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ABSTRACT 

Flower pollination algorithm (FP) is a new nature-inspired 

algorithm, based on the characteristics of flowering plants. 

Combining with the features of flower pollination algorithm, 

an improved simulated annealing algorithm is proposed in this 

paper (FPSA). It can improve the speed of annealing. The 

initial state of simulated annealing and new solutions are 

generated by flower pollination. Therefore, it has the 

advantage of high quality and efficiency. The method 

combines the standard flower pollination algorithm (FP) with 

simulated annealing to enhance the search performance and 

speeds up the global convergence rate. Structural engineering 

optimization problems are presented to demonstrate the 

effectiveness and robustness of the proposed algorithm. The 

experimental results showed that the accuracy of finding the 

best solution and convergence speed performance of the 

proposed algorithm is competitive to those achieved by the 

existing algorithms. 
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1. INTRODUCTION 
Most real-world engineering optimization problems in 

structural engineering are very complex, highly nonlinear, 

involving many different design variables under complex 

constraints. These constraints can be written either as simple 

bounds such as the ranges of material properties or as 

nonlinear relationships including maximum stress, maximum 

deflection, minimum load capacity, and geometrical 

configuration[1]. Such nonlinearity often results in 

multimodal response landscape. However, they are very 

complex in nature and quite difficult to solve. If there is more 

than one local optimum in the problem, subsequently, the 

gradient search may become unstable when the objective 

function and constraints have multiple or sharp peaks. 

Furthermore, local search algorithms such as hill-climbing 

and Nelder-Mead downhill simplex methods are not suitable; 

only global algorithms should be used so as to obtain optimal 

solutions. 

Global optimization is an important task in most scientific and 

engineering problems. In global optimization problem, it is 

difficult to obtain an optimal solution due to time complexity. 

Accordingly metaheuristics became important in such 

situations for their independence on a specific problem. 

Metaheuristics are optimization approaches which make use 

of the best solution improved iteratively to the next search. 

For example, finding optimal solutions for nonlinear, non-

differentiable fractional objective functions is very difficult to 

deal with. The complexity of these problems makes it 

impossible to search for all possible optimal exact solutions. 

So is the search for any solution near the optimal solution. 

The metaheuristic optimization is the best for finding near 

optimal. Recently growing popularity in the hybridization of 

diff erent algorithmic concepts has been to obtain better 

performing systems that exploit and combine the advantages 

of the individual pure strategies, that is, hybrids are believed 

to benefit from synergy. In fact, choosing an adequate 

combination of multiple algorithmic concepts is often the key 

to achieving top performance in solving many hard 

optimization problems. [1] combined two nature inspired 

algorithms and introduced the CS/PSO algorithm. Cuckoo 

birds are aware of each other positions and make use of 

swarm intelligence in PSO in order to reach for better 

solutions. [2] combined the differential evolution (DE) and 

cuckoo search (CS) algorithm to solve the uninhabited combat 

air vehicle UCAV path planning problem. DE is applied to 

optimize the process of selecting cuckoo of the CS model 

during the process of cuckoo in nest updating. [3] proposed 

hybrid optimization algorithm of PSO and CS. By CS-PSO, 

the search area of PSO was extended, and the defect of PSO is 

easily fallen into point of local extremum that was improved. 

[4] proposed a hybrid algorithm which combines the merits of 

Ant Colony Optimization (ACO) and Cuckoo Search for Job 

scheduling. The major problem in the ACO is that, the ant 

will walk through the path where the chemical substances 

called pheromone is deposited. This acts as if it lures the 

artificial ants[4]. Cuckoo search can perform the local search 

more efficiently and there is only a single parameter apart 

from the population size. It minimizes the makes pan and the 

scheduling can be used in scientific computing and high 

power computing. [5] introduced a modify firefly algorithm 

and used this algorithm with cellular learning automata. [6] 

combines the standard Firefly Algorithm (FA) with the 

evolutionary operations of Differential Evolution (DE) 

method to improve the searching accuracy and information 

sharing among the fireflies. [7] proposed ant colony 

optimization (ACO) and firefly algorithm (FFA) algorithm for 

constrained optimization problems, The methodology of the 

proposed algorithm is introduced based on a parallel 

mechanism of ACO and FFA for updating the solutions of 

ACO-FFA. [8] introduced a new hybrid swarm intelligence 

algorithm that encompasses the feature of three major swarm 

algorithms. It combined the fast convergence of the Cuckoo 

Search (CS), the dynamic root change of the Firefly 

Algorithm (FA), and the continuous position update of the 

Particle Swarm Optimization (PSO). [9] presented the 

evolutionary hybrid genetic-firefly algorithm for the 

optimization of complex problems and to search global 

solution more precisely.  

The purpose of this paper is to combine the search features of 

flower pollination algorithm and simulated annealing 

algorithm. The initial state of simulated annealing and new 

solutions are generated by flower pollination. To enhance the 

search performance the global convergence rate. 

This paper is organized as follows: after introduction, the 

original Flower pollination algorithm is briefly introduced. 
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Section 3 introduces the simulated annealing algorithm. In 

section 4, the proposed algorithm is described, while the 

results are discussed in section 5. Finally, conclusions are 

presented in section 6. 

2. THE ORIGINAL FLOWER 

POLLINATION ALGORITHM 
Flower Pollination Algorithm (FPA) was founded by Yang in 

the year 2012. Inspired by the flow pollination process of 

flowering plants are the following rules: 

Rule 1: Biotic and cross-pollination can be considered as a 

process of global pollination process, and pollen-carrying 

pollinators move in a way that obeys Le'vy flights.  

Rule 2: For local pollination, a biotic and self-pollination are 

used. 

Rule 3: Pollinators such as insects can develop flower 

constancy, which is equivalent to a reproduction probability 

that is proportional to the similarity of two flowers involved. 

Rule 4: The interaction or switching of local pollination and 

global pollination can be controlled by a switch probability 

p[0,1], with a slight bias toward local pollination . 

In order to formulate updating formulas, we have to convert 

the aforementioned rules into updating equations. For 

example, in the global pollination step, flower pollen gametes 

are carried by pollinators such as insects, and pollen can travel 

over a long distance because insects can often fly and move in 

a much longer range[17].Therefore, Rule 1 and flower 

constancy can be represented mathematically as: 

))((1 BxLxx t
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i                                (1) 

Where 
t

ix is the pollen i or solution vector xi at iteration t, 

and B is the current best solution found among all solutions at 

the current generation/iteration. Here γ is a scaling factor to 

control the step size. In addition, L(λ) is the parameter that 

corresponds to the strength of the pollination, which 

essentially is also the step size. Since insects may move over a 

long distance with various distance steps, we can use a Le'vy 

flight to imitate this characteristic efficiently. That is, we draw 

L > 0 from a Levy distribution: 
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Here, Γ(λ) is the standard gamma function, and this 

distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 3 

can be represented as: 
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Where 
t

jx and 
t

kx are pollen from different flowers of the 

same plant species. This essentially imitates the flower 

constancy in a limited neighborhood. Mathematically,  if 
t

jx

and 
t

kx comes from the same species or selected from the 

same population, this equivalently becomes a local random 

walk if we draw U from a uniform distribution in [0, 

1].Though Flower pollination activities can occur at all scales, 

both local and global, adjacent flower patches or flowers in 

the not-so-far-away neighborhood are more likely to be 

pollinated by local flower pollen than those faraway. In order 

to imitate this, we can effectively use the switch probability 

like in Rule 4 or the proximity probability p to switch between 

common global pollination to intensive local pollination. To 

begin with, we can use a naive value of p = 0.5 as an initially 

value.  

A preliminary parametric showed that p = 0.8 might work 

better for most applications[10-11]. 

The basic steps of FPA can be summarized as the pseudo-

code shown in Fig. 1. 

Flower pollination algorithm  

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution B in the initial population 

Define a switch probability p ∈  [0, 1] 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a 

Lévy distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx 
 

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via 

)(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the 

population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

Fig. 1 Pseudo code of the Flower pollination algorithm 

 

3. SIMULATED ANNEALING 

ALGORITHM 
Simulated annealing (SA) is one of the simplest and most 

popular heuristic algorithms [12]. SA is a global search 

algorithm, based on annealing process of metal processing. It 

has been proved that it can have global convergence, though 

the convergence rate can be very slow. It is based on Monte 

Carlo iterative solution strategy. Its main advantage is that it 

not only accepts better solution than the current state, but also 

it can jump out of local minimum. The basic steps of SA can 

be summarized as the pseudo-code shown in Fig.2 

Simulated Annealing Algorithm 

Initialize the temperature T0 and the solutions x0 

Set the final temperature Tfand the maximum number of 

iterations N 

Define cooling table T→ T; (0<<1) 

While (T>Tfand t<N) 

Generate new solutions randomly xt+1=xt+ 

Calculate f =ft+1(xt+1)-ft(xt) 

Accept the new solution when it is better 
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If (the new solution is not accepted) 

Generate a random number r 

If (p = exp[-f /T]>r) 

Accept 

End if 

Update the optimal solution x* and the optimal value f* 

t=t+1 

End while 

Fig. 2. Pseudo code of the Simulated Annealing algorithm 

 

There are many studies to combine simulated annealing and 

other optimization algorithms to produce hybrid algorithms 

[13–15], such combination may have some advantages, which 

deserves further investigation. In fact, many nature-inspired 

algorithms have become very popular, due to their simplicity, 

flexibility and efficiency [16]. Therefore, this paper is the first 

attempt to combine simulated annealing with the standard 

flower pollination algorithm to further enhance it 

performance. 

 

4. THE PROPOSED ALGORITHM 

(SAFA) FOR SOLVING 

ENGINEERING OPTIMIZATION 

PROBLEMS  
In the proposed algorithm, the initial solution is randomly 

generated in the standard simulated annealing algorithm. 

Therefore, the size of the solution is uneven. This feature will 

affect the effectiveness of algorithm. The defect can be 

avoided by using flower pollination algorithm to create the 

initial solution. In order to enhance the searching efficiency, 

the new solution is generated by FP algorithm. The worst 

solution is replaced by the new solution. The advantage of the 

searching process lies in retaining the intermediate optimal 

solution and updating on time. Finally, annealing process is 

executed once again based on the final optimal solution. 

The steps of the proposed algorithm for solving global 

optimization problems are as follows: 

Step 1: The Initialization of annealing temperature is T. 

FPSA uses the FP algorithm to create initial 

solution library MS. The formula of generating 

initial solution is  

x = LB + r *(UB -LB)        (4) 

where UB is the maximum value of solution, LB is the 

minimum value of solution, r is uniformly distributed 

random number in(0,1). The iterations of each T is L. 

Step 2: Disturbing and receiving processes are repeatedly 

executed L times under temperature T to 

determine whether the sample stability 

criterion is reached. If the criterion is not 

satisfied step3 –step4 will be executed. 

Otherwise the step5 will be executed to lower 

the temperature by using exponential function. 

Step 3: The new solution is generated by FP algorithm.  

Step 4: Difference value △E between the objective 

function values E’ of new solution and the 

smallest solution E is calculated. If △E< 0then 

the new solution is accepted, otherwise the new 

solution is accepted with probability 

min{1,exp[-△E /t]}.Then the MS is updated 

and the worst solution in the library is 

replaced. 

Step 5: Annealing. Tk+1=0.96*Tk, k=k+1.If the 

convergence criterion is satisfied, then the 

annealing process is executed based on the 

final solution once again and output terminal 

result else go to step2. 

4.1 Handling Constraints 
The feasible-based mechanism proposed by Deb [17] is used 

to handle the constraints problem and select the best 

individuals from one generation according to the following 

three rules: 

Rule 1: Between two feasible solutions, the one with the 

higher fitness value is preferred. 

Rule 2: Any feasible solution is preferred to any 

infeasible solution. 

Rule 3: If both solutions are infeasible, the one with the 

lowest sum of constraint violation is preferred. 

This sum is calculated as: 

     
1 1
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 
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j
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          (5) 

5. NUMERICAL RESULTS 
Most real-world engineering optimization problems are 

nonlinear with complex constraints. In some cases, the 

optimal solutions of interest do not even exist. In order to 

evaluate the performance of FPSA, it is tested against the 

following well-known benchmark design problems. In this 

section, we will carry out numerical simulation based on some 

well-known constrained engineering optimization problems to 

investigate the performances of the proposed algorithm. In 

addition, we will also compare the performance of the 

proposed algorithm with CS, FA, and PSO algorithms. The 

algorithms have been implemented by MATLAB R2011 on 

core (TM) i3, 2.27 GHz processor. Where the simulation 

parameter settings results of CS, FA, and PSO algorithms are 

shown in table 1.  
Table 1. Parameters of CS, FA, and PSO 

CS 
Number of nests n=50, discovery rate of alien eggs/solutions 

pa=0. 25; 

FA 
Population size : 50, α (randomness): 0.25, minimum value of 

β: 0.20, γ (absorption): 1.0 

PSO 

Population size of 50, the inertia weight W, set to change 

from 0.9 (wmax) to 0.4 (wmin) over the iterations.  Set 

weighting coefficients, c1 = 0.12 and c2 =1.2. 

 

5.1 Illustrative Example 
This simple example is a global optimization problem named 

Booth's function to show efficiency the proposed algorithm. 

Booth’s function have an exact minimum of 0 at (1,3). 

     
2 2

, 2 7 2 5f x y x y x y     
 

When applying the FPSA to solve the above problem, the 

optimal basic feasible solution at (1.0000014,2.9999998), 

corresponding to f(x,y)=2.0000E-013was obtained.  

5.1.1 The Welded Beam design 
The welded beam design problem often used as a standard test 

problem for constrained design optimization [18–21]. The 

objective is to minimize the overall fabrication cost f(x) of the 

beam. Subject to constraints on shear stress (τ), bending stress 

(σ) in the beam, buckling load on the bar (Pb), end deflection 
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of the beam (δ), and side constraints. There are four design 

variables as shown in Fig. 3: the width h(x1) and length 

l(x2)of the welded area, the depth t(x3), and thickness b(x4) 

of the main beam. The mathematical formulation of the 

optimization problem can be stated as follows: 

  2
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Fig. 3.  Welded beam 

The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as shown in Table 

2. Accuracy performance is measured in terms of the best, 

mean, and standard deviation values of the solutions obtained 

by 20 independent runs. The best solution was obtained using 

FPSA with an objective function value of 1.72485205903234. 

Fig. 4: illustrates the function values with respect to the 

number of iterations for the welded beam design problem. 

 

Table 2. Comparison of statistical results of welded beam design 

 FPSA CS FA PSO 

Best 

Mean 

Std Dev 

1.72485205903234 

1.724853099019661  

6.094401179370e-07 

1.72485229196730 

1.724853498495976 

678275871223e-07 

1.724853054825791 

72485401019653 

5.247579855645e-07 

1.72485307029703  

1.72485391951394  

5.5689534654981e-07 

 

Fig. 4.  Illustrates the comparison of simulation results in welded beam 
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5.1.2 The tension/compression spring design 
The tension/compression spring design problem [18–23] 

shown in Fig. 5. A standard spring design problem has three 

design variables: the wire diameter d(=x1), the mean coil 

diameter D(=x2),  and the length (or number of active coils) 

P(=x3). The objective is to minimize the weight (f(x)) of a 

tension/compression spring subject to constraints on minimum 

deflection, shear stress, surge frequency, limits on outside 

diameter and on design variables. Formally, the problem can 

be expressed as: 

 

 
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Fig. 5. Schematic view of tension/compression spring 

problem. 

The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as shown in Table 

3. Accuracy performance is measured in terms of the best, 

mean, and standard deviation values of the solutions obtained 

by 20 independent runs. The best solution was obtained using 

FPSA with an objective function value of 

0.0126650555494454. Fig. 6: illustrates the function values 

with respect to the number of iterations for the 

tension/compression spring design problem. 

 

Table 3. Comparison of statistical results of tension/compression spring design 

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

0.0126650555494454 

0.0126824784876601 

1.171356394879e-05 

0.0126740326999630 

0.0127418557385097 

4.720102943650e-05 

0.012681243353847 

0.012765894187375 

6.115620208651e-05 

0.0126679529561246 

0.0127883417176863 

6.1304311322847e-05 

 

Fig. 6.  Illustrates the comparison of simulation results in tension/compression spring design 

5.1.3 The speed reducer design 
In speed reducer design problem [19,24,21] shown in Fig. 7, 

the weight of speed reducer is to be minimized subject to 

constraints on bending stress of the gear teeth, surface stress, 

transverse deflections of the shafts, and stresses in the shafts. 

The variables x1 to x7 represent the face width (b), module of 

teeth (m), number of teeth in the pinion (z), length of the first 

shaft between bearings (l1), length of the second shaft 

between bearings (l2), and the diameter of first (d1) and 
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second shafts (d2), respectively. This is an example of a 

mixed integer-programming problem. The third variable x3 

(number of teeth) is of integer values while all other variables 

are continuous. There are 11 constraints in this problem 

resulting in high complexity of the problem. 

 

 

Fig. 7. Speed reducer 

 

The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as displayed in 

Table 4. Accuracy performance is measured in terms of the 

best, mean, and standard deviation values of the solutions 

obtained by 20 independent runs. The nearly equal solutions 

were obtained using all algorithms with slight preference for 

CS with an objective function value of 2880.46482722267. 

Fig 8: illustrates the function values with respect to the 

number of iterations for the speed reducer design problem. 

 

Table 4. Comparison of statistical results of speed reducer design problem

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

2887.42702290486 

2945.23818793807 

41.6750980729589 

2880.46482722267 

2941.90941560529 

44.6057435229911 

2877.92580198275 

2946.97407374565 

41.1218438217774 

2905.37998331683 

2945.57565992893 

31.3007507913235 

 

Fig. 8.  illustrates the comparison of simulation results in speed reducer design problem 

 

The mathematical formulation of the optimization 

problem can be written as: 

 
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5.1.4 The pressure vessel design 
The pressure vessel design problem [18–23] is a well-known 

benchmark for validating optimization algorithms. Fig. 9 

illustrates the problem. The main objective is to minimize the 

overall cost f(x)including the cost of the material, forming and 

welding. It has four design variables: x1 (Ts, shell thickness), 

x2 (Th, thickness of spherical head), x3 (Radius of cylindrical 

shell) and x4 (L, shell length). Ts(=x1) and Th(=x2)are 

integer multipliers of 0.0625 in. in accordance with the 

available thickness of rolled steel plates, and R(=x3) and 

L(=x4) have continuous values of 40 <R< 80 in. and 20 <L< 

60 in., respectively.  

This optimization problem can be written as: 
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Fig. 9. Schematic view of pressure vessel problem 

 

The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as displayed in 

Table 5. Accuracy performance is measured in terms of the 

best, mean, and standard deviation values of the solutions 

obtained by 20 independent runs. The nearly equal solutions 

were obtained using all algorithms with slight preference for 

FA with an objective function value of 6062.71755606089. 

Fig 10: illustrates the function values with respect to the 

number of iterations for the pressure vessel problem. 

 

 

Table 5. Comparison of statistical results of pressure vessel problem

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

6062.9461682320962 

6852.295591652 

115.622843271676 

6072.30661137600 

6251.87042467342 

132.067431385067 

6062.71755606089 

6276.49610209687 

121.202340495361 

6066.51211504558 

6273.41300752752 

130.085266132072 
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Fig. 10.  Illustrates the comparison of simulation results in pressure vessel problem 

5.1.5 The cantilever beam design 
In cantilever beam design problem [23] shown in Fig. 11, the 

mean objective is to minimize the overall weight of a 

cantilever beam with square cross sections. The beam is 

rigidly supported at node 1, and there is a given vertical force 

acting at node 6. The design variables are the heights (or 

widths) of the different beam elements, and the thickness is 

held fixed (here t = 2/3). The mathematical formulation of the 

optimization problem can be stated as follows: 

 

 
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
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Fig. 11. The Cantilever Beam 

The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as displayed in 

Table 6. Accuracy performance is measured in terms of the 

best, mean, and standard deviation values of the solutions 

obtained by 20 independent runs. The best solution was 

obtained using FPSA with an objective function value of 

1.33999122280701. Fig. 12: illustrates the function values 

with respect to the number of iterations for the cantilever 

beam design problem. 

 

Table 6. Comparison of statistical results of cantilever beam design 

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

1.33999122280701 

1.34450023221826 

0.002739386596007 

1.33999509315973 

1.34654331839642 

0.002519033574168 

1.34078835627094 

1.34430747388793 

0.002408741945849 

1.34013960563364 

1.34399097305102 

0.002566539714930 
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Fig. 12.  illustrates the comparison of simulation results in cantilever beam design 

5.1.6 The three-bar truss design 
The three-bar truss design problem [19–21] shown in Fig. 13, 

which often used as a standard test problem for constrained 

design optimization, this problem was first presented by 

Nowcki (1974). The volume of a statically loaded three-bar 

truss is to be minimized subject to stress (s) constraints on 

each of the truss members. The objective is to evaluate the 

optimal cross sectional areas. This optimization problem can 

be written as: 

 

 

Fig. 13.  Four bar truss 
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The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as displayed in 

Table 7. Accuracy performance is measured in terms of the 

best, mean, and standard deviation values of the solutions 

obtained by 20 independent runs. The nearly equal solutions 

were obtained using all algorithms with slight preference for 

FA with an objective function value of 263.89586390931. Fig 

14: illustrates the function values with respect to the number 

of iterations for the three-bar truss design problem. 

 

Table 7. Comparison of statistical results of the three-bar truss design 

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

263.89595502186 

263.896566975811 

0.000389659036066 

263.895885687007 

263.896539611530 

0.000406673310220 

263.895863909310 

263.896389983192 

0.000369856927395 

263.896017785072 

263.897514777445 

0.001062109487269 
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Fig. 14.  illustrates the comparison of simulation results in the three-bar truss design 

 

5.1.7 Heat exchanger design 
Heat Exchanger Design [23] is a benchmark minimization 

problem that is regarded as difficult test case due to all the 

constraints are binding. This constrained function has eight 

variables and six inequality constraints. The mathematical 

formulation of the optimization problem can be stated as 

follows: 
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The comparisons of the statistical results obtained by FPSA, 

CS, FA, and PSO algorithms are presented as displayed in 

Table 8. Accuracy performance is measured in terms of the 

best, mean, and standard deviation values of the solutions 

obtained by 20 independent runs. The best solution was 

obtained using FPSA with an objective function value 

of7,049.57814832128. Fig. 15: illustrates the function values 

with respect to the number of iterations for the heat exchanger 

design problem. 

 

Table 8. Comparison of statistical results of heat exchanger design 

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

7,049.57814832128 

7,060.53191098780 

5.74817059120558 

7,049.86990534642 

7,056.30534764689 

4.37524610926571 

7,050.26039418716 

7,057.99511681114 

6.04952221016639 

7,049.73843584822 

7,059.28972947729 

6.52636679314155 
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Fig. 15.  Illustrates the comparison of simulation results in heat exchanger design 

 

5.1.8 Corrugated bulkhead design 
Corrugated bulkhead design [25,26,23] are often used in 

chemical tankers and product tankers in order to help facilities 

cargo tank washing effectively. This problem is as an example 

of minimum-weight design of the corrugated bulkheads for a 

tanker. Four design variables of the problem are width (b), 

depth (h), length (l), and plate thickness (t) for minimum-

weight design of the corrugated bulkheads for a tanker, the 

mathematical formula for the optimization problem as follows 

[27]:  
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The comparison result of minimum-weight and the statistical 

values of the best solution obtained by FPSA, CS,FA and 

PSOare given in Table 9. Accuracy performance is measured 

in terms of the best, mean, and standard deviation values of 

the solutions obtained by 20 independent runs. The best 

minimum-weight in this study is 7.008391 with thickness 1.05 

cm. while using Gandomi et al [27] obtained 5.894331, with 

thickness 0.7306255. In Gandomi et al also the constraint g5 

is unverified and must be at least 1.05. Results are obtained 

from FPSA algorithm is better than the results obtained using 

Gandomi et al [27].  It gave us a greater thickness, with a 

slight increase in minimum-weight and verify all the 

constraints of given problem. While Gandomi et al got 

minimum-weight but did not verify all the constraints. 

Thickness is very small leading of poor quality.  If we exclude 

thickness constraint we could get a better result than that of 

(5.894331). Sincet is between (0-5) when t approaches to 

zero, b also approaches to zero. 

 

 

Table 9. Comparison results of the corrugated bulkhead design example 

 b(cm) h(cm) l(cm) t(cm) best 

FPSA 57.69231 37.26590 57.69231 1.05 7.008391 

CS 57.69231 37.36410 57.69231 1.05 7.01413 
FA 57.69231 38.00090 57.69231 1.05 7.05219 
PSO 57.69231 37.56410 57.69231 1.05 7.02594 

 

5.1.9  Design of a gear train  
The below Fig. 16 shows the gear train problem [27,25,28]. A 

gear ratio between the driver and driven shafts must be 

achieved when designing a compound gear train. The gear 

ratio for gear train is defined as the ratio of the angular 

velocity of the output shaft to that of the input shaft. It is 

desirable to produce a gear ratio as close as possible to 

1/6.931. For each gear, the number of teeth must be between 

12 and 60. The design variables Ta, Tb, Td, and Tf  are the 

numbers of teeth of the gears a, b, d and f, respectively, which 

must be integers.  
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The optimization problem is expressed as: 

 

 

 

 

 

Fig. 16. A gear train 

The constraint ensures that the error between obtained gear 

ratio and the desired gear ratio is not more than the 50% of the 

desired gear ratio. 

The comparison resulted obtained by the FPSA, CA, FA and 

PSO algorithms are given in Table 10,  The comparison in 

terms of the best, error, mean, standard deviation values, these 

values where obtained out of 20 independent runs. The result 

indicates a better achievement for FPSA, with an objective 

function value of 2.7 E-012. 

 

 

 

 

 

 

 

 

 

Table 10. Comparison results of the FPSA, CS, FA and PSO 

 FPSA CS FA PSO 

Best 

Mean 

StdDev. 

2.7E-012 

2.7E-012 

0.00E+00 

2.70009E-012 

1.04E-010 

2.7E-010 

2.7E-012 

5.1314E-012 

7.6868E-012 

2.700857E-012 

1.1371E-011 

1.01307E-011 

 

5.1.10 Proportional-integral- derivative (PID) 

controller 

Proportional-integral-derivative (PID) controllers [28]are 

widely used to build automation equipment in industries 

Shown in Fig. 17 below. They are easy to design, implement, 

and are applied well in most industrial control systems 

process control, motor drives, magnetic, etc.  

Correct implementation of the PID depends on the 

specification of three parameters: proportional gain (Kp), 

integral time (Ti) and derivative time (Td). These three 

parameters are often tuned manually by trial and error, which 

has a major problem in the time needed to accomplish the 

task.  

 

Fig. 17. Generic Closed Loop System 

 

Assume that the system is modeled by an nth-order process 

with time delay L: 
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Here, we assume n > m and the system (6) is stable. The PID 

controller has the following transfer function: 

     C p i dG s K T s T s
 

The optimization problem is summarized as follows: 

min ( , , , , )

, , , , .

 
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p i d

p i d

z z K T T
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Where the z, L,U is given by the designer. Note that the 

constraints introduced to guarantee the stability of the closed-

loop system. Also, the values of three design parameters (Kp, 

Ti, Td,) are directly determined by solving the above 

optimization problem. 

5.2 Simulation Example 
Consider the following the transfer function presented in [29] 
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The initial parameters are chosen randomly in the following 

range: Kp: [1, 1000], Ti: [1, 500], Td: [1, 500], λ:[0,2], 

δ:[0,2]. We want to design a controller such that the closed 

loop system has a maximum peak overshoot Mp = 10% and 

trise = 0.3 seconds. This translates to δ =0.65(damping ratio), 

ω0=2.2 s-1 (undamped natural frequency).  we then find out 

the positions of the dominant poles of the closed loop system, 

2
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The dominant poles for the closed loop controlled system 

should lie at (−1.43+ j1.67) and (−1.43− j1.67). 

For p1=(−1.43+ j1.67), the characteristic equation is: 

 

   

   
2.2 0.9

1.43 1.67 1.43 1.67
1 0

0.8 1.43 1.67 0.5 1.43 1.67 1

 
     

 
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p i dK T j T j

j j
 

Table 11 illustrates the calculated optimized parameters of 

PID controller using FPSA, CS, PSO and FA .It could be 

observed that the optimized parameters calculated using 

FPSA algorithm generates the best control step response as 

illustrate in Fig. 18. 

Table 11. Results for the PID 

Technique The order PID controller 

Kp Ti Td Step 

response 

FPSA 415.4 402.2 100.3 1.0020 

CS 512.75 361.6 148.48 1.0030 

FA 442.68 320 120.2 1.0208 

PSO 515.58 375.23 145.48 1.0339 

 

Fig. 18. Comparison Close Loop step response of the system with FPSA, CS,FA and PSO for PID controller 

 

6. CONCLUSIONS   
In the present study, FPSA algorithm has been validated 

using several benchmark mathematical and engineering 

design problems. Several simulation examples have been 

completed to verify the weight of the planned algorithm .The 

comparison among the results determined by the proposed 

algorithm and the compared algorithms are reported in Tables 

(2-11). Considering the comparison and statistical results 

obtained, it can be concluded that the FPSA is more efficient 

than the other optimization engines for engineering 

optimization problems. Moreover, the superiority of the 

FPSA algorithm to finding the near global optimum solution. 

The results indicate that FPSA is accurate, reliable and 

efficient at finding near global optimal solution, also the 

proposed algorithm was a strong competitor compared with 

other known algorithms so obtained the best results in more 

often. Therefore, the solutions obtained by our approach 

represent great contribution for finding the optimum 

solutions of these problems. 
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