
International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

1

High Available Fault Tolerant Technique in Distributed

Shared Memory

Hosam E. Refaat
Dept. of Information Systems

 in Suez Canal University, Egypt.

Usama Badawi
Dept. of IT in Damam

 university, KSA.

ABSTRACT

distributed systems, that are based on constructing a network

of heterogeneous computers, suffer from the problem of

failing components during the system run time. In case of

failure, the distributed applications must be restarted from the

scratch. The main goal of this research is to add the dynamic

failure recovery technique to the JavaSpaces server. So, the

client continues its jobs while failures occur in the system.

Also, the new technique in JavaSpaces is evaluated by

analyzing and testing.

General Terms

Parallel systems, Distributed shared memory, Fault Tolerant.

Keywords

Parallel systems, Distributed shared memory, Fault Tolerant,

Linda system, Tuple-space, Jini, JavaSpace.

1. INTRODUCTION
Nowadays, high speed networks and microprocessors making

clusters of workstations are appealing vehicles for effective

parallel computation. In other words, clusters redefine the

concept of supercomputer. Parallel systems can be classified

in different ways. The most famous classification depends on

the Memory-Access strategies. In the Memory-Access

classification, there are three types of parallel systems,

namely; distributed memory, shared memory, and distributed

shared memory. In distributed memory systems, each node in

the system has its private memory. If any node needs data

from another, it will send a request message to it. Hence this

system is also called "message passing". Parallel Virtual

Machine (PVM) [1] is one of the most commonly used

parallel systems that are based on the message passing

concepts. In the message passing systems, if any node needs

to send a message to another node, it must know the receiver

node address. The direct connection between nodes will

increase the performance but the parallel application will

depend on the system structure (machine addresses)[2, 3].

The second type is "shared memory". The shared memory

systems are based on the existence of a global memory shared

among all nodes in the system. A shared memory system has

various advantages, these are; it is simple, it eases the data

sharing and it eases the implementation of the parallel

application. If any node needs to send a message to another

node, it sends the message to the shared memory and the

receiver node takes it from the shared memory. Also, this

structure requires a high cost of communication. The time of

sending a message between two nodes is approximately

duplicated if compared with the message passing systems,

because of the existence of third part (the shared memory) [4].

The "Distributed Shared Memory" (DSM) takes the

advantages of the previous two types. DSM is based on

constructing a shared memory with a low cost. This is done by

constructing a virtual shared memory using the available

distributed memories. Thus, DSM acts as a physical shared

memory. The DSM systems have some countable advantages

over the message passing based ones, these are; the

application level ease of use, the distributed system is

portable, and it is easy to share data and processes. Since the

sender does not need to know the address of the receiver, then

the structure of the application becomes simpler and the

application code is more readable. Also, in DSM based

systems, it is easy to share data and processes among the

nodes by inserting the data or processes in the shared memory

[5, 6].

During the distributed system is run, some problems may

occur such as, machine failure or network partitioning. These

problems can cause the application to be stopped (system

failure). The failure in intensive computation systems may

cause losing data that must remain to survive the application.

These data is called "persistent data". The only solution for

losing persistent data problems is to restart the system from

scratch. With these systems, we can't be sure that the system

will take a desirable time and finishes correctly. These

systems are called "unreliable systems". In order to have a

"reliable system", these problems must be solved. There are

three strategies to solve these problems, these are; prevent

failure, reduce the failure and tolerate with the failure. The

first strategy is to prevent the failure during runtime by careful

system design. This strategy is not applicable. The second

strategy is to allow failure and maximize the period of time

between failures. Again this strategy is not applicable because

it can't prevent the failure occurrence in a certain period of

time. The third strategy is to tolerate with the failure and to

handle the failure dynamically. Systems that use the third

strategy are called "fault-tolerance systems". There are many

fault-tolerance protocols to handle the failure. Some of these

protocols are to handle the client failures, like transaction and

mobile co-ordination. And some of them are to handle the

server failures, like replication. Moreover, it is important to

handle the failure dynamically and maximize the percentage

of the time available for productive use (system availability)

to have a high available system [6, 7, 8, 9].

This paper introduce a method for integrate a fault tolerant

technique in DSM, which is based on create a dynamic hot

replicas. This technique is implemented in DSM service over

Jini system, which is called “JavaSpace”. The next section

introduce the JavaSpace service. The dynamic hot replicas is

introduced in Section 3. The last section discusses the

performance result.

2. JINI- JAVASPACE SYSTEM
Jini system extends the Java environment from a single virtual

machine to a network of virtual machines. Jini system is a

distributed system based on the idea of federating a group of

users and the resources required by these users to have a large

monolithic system [8]. The power of the Jini comes from the

services, since services can be anything joined to the network.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

2

A JavaSpace is a service in Jini system that implements the

DSMS model.

JavaSpace is a distributed shared memory service that is

implemented over Jini System [10]. The object that can be

written in JavaSpace service is called an ”entry”. The entry

contains data or/and processes. Sometimes the entry is called

tuple. JavaSpace contains the following operations: take,

takeIfExists, read, readIfExists, write, notify, snap¬shot. The

write operation is to write an entry in JavaS¬pace. To read an

entry from the JavaSpace, the read() or readIfExists()

operation is used. The consecutive reading operation of the

same template may return different entries even if JavaSpace

contents are not changed. The difference between these two

versions of reading is that; readIfExists() is not blocked if the

tuple is not found in the space, it returns a null tuple if there is

no matching tuple. Take() or takeIfExists() are two operations

that extract entries from JavaSpace. In other words, these

operations are similar to read and readIfExists() operations

except that; taking operations remove the entry from the

space. The snapshot operation is to take a copy of existing

entry, but this copy is not updated in spite of the changes that

may occur in the original entry. The notify operation is used

to define an event that triggers when a specific entry is written

[10].

3. DYNAMIC HOT REPLICA
The idea behind the dynamic replica system is to construct a

new layer that increases the system availability. This new

layer is called "SpacesManager" layer. In our System, there

are many JavaSpaces services, some of these spaces are active

and some of them are passive, as seen in Figure 1. All tuple

space operations are performed on active spaces. One of the

active spaces is the original tuple space, which is called the

replica, and the others are identical copies of the original

space. The SpacesManager layer is responsible for spreading

the effect of the client operations in all active spaces.

If the client tries to write an entry in the dynamic replica

system, the SpacesManager replicates this entry in all active

spaces and insures that all spaces are identical. Also, if the

client takes an entry, this entry will never be seen in all active

spaces until it is rewritten. There is no need to replicate the

effect of read operation in all active spaces, because it will be

a redundant operation. Since all active spaces are identical, it

will be enough to read the entry from the original space or any

still alive active space.

Fig 1: High Availability Layer in Javaspaces

The take operation must be spread in all active spaces. A

typical problem may raise here, the same take operation can

return different results for each trial. This is because of the

possibility of having entries with similar attribute values in

different spaces. This problem can be solved by performing

the take operation in the original space at first. Then the ID of

the taken entry will be used in the take template to delete this

special entry from the other active spaces. By this way we can

maintain the system spaces identical. Moreover, to be sure

that all spaces are consistent, any operation spreads in all

active spaces is done in all spaces under the same transaction.

On the other hand, the SpacesManager layer is responsible for

managing the spaces failures. It is responsible for performing

the client operations in the active spaces without making the

client aware of the details. Figure 1 shows SpacesManager

that acts as a high availability layer. The client in this system

is not aware of the JavaSpaces location or the number of

JavaSpaces that it deals with. Thus, if any one of the active

spaces is failed, the client will never notice system changes

because this event will be handled by the SpacesManager

failure recovery protocol. The SpacesManager failure

recovery algorithm is shown in Figure 2.

The algorithm handles different failure types depending on the

type of failed machine. If the failed machine contains an

active space, the response depends on whether the failed

active space is original or not. If the failed machine is the

original space, one of still alive active spaces is chosen to be

the original space. There is no difference between the original

machine and the other active machines. To survive a number

of active spaces from perishing, one of the passive spaces is

initiated and inserted in the list of active machines. The new

active space receives a copy of all entries. Also, if any of the

active spaces other than the original space is failed, one of

passive spaces is chosen to be the new active space and it

receives a copy of all entries. In case of machine failure or

network partition occurs, the dynamic-replica system blocks

this machine. In other words, the dynamic-replica system will

delete this machine from the active spaces list. The dynamic-

replica system blocks any failed machines whether it is active

or passive. If the failed/disjoined machine comes back to the

system, the dynamic-replica system deletes all entries in its

JavaSpaces and rejoins it as a passive machine.

To have more technical view of the system, the class diagram

for the SpacesManager layer is shown in Figure 3. The

SpacesManager service is based on defining a new tuple space

control service in the Java RMI. Thus, the SpacesManager

interface contains the basic tuple space operations (write, take

and read). This interface extends the Java API Remote

interface. The "SpacesManager" interface is an abstraction of

the service.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

3

Fig 2: SpaceManager Algorithm

On the other hand, the "SpacesManagerImp" is a class that

implements the SpacesManager interface and extends the java

API interface UnicastRemoteObject. This class calls the

"getSpacesThread" thread in its constructor. The

getSpacesThread is a thread that contains an infinite loop to

check the still alive JavaSpaces. This checking mechanism for

the existing spaces is repeated periodically. The getSpa-

cesThread class contains a public variable of type vector

called "SpacesObject". The SpacesObject vector contains

objects of all JavaSpaces services in the system and another

metadata like the type of space (active or passive), block...ect.

The setSpacesThread is responsible for managing the failure.

It uses the checkSpaces method to check the existence of the

system machines. The checkSpaces method calls the

JSServiceLocator class to check the existence of the

JavaSpaces service. It uses the convertSpace method to

convert the passive spaces to active spaces and the copySpace

method to copy all entries from one of still alive active spaces

to the new active space. The setSpacesThread uses the

flushSpace method to delete all entries from the rejoining

machine. The "SpacesManagerClient" is a client program that

is used to test our service using our resizable entry

"MyEntry". The client program fetches the dynamic replica

service using the "ServiceLocator" class. On the other hand,

the client code uses this service using its proxy class called

"SpacesManagerInfProx". This proxy allows the user of add

some code in the service operations.

Fig 3: Class diagram of the Dynamic Hot Replica

Fig 4: Flow control of the Dynamic Hot Replica

4. SYSTEM COMPLEXITY
This section measures the complexity of the dynamic replica

system. This is to be done by measuring the complexity of the

dynamic replica operations and the complexity of the recovery

time. To analyze the system performance we focus on the

methods that perform the user operations and the system

recovery method. In other words, the Linda system operations

(read, write and take) and the recovery method is analyzed

[11]. The discussion starts with the write operation

complexity. The dynamic replica service performs the client

write operation by broadcasting this operation in all still alive

active spaces. The total time to perform the write operation in

the dynamic replica system is shown in the following

equation:

 spcrwrite TTT

Where, crT is the time required to transfer the write

operation from the client to the dynamic replica server. spT is

the time required for the dynamic replica system to broadcast

this operation in all active spaces. is a summation of the

time required for all active JavaSpaces in the system to

perform the write operation. crT can be written as follows:-

)1(* ,cnetnet

cr
LS

E
T

Where, E is the entry size in bytes. netS is the speed of the

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

4

network infrastructure. cnetL , is the load of the network

infrastructure when the client sends the write operation to the

SpacesManager server, also 10 , cnetL . Let

cnet

c
L

k
,1

1

Thus crT can be written as follows:-

net

c
cr

S

kE
T

*

Similarly, spT can be written as follows:-

N

i inetnet

sp
LS

E
T

1 ,)1(*

Where, inetL , is the load of network infrastructure during

transferring the write operation from the SpacesManager

server to the active spaces number ""i . Also suppose that,

inet

i
L

k
,1

1

 . So, the previous equation can be written as

follows.

N

i net

i
sp

S

kE
T

1

*

Let

N

i inet

avr
L

k
1 ,1

1 , thus spT can be written as follows:

net

avr
sp

S

kEN
T

**

Also, the summation of the time required to all active spaces

to perform the write operation is as follows:-

N

i

i

1

Since all active spaces in the system are identical and the

same entry will be written in all active spaces, therefore,

assume that; all active spaces take the same time to perform

this write operation ('). In this case, the previous equation

can be written as follows.

'* N

So, the writeT can be written as follow:

'*

N
S

kEN

S

kE
T

net

avr

net

c
write

From the previous equation notice that, the total time to

perform the write operation depends on the entry size, the

number of active spaces, the network speed, the network load

and the time taken to perform write operation in JavaSpaces.

the network speed is assumed to be constant. Thus, the

complexity of write operation in dynamic replica is

)'*)*(*(NkNkEO avrc

Now, the complexity of the read operation is measured.

scjrreadspcrread TTTTT

Where, crT is the time required to transfer the read operation

from the client to the dynamic replica server. spT is the time

required to the dynamic replica system to demand execution

of this operation from one of active spaces. read is required

to JavaSpaces to perform the read operation. jrT is the time

required to return the result form the active space to the

dynamic replica server. And scT is the time required to return

the result to the client form the dynamic replica server. crT

can be written as follows.

)1(,crnetnet

o
cr

LS

E
T

Where, oE is the size of read template in bytes. crnetL , is the

network load when the client transfers the read template to the

SpacesManager server. Now, suppose that

crnet

cr
L

k
,1

1

thus crT is written as follows.

net

cro
cr

S

kE
T

*

Since the dynamic replica server performs the read operation

for once in any of the still alive active spaces, then spL can be

written as follows.

)1(,spnetnet

o
sp

LS

E
T

Where, spnetL , is the network load when the SpacesManager

transfers the read template to one of the active JavaSpaces.

Also, suppose that

snet

sp
L

k
,1

1

 . Thus, spT is written as

follows.

net

spo

sp
S

kE
T

*

Similarly, the time required to return the result back is shown

in the following equations.

)1(, jrnetnet

r
jr

LS

E
T

)1(,scnetnet

r
sc

LS

E
T

Where, rE is the size of result entry, jrnetL , is the network

load while returning the result entry to the SpacesManager

server and scnetL , is the network load while returning the

result to the client. Also, suppose

jrnet

jr
L

k
,1

1

 ,

scnet

sc
L

k
,1

1

 then the previous two equations will be

written as follows.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

5

)1(, jrnetnet

r
jr

LS

E
T

)1(,scnetnet

r
sc

LS

E
T

Then the total time required to perform the read operation in

the dynamic replica is shown in the following equations.

net

scr

net

scr
read

net

spo

net

cro
read

S

kE

S

kE

S

kE

S

kE
T

From the previous equation the total read time depends on the

size of read operation template, JavaSpaces reading time, the

size of result entry and the network load while the operation

steps. The size of the read operation template can be

neglected, because it is almost very small. Thus, the

complexity of read operation in the dynamic replica is

))(*(readscjrr kkEO

Similarly, the time of take operation can be computed as the

following.

scjrtakespcrtake TTTTT

Because of the take operation is broadcasted in all active

spaces, then spT is summation of time for transferring the

take operation template to all active spaces. Thus it can be

written as follows.

N

i ispnet

o
sp

LS

E
T

1 ,)1(*

Where, ispL , is the network load while transferring the take

operation template from the SpacesManager to the active

space “ i ”. Suppose,

isp

isp
L

k
,

.
1

1

 . Thus, the previous

equation can be written as follows.

net

ispo
N

i

sp
S

kE
T

,

1

*

Suppose,
N

k
k

isp
N

i

avrsp

.

1

.

 then the previous equation

will be written as follows.

net

avrspo

sp
S

kE
T

,*

Also, the total time for performing the take operation in all

active spaces can be written as follows.

i

N

i

take '
1

Since the taken entry from all active spaces is identical and all

active spaces are identical, thus we can suppose that the take

operation takes the same time in all active spaces ('). So,

take can be written as follows.

'* Ntake

The time required to return the taken entries from active

spaces to the SpacesManager server (jrT) can be written as

follows.

)1(,1 ijrnet

r
N

i

jr
LS

E
T

Where, ijrL , is the network load when returning the result to

the SpacesManager server. rE is the size of result entry.

Similarly, suppose that

ijr

ijr
L

k
,

,
1

1

 and

N

E
k

ijr
N

i

avrjr

,

1

,

 . So, jrT can be written as follows.

net

avrjrr

jr
S

kEN
T

,**

The time required to return the result to the client from the

SpacesManager server (scT) can be written as follows.

net

scr
sc

S

kE
T

*

Where,
)1(*

1

scnet

sc
LS

k

 is defined previously.

Since, scL is the load of the network while returning the

result to the client. Thus, the previous equation can be written

as follows.

net

scr

net

avrjrr

net

avrspo

net

cro
take

S

kE

S

kEN
N

S

kNE

S

kE
T

'*

*** ,,

Similarly, the complexity of the take operation in the dynamic

replica server is

)***'*(, scravrjrr kEkENNO

Now it is time to measure the complexity of the system

recovery process. The recovery process is based on copying

all entries from one of still alive active spaces to the new

active space. Thus, the total recovery time for the failure can

be defined as follows.

1

,,covRe)(
i

iwriteireadery TTT

Where, is the total number of entries in any one of still

alive active space. ireadT , is the time taken to read entry

number “ i ”. Also, iwriteT , is the required time to write entry

number “ i ” in the new active space. Thus, the complexity of

recovery operation in dynamic replica is.

))**(*(,, writeavrwsjravrrjsrread kEkEO

5. SYSTEM PERFORMANCE TEST
The measurements in the dynamic replica systems are

performed by using six PC's. These PCs have a CPU of type

Intel Pentium 2.4 G.H and 512 RAM. The

intercommunication among the machines is done by 100

Mbps Ethernet. The software environment includes Windows

XP professional as an operating system, Java JDK

1.4.2_04[8], Jini(TM) Technology Starter Kit v2.0.2 [9] and

a free visual platform for Jini 2.0 that is calledblitz-javaspace.

Inca X(TM) [12].

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

6

The performance measurements of dynamic replica system

are based on the send and send-receive operations, which are

tested here [13,14]. The test operations are as follows; write,

write-read and write-take operations. All tests have been

repeated for 100 iterations and the average is calculated. The

practical tests are done on two, three and four active spaces

dynamic replica systems. Two test strategies is used on each

dynamic replica system, the first test strategy measures the

entry size effect. This test strategy is done by using a resizable

entry. In the second strategy the distribution time of system

operations is measured. This test is done by repeating each

tuple space primitive in different number of iterations (begin

from 100 to 1000 iterations). This test is shown in the

following subsection.

There is a third type of tests that is more associated to the

dynamic replica. It is called "fault-tolerance test". This test is

based on testing the system fault-tolerance and the recovery

time. The fault-tolerance test is seen in Section 5.2. Finally,

the effect of number of active spaces on system is measured in

Section 5.3.

5.1 System Performance measurement
Now, the performance of dynamic replica system that has four

active spaces using variant entry size is tested. Figure 5 shows

the effect of changing the entry size in the performance of the

four active spaces dynamic replica system.

Fig 5: The Dynamic-Replica Entry-Size Test in Case of

Four Active Machines

From Figure 5 we can notice that; there is a little noise in the

three curves. The changes in the network load could be the

reason of this noise. In the small entry size the difference

among the three operations is small. In other words, the three

curves are very close in the small entry size. Also by

increasing the entry size, the time taken for each operation

increases and the difference among the curves increases. All

curves increase non-linearly.

Our observations on this figure also are logic except for some

noisy points in which the network load or machine load takes

place. It is normal to see that the time to treat the entry

increases as the entry size increases.

Now the number of operations effect on the dynamic replica

in case of two active spaces is tested. This test is done using

different sizes of entries (100, 500, 1000 Bytes in the Entry

Array Size)

Fig 6: Timing of Dynamic Replica operations against the

number of entries when entry array size is 500 bytes in

case of four active machines

Figure 6 shows the performance of four active spaces

dynamic replica system using an entry contains an array of

size 500 bytes in its array. In the figure, we can notice that, at

the point 100 operations the write curve is near to write-read

curve. The write curve at point 100 operations has a time

11143 ms. and the write-read curve takes 11578 ms. The three

curves are close at the first test point (100 operations). Also,

the three curves increase linearly until the point 300

operations.

The difference between the write-read curve and the write-

take curve is greater than the difference between the write

curve and the write-read curve. All curves in this figure

increase non-linearly.

Fig 7: Timing of Dynamic Replica operations against the

number of entries when entry array size is 1000 bytes in

case of four active machines

Figure 7 shows the curves that represent the relation between

number of operations per second test using an entry that

contains 1000 bytes in its array. From this figure we can

notice that; the three curves are very close at the first test

point (100 operations). The write-read and write-take curves

are very close at points 100 and 200 operations. Also, the

write-read curve has approximately a linear behavior till 600

operations. Moreover, the write curve increases linearly until

the test point 400 operations. In general all curves are

increased non-linearly.

Again, our observations on this set of figures are logic except

for some noisy points in which the network load or machine

load takes place. It is normal to see that the time to treat the

entry increases as the number of operations performed is

higher for a fixed entry size. In general, the write-take

operation takes the greatest time and the write operation takes

the smallest time. Both the entry size tests and the number of

operations tests give non-linear curves for all operations. At

the small number of operations the differences in the

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

7

performance of the write, write-read and write-take operations

is very small.

5.2 Dynamic Replica Highly Available

Layer Test
In this section answers the following questions. Is the system

fault tolerant? If yes, is the system actually highly available?

What is the recovery time?

The answer of the first question could be achieved by making

the following test. A client will put a counter in the system.

This counter is an entry that contains an integer. The client

procedure is writing the entry, taking that entry, increasing the

counter by 1 and then rewriting the entry with the new value.

The client repeats these steps in a large number of iterations.

While the client is doing this process one of the active spaces

is enforced to fail. The question now is; will the client process

survive in spite of the failure? And does the client counter

increase correctly? If the answer to these two questions is

"yes" this proves that, the system is fault tolerant.

Fig 8: Fault tolerance skeleton code test

Figure 8 shows a skeleton code for the test steps. In this figure

the test loop is infinite. The written entry is taken to be

increased and is rewritten again with the new value. Figure 9

shows the output of the pervious test. Part (A) of this figure

shows output messages of the entry counter value while

writing and taking entry. The second part of the figure (B)

shows the setSpacesThread output messages. The output

messages indicate the still alive active or passive spaces.

While the counter loop is repeated infinitely, there is a failure

in the first active JavaSpaces. While writing the entry that

contains counter value equals 47, the first active JavaSpaces

fails. The dynamic replica service chooses passive spaces1 to

be the new active spaces. Then the dynamic replica service

copies entries from one of the still alive space (active space 2)

to the passive spaces1. Finally, dynamic replica service

converts the passive spaces1 to active spaces1 and blocks the

object of passive spaces1 (not exist).

In Figure 9.A notice that, while the failure happens the

counter value continues to increase. The client continues its

operation and the counter values are sequential. The reason

for this is that, the dynamic replica is responsible for

broadcasting the client operations in all active spaces. If there

is a failure in one or more of active spaces, it means that there

is still alive one or more of active spaces that contain the data.

Also, in case of failure, one or more of passive spaces will be

converted automatically and each one of the new active spaces

has a copy of the data. In another words there is no losing in

the data.

To answer the second question, we make another test which is

like the pervious one. In this test there are many dynamic

replica services and the client will do the previous process. In

other words, the client creates a counter and increases it as the

previous test. Moreover, the client takes a new instance of the

dynamic replica service before doing any operation (write,

read, take operations). While the client is doing this process,

the dynamic replica service (which the client connected with

it) is enforced to fail. We will find that, the new dynamic

replica service continues the client process successfully. This

is because the client in each operation takes a new instance of

any one of the still alive dynamic replica services and each

dynamic replica service monitors all JavaSpaces in the

system.

Fig 9: The output of the fault tolerance skeleton code test

Fig 10: Dynamic replica recovery time

Finally, the recovery time of the dynamic replica-fault

tolerance method is measured. The time taken to recover a

failure in one of the active spaces equals the time required to

copy the system entries from one of the still alive active

spaces to one of the passive spaces plus the time required to

convert the passive space to an active space. The most

effective parameter in the recovery time is the number of

entries in the dynamic replica system. This test measures the

recovery time of our system by different number of entries

using the most common entry size (1,2k bytes in the entry

array size). Figure 10 shows the recovery time for the

dynamic replica fault-tolerance method. Notice from this

figure, the recovery time increases non-linearly by increasing

the number of entries in the system. Also, the repair time in

case of entry array size equals 2k bytes is grater than the

repair time in case of entry array size equals 1k. So, the

recovery time increases by increasing the entry size. In the

small number of entries the recovery time for 1 k byte curve is

very close to 2k byte curve. This test can't be done in the

transaction or mobile coordination fault-tolerance methods

because these fault-tolerance methods are client-side fault-

tolerance type.

5.3 Results Comparison
This section evaluates the effect of the number of active

spaces on the dynamic replica system. Now, the pervious test

results of the two, three and four active spaces dynamic

replica systems is compared.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

8

Fig 11: Comparing write operation of dynamic replica

systems using a variant entry array size

Figure 11 shows the write operation performance comparison

of two, three and four active spaces systems. This figure

shows that; the performance of the dynamic replica write

operation decreases by increasing the number of active spaces

in the system. This is because the write operation is applied in

all active spaces. The difference among the three curves (two,

three and four active spaces) is small at the small entry array

size.

. Fig 12: Comparing write-read operation of dynamic

replica systems using a variant entry array size

Fig.12. Figure 12 shows the write-read operation comparison

among two, three and four active spaces system using a

variant entry size. From this figure we notice that; all curves

are overlapped until the point 2700 bytes. Also, two and three

active spaces dynamic replica curves are overlapped until the

point 5100 bytes. This means that the difference in

performance appears in the large entry array size. There are

some test points in the two-active-space curve have greater

value than the corresponding points in the three active space

curve. This can be caused by the environment parameters such

as network load or machine load.

 Fig 13: Comparing write-take operation of dynamic

replica systems using a variant entry array size

Figure 13 shows the write-take operation performance

comparison of two, three and four active spaces systems.

From this figure, we can notice that; the four-active-spaces

curve is the noisiest curve in the figure. The reason of this

nose is that, by increasing number of machines (active spaces)

the communication increases, so, the environment effect

increases. Moreover, the difference between two and three-

active-space curves is smaller than the difference between

three and four active space curves.

6. SUMMARY
This paper introduces a new fault-tolerance mechanism in

JavaSpaces (dynamic replica). The idea of this mechanism is

to add a high availability layer to the JavaSpaces service. This

mechanism guarantees that the user job can continue in spite

of the tuple-space server failure. It discussed the dynamic

replica system structure in details. Moreover, the complexity

of dynamic replica operations has been introduced. Also, the

practical tests of the dynamic replica systems are done. The

failure test is done to insure that our system is a fault-

tolerance system. The performance of the system is decreased

by increasing the number of active spaces, but the system

availability is increased. Moreover, the high availability layer

test shows that the client in the dynamic replica system can

continue its tasks in spite of the failure. In the future, we will

extend this work on cloud systems to handle the failure of the

uncertain resources.

7. REFERENCES
[1] Mattson T.G. Programming Environments for Parallel

and Distributed computing: A Comparison of p4, PVM,

Linda and TCGMSG. ftp Server, ftp.cs.yale.edu, 1995

[2] Milo Tomasevic Jelica Protic and Veljko Milutinovic.

Distributed shared memory: Concepts and systems. IEEE

Parallel and Distributed technology , 4(2):63-79, April,

1996

[3] Tran D., Nguyen T., and Motocova M., “Integrating

Fault Tolerant Features Intoduction Topas Parallel

Programmming Environment for Distributed Systems,”

International Conference on Parallel Computing in

Electrical Engineering (PARELEC), Poland, pp. 453-

459, 2002.

[4] Kai Hwang and Zhiwei Xu. Scalable parallel computing:

technology, architecture, programming, volume 5 of

Computer engineering series, pages 326–345.

WCB/McGraw-Hill, 1st edition, February 1998.

[5] David Gelernter. Getting the job done (linda, parallel

programming language). j-BYTE , 13(12):301–308,

November 1988

[6] Fred B.Schneider. Implementing fault-tolerant services

using the state machine approach: A tutorial. ACM

Computing Surveys, 22(4):299-319, December 1990.

[7] M. Staroswiecki1, and A. Moradi Amani. Fault-tolerant

control of distributed systems by information pattern

reconfiguration. International Journal of Adaptive

Control and Signal Processing JUN 2014.

[8] Oracle Technology Network. Jini Architecture

Specification, available from Sun Microsystems WWW

Site

(http://www.jiniworld.com/doc/specs/html/devicearch-

spec.htm), 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.12, April 2016

9

[9] Jacob Nelson, Brandon Holt, Brandon Myers, Preston

Brigg, Luis Ceze, Simon Kahan, and Mark Oskin.

Latency-Tolerant Software Distributed Shared Memory.

In the Proceedings of the 2015 USENIX Annual

Technical Conference (USENIC ATC ’15), 291-305,

2015.

[10] Mutasem Alsmadi, Usama A. Badawi and Hosam E.

Refaat. High performance protocol for fault tolerant

Distributed Shared memory(FaTP). Journal of Applied

Science. 13(6) 790-799, 2013

[11] BlitzJavaSpacesImplementation.http://code.google.com/

p/blitz-javaspaces/downloads/list, 2015

[12] Daniel Fiedler and Kristen Walcott and Thomas

Richardson and Gregory M. Kapfhammer and Ahmed

Amer and Panos K. Chrysanthis, Towards the

Measurement of Tuple Space Performance, ACM

SIGMETRICS Performance Evaluation Review,

December, 2005, 33.

[13] van Heiningen, W., MacDonald, S. and Brecht, T.

Babylon: middleware for distributed, parallel, and mobile

Java applications. Concurrency Computat.: Pract. Exper.,

20: 1195–1224,2008.

[14] Guanfeng Liang and Benjamin Sommer and Nitin H.

Vaidya. Experimental performance comparison of

Byzantine Fault-Tolerant protocols for data centers.

INFOCOM'12", 1422-1430, 2012.

IJCATM : www.ijcaonline.org

