposition. 

 

The table size could be large if we simply store all the 

obtained GFTs. A large table would always lead to high 

requirement in storage space and expensive lookup. Hence, it 

would be better to construct a GFT lookup table having 

relatively small size. Specifically, the lookup table creation 

has two strategies: 1) Perform GFT on a LR block (4 _ 4), 

which admits a smaller space of GFT variants to begin with. 

2) Only the most frequently used LR-GFTs are stored. 

 

Due to self-similarities, the same or similar structures are 

likely to persist throughout. Hence, the underlying LR-GFTs 

with respect to those structures are frequently used. Thus store 

only the most frequently used LR-GFTs in lookup table, while 

covering a large fraction of the total used LR-GFTs. Having 

constructed the lookup table, during encoding search for the 

GFT (including UGFT and WGFT) for a given block. For 

each block, search for the optimum GFT during table look-up. 

Then transmit the table index losslessly to indicate which LR-

GFT is employed for the given block, so that the decoder is 

able to identify the correct inverse transform. 

 

7. EXPERIMENTAL RESULTS 
For the performance evaluation of the work, a Piecewise 

smooth image Teddy with dimension 450x375 is taken as the 

input image. The input image and the reconstructed images 

are shown in Figure 7. 

  
 (a)          (b) 

  

 (c)          (d) 

Figure7: (a) Input image Teddy (b) Reconstructed image 

Teddy (c) Input image Cones (b) Reconstructed image 

Cones. 
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7.1 Performance Evaluation 
In order to obtain the performance evaluation the PSNR 

values at different bits per pixel are obtained and the 

corresponding graph is given in Figure 8. 

 

Fig 8: Performance evaluation for the image teddy 

8. CONCLUSION 
Image compression has a great importance since it reduces 

storage space and makes the transmission of data easier. This 

work produces efficient compression of Piecewise Smooth 

Images using both Graph Fourier Transform and Discrete 

Cosine Transform. The compressed data and the reconstructed 

images are obtained and Peak Signal to Noise Ratio at 

different bits per pixel is tabulated successfully. Further, here 

we employ two techniques for practical implementation of 

GFT. One is the MR scheme where GFT is applied over a low 

pass filtered and down-sampled version of a high-resolution 

block. The next is the pre-computation of the most popular 

GFTs in a stored table for simple lookup instead of real time 

eigen-decomposition. It is possible to implement this method 

as a coding mode during compression of general images, so 

that when a code block is deemed PWS, this coding scheme 

can be deployed. 
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