
International Journal of Computer Applications (0975 – 8887) 

Volume 140 – No.12, April 2016 

37 

Location Aware Indexing 

Yagnesh Kamble 
Computer Engineering 

department 
Sardar Patel Institute of 

Technology 
Mumbai, India 

 

Shubham 
Godshalwar 

Computer Engineering 
department 

Sardar Patel Institute of 
Technology 

Mumbai, India 

Ashna Bajaj 
Computer Engineering 

department 
Sardar Patel Institute of 

Technology 
Mumbai, India 

 

Reeta Koshy 
Professor, Computer 

Engineering department 
Sardar Patel Institute of 

Technology 
Mumbai, India 

 

 

ABSTRACT 

This project closely models a framework to process Generic 

Location-Aware Rank Queries. A restaurant-finder 

application has been created to demonstrate how a Generic 

Location-Aware Ranked Query (GLRQ) can be processed by 

deploying three data structures in sync with each other – the 

synopses tree, the R-tree and inverted files. The synopses tree, 

created using histograms, handles the numeric attributes. The 

R-tree filters results based on their location, while the inverted 

files filter according to specified keywords (eg: lunch, 

breakfast, italian, karaoke), if any. Existing methods of 

processing such queries perform the pruning of the search 

space in two stages – first according to location and keyword, 

and then according to specified predicates (or vice versa), 

which is usually not efficient. The method used here trumps 

the aforementioned because the pruning is carried out 

simultaneously. This is reasonably faster, especially when 

working with large datasets, which has been experimentally 

demonstrated.    

General Terms 

Query processing, spatial indexing 

Keywords 

Location-aware, synopses tree, IR-tree 

1. INTRODUCTION 
There has been a massive increase in the usage of locations all 

over the Internet, especially on social networking platforms 

like Facebook, Twitter, Instagram, etc, which allow users to 

geo-tag their posts, as has been discussed in [1]. As a result, it 

is essential to have an efficient searching method that enables 

the user to search across a variety of filters such as location 

('Search places near me'), numerical attributes ('Rating > 4', 

'No. of comments > 100'), and keywords ('Search posts tagged 

with Street Food'). 

This framework was created because existing methods do not 

optimally process GLRQs, which are queries that contain 

numerical predicates, keywords, as well as location 

specifications. Since we have developed a restaurant-finder 

application, related examples have been used to further 

emphasize the inadequacy of the existing methods.   

In the naive LKQ (Location-Keyword Query) approach[2], 

the query is assumed to be location-aware and contain only 

keywords. Thus, constraints on numerical attributes are also 

converted to keywords, as is illustrated in the following 

example. 

Consider a query that searches for all nearby restaurants 

having a rating greater than 3.5 (out of 5). Over here, the 

predicate 'rating>3.5' is converted to rating=3.5, 3.6, 3.7, 3.8, 

3.9 and so on, where each value of rating is treated as a 

keyword. This greatly complicates the query.  

The queries can also be processed using the LKQ-first or 

Predicate-first method. In this method, the data is first filtered 

first according to numerical attributes, then according to the 

location and keyword, or vice versa as the case may be. This 

is especially inefficient if the latter filtering process yields 

results which are a very small subset of the former. In 

Predicate-first, the numerical attributes are first looked at. 

Suppose they return 250 results. Now, after location-keyword 

filtering on those 250, only 3 of them satisfy the constraints. 

Thus, the remaining 247 results were unnecessarily fetched.  

Our framework, however, performs simultaneous pruning of 

predicates as well as locations and keywords. This is done by 

using three primary data structures: the synopses tree, the R-

tree and inverted files in conjunction with each other.  

2. LITERATURE SURVEY 

2.1 LINQ - A Framework For Location-

Aware Indexing And Query Processing 
The crux of the system design is derived from this paper[1]. It 

gives a method of evaluating generic location-aware rank 

queries (GLRQs). If these queries are evaluated in the usual 

method of location-keyword queries (LKQs), they prove to be 

very inefficient. The method proposed in this paper makes use 

of a data structure called the synopses tree, along with the R-

tree and inverted files data structures. The synopses tree 

greatly reduces the cost of pruning, while ensuring that 

accuracy is preserved. These data structures are used to 

perform score-based pruning and predicate-based pruning 

simultaneously in a manner which is much faster than 

performing them in separate stages. This method has been 

tested on a number of real and synthetic data sets to prove the 

efficiency over the normal method adopted by an RDBMS. 

2.2 Efficient Retrieval Of The Top-K Most 

Relevant Spatial Web Objects 
This paper[2] introduces us to the concept of IR-trees, and 

how they can be used to query objects that have two 

parameters – a location, and a set of keywords associated with 

the object. This framework integrates the inverted file for text 

retrieval and the R-tree for spatial proximity querying to 

obtain an inverted file R-tree.  

Each node of the IR-tree records a summary of the location 

information and textual content of all the objects in the sub-

tree rooted at that node. The query-processing algorithms that 

uses the location index information to estimate the spatial 

distance of a query to the objects in the node’s sub-tree, and it 

uses the text index to estimate the text relevance for the 

objects.  



International Journal of Computer Applications (0975 – 8887) 

Volume 140 – No.12, April 2016 

38 

The paper presents an algorithm for building the IR-tree, 

given the location (in the form of a Minimum Bounding 

Rectangle) for each object, along with the associated textual 

document. It also gives algorithms for how the query is to be 

processed using the IR-tree created. 

2.3 Synopses for Massive Data: Samples, 

Histograms, Wavelets and Sketches 
Since the synopses tree is an important data structure used in 

the system design, this paper[3] has been useful in introducing 

the concept of synopses. It explains how synopses can be built 

using any of the four available methods – samples, 

histograms, wavelets and sketches. However, our 

concentration is focused on the histograms part. 

Multi-dimensional histograms are uses to summarise datasets. 

Since it is very expensive to construct and maintain multi-

dimensional histograms, the nD data distribution can be 

factored into multiple 2D distributions. The effectiveness of 

this method has been verified. By this way, we can provide 

accurate approximations of the joint data distributions with 

low cost. 

2.4 Spatial Keyword Query Processing: An 

Experimental Evaluation 
This paper[4] provides methods to combine spatial and 

keyword-based pruning on queries containing such 

constraints. It illustrates the use of inverted files to handle 

text, and provides two methods to handle locations – R-trees 

and grids. It introduces the three main types of queries 

containing spatio-textual attributes as are required by the user. 

This also forms a basis of our undertaken project, and merely 

has to be integrated with the synopses tree to handle numeric 

attributes. 

3. SYSTEM DESIGN 

3.1 Architecture 
The backbone of the framework consists of three data 

structures, which work in synchronization with each other to 

provide an efficient searching mechanism. These data 

structures are:  

The R-tree – filters results based on spatial proximity 

Inverted files – filters results based on keyword matches 

The synopses tree – filters results based on numerical 

constraints 

Their usage has been further illustrated below. 

3.1.1 Synopses tree 
This is a newly created structure that contains synopses of the 

numerical attributes in the data set. A tree-like data structure 

is used, in which the root node stores the synopses of the 

entire dataset. Its children store synopses of subsequently 

smaller datasets, such that the union of the datasets 

represented by the children forms the dataset of the parent. In 

other words, every child node should be a subset of the parent 

node, and the parent should be completely represented by its 

children.  

The synopsis of a dataset is constructed by using 2-

dimensional histograms [3]. Over here, each attribute is a 

single dimension. The attributes are divided into pairs of 2, 

using which 2D histograms are constructed. 

Each histogram is divided into four regions, or buckets. These 

buckets represent ranges of values. For example:  

Consider a histogram of rating (range 0-5) vs. health (range 0-

100). The buckets can be created as follows:  

B1 contains all elements where rating<=3.5 and health<=30  

B2 contains all elements where rating<=2.5 and health>=30 

B3 contains all elements where rating>2.5 and health<=60 

B4 contains all elements where rating>2.5 and health>60  

Each bucket contains a list of items satisfying the constraints. 

The first element of the bucket is always 1 or 0; 0 indicating 

that the bucket is empty, while 1 indicating that it isn’t. 

 

Figure 1: An example of a 2D histogram divided into 4 

buckets 

3.1.2 Inverted files 
These data structures are used to swiftly return values that 

match the keywords specified. This is done by creating a 

dictionary of the keywords, in the form of key-value pairs. 

The key here is the keyword, and the values are all those 

items in the dataset that match the keyword. This method is 

used for efficient retrieval especially when the dataset is large. 

3.1.3 R-Trees 
R-trees, closely modeled on B-trees, provide a way to store 

the spatial attributes of objects[2]. This is done by using 

Minimum Bounding Rectangles (MBRs). In an R-tree, each 

node is an MBR. An MBR is a region drawn on the map that 

contains the exact locations of the objects in it. However, 

MBRs can be nested, or can overlap.  

Each node MBR bounds its children. A node can have many 

objects in it. The leaves of the R-tree point to the actual 

objects. 

 

 

Figure 2: Structure of the R-tree 

As shown below, these three data structures are used in sync 

to retrieve the results of a query fired by the user. 

Experimental results prove that the time taken to search using 

this method is much faster than the traditional way of 

searching the database record by record. 



International Journal of Computer Applications (0975 – 8887) 

Volume 140 – No.12, April 2016 

39 

 

Figure 3: The three data structures linked with each other 

[1] 

4. THE SEARCHING ALGORITHM 
1. The synopses tree and inverted files are created from the 

database contents and stored 

2. The query is fired by the user from the UI 

3. The keywords are extracted, and the inverted files are 

checked to return the matching results, say R1 

4. Simultaneously, the numerical attributes are passed to the 

synopses tree, and the results satisfying the constraints 

are returned, say R2 

5. An intersection of R1 and R2 produces the final list of 

results, say R3 

6. They are filtered according to the location, and displayed 

to the user on the screen 

7. However, if it happens that the number of items in R3 

does not reach the minimum number of results that 

should ideally be returned to the user, then more items 

are added to R3 by increasing the radius of the location, 

or including values from R1 and R2 in decreasing order 

of relevance 

5. IMPLEMENTATION DETAILS 
All experiments have been carried out on a machine having an 

Intel core i5 processor having 4 GB RAM and 1.7 GHz quad 

core processor. The database used is a MySQL synthetic 

dataset having around 1000 records, and the data structures 

have been created using Python scripts. The user interface has 

been developed using HTML, CSS and PHP. 

6. RESULTS 
The following results give the execution time by using both 

methods - the data structures and naive LKQ methods - to 

retrieve results from a MySQL database of 1000 records 

having attributes of rating (0-5), health (0-100), and a list of 

keywords. 

A minimum value of rating(r) and health (h) and two 

keywords were specified. The objective was to return tuples 

satisfying the given predicates (min. rating and health) and 

containing the mentioned keywords.  

The time taken (in seconds) by both the methods are as 

follows: 

Table 1: Comparative study of time taken by both 

methods to process the same query 

Method using data 

structures 
Naïve LKQ method 

0.0813 0.1436 

0.0634 0.0922 

0.0689 0.0896 

0.0744 0.0905 

7. CONCLUSION 
This paper thus demonstrates that the use of data structures in 

searching a database when provided with multiple search 

parameters (keywords, numerical attributes, and location) is 

significantly faster than the conventional method of retrieval 

from a database.  

However, the given scope is but a small part of the actual 

potential of this method. The usage of 2D histograms can be 

extended to multi-dimensional histograms to handle more 

numerical attributes. Experiments can also be conducted on 

multiple real datasets to further emphasize the efficiency of 

our method. 

8. REFERENCES 
[1] Xiping Liu, Lei Chen, Changxuan Wan, LINQ: A 

Framework for Location-aware Indexing and Query 

Processing in IEEE Transactions on Knowledge and 

Data Engineering, Vol. 27, No. 5, pp. 1288-1300 . 

[2] G.Cong, C.S. Jensen, and D.Wu. Efficient retrieval of the 

top k-most relevant spatial web objects, Proc. VLDB 

Endowment, Vol. 2, pp. 337-348, 2009.  

[3] G. Cormode, M. Garofalakis, P.J. Haas, and C. Jermaine. 

Synopses for massive datasets: Samples, Histograms, 

Wavelets, Sketches.  Found. Trends Databases, vol. 4 

nos. 1-3, pp. 1-294, 2012.  

[4] Lisi Chen, Gao Kong, Christian S. Jensen, Dingming 

Wu. Spatial Keyword Query Processing: An 

Experimental Evaluation,  International Conference on 

Very Large Data Bases, August 2013.

 

IJCATM : www.ijcaonline.org 


