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ABSTRACT 
 Measurability is a concept in elastic scaling that is based on 

two assumptions: (1) every cloud service provider is cautious, 

i.e., does not exclude any cloud consumer’s Unpredictable 

Workload resource pooling pattern choice from consideration, 

and (2) every cloud service provider respects the cloud 

consumer’s Unpredictable Workload resource pooling pattern 

preferences, i.e., deems one cloud consumer’s Unpredictable 

Workload resource pooling pattern choice to be infinitely 

more likely than another whenever it premises the cloud 

consumer to prefer the one to the other. In this paper we 

provide a new approach for measurability, by assuming that 

cloud service providers have asymmetric Unpredictable 

Workload resource pooling pattern about the cloud 

consumer’s Unpredictable Workload utilities. We show that, 

if the uncertainty of each cloud service provider about the 

cloud consumer’s Unpredictable Workload utilities vanishes 

gradually in some regular manner, then the Unpredictable 

Workload resource pooling pattern choices it can measurably 

make under common conjecture in measurability are all 

actually measureable in the original elastic scaling with no 

uncertainty about the cloud consumer’s utilities.   
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1. INTRODUCTION 
Elastic scaling deals with the ways the cloud service providers 

may reason about its cloud consumers before making a 

decision. More precisely, in elastic scaling cloud service 

providers base its Unpredictable Workload resource pooling 

pattern choices on the conjectures about the cloud consumers’ 

behavior, which in turn depend on its conjectures about the 

cloud consumers’ conjectures about other cloud consumers’ 

behavior, and so on [1] [7] [9] [21]. A major goal of elastic 

scaling in this work is to study such conjecture hierarchies, to 

impose reasonable conditions on these, and to investigate its 

resource pooling pattern behavioral implications. 

 A central idea in elastic scaling is common conjecture in 

measurability, stating that a cloud service provider premises 

that its cloud consumers choose measurably, and so on. In our 

view, one of its most natural refinements is the concept of 

measurability. Measurability is based on the following two 

conditions: The first states that cloud service providers are 

cautious [2] [8] [10] [22], meaning that they do not exclude 

any cloud consumers’ Unpredictable Workload resource 

pooling pattern choice from consideration. The second 

condition states that whenever premise that a Unpredictable 

Workload resource pooling pattern choice 𝑎 is better than 

another Unpredictable Workload resource pooling pattern 

choice 𝑏 for a cloud consumer, then the probability assign to 𝑏 

must be at most 𝛼 times the probability assign to 𝑎. Under 𝛼-

measurability there is common conjecture in the event that 

every cloud service provider is cautious and satisfies the       

𝛼-actual trembling condition. A Unpredictable Workload 

resource pooling pattern choice is called actually measureable 

if it can be chosen under 𝛼-measurability for every 𝛼 > 0 [3] 

[11] [15] [20]. 

2. RESEARCH CLARIFICATION 
The usual interpretation of measurability assumes that cloud 

consumer makes mistakes, but that deem more costly 

mistakes much less likely than less costly mistakes. In this 

paper we offer a rather different approach for measurability. 

Instead of assuming premise cloud consumer to make 

mistakes, we rather suppose that have uncertainty about its 

utility function, while believing that it chooses measurably. 

We thus consider a elastic scaling with asymmetric 

Unpredictable Workload resource pooling pattern. Our result 

states that, if we let uncertainty about the cloud consumer’s 

utility go to zero in some regular manner, then every 

Unpredictable Workload resource pooling pattern choice that 

can measurably be made under common conjecture in 

measurability in the elastic scaling with asymmetric 

Unpredictable Workload resource pooling pattern, will be 

actually measureable in the original elastic scaling, in which 

there is no uncertainty about the cloud consumer’s utilities. 

In the elastic scaling with asymmetric Unpredictable 

Workload resource pooling pattern, we impose some 

regularity conditions on the cloud service providers’ 

conjectures about the cloud consumer’s utility functions 

which can be summarized as follows: First, for every outcome 

in the elastic scaling, the conjecture that cloud service 

provider 𝑖 has about cloud service provider 𝑗’s utility from 

this outcome, is always normally distributed with its mean at 

the “original” utility in the original elastic scaling. As a 

consequence, cloud service provider 𝑖 deems any utility 

function possible for cloud service provider 𝑗, and hence 

every resource pooling pattern choice for cloud service 

provider 𝑗 can be optimal for some utility function deemed 

possible by 𝑖. Together with the condition that 𝑖 premises in 

𝑗’s measurability, this actually makes sure that cloud service 

provider 𝑖 deems every Unpredictable Workload resource 

pooling pattern choice possible for cloud service provider 𝑗, 
thus mimicking the cautiousness condition described above. 

Secondly, 𝑖’s conjecture about 𝑗’s utility function should be 

independent from its conjecture about 𝑗’s conjecture 

hierarchy. This makes intuitive sense since 𝑗’s conjecture 

hierarchy is analytic property of this cloud service provider, 

whereas its utility function is not analytic property [4] [12] 
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[16] [23]. Therefore there is no obvious reason to expect any 

correlation between these two characteristics. Thirdly, 𝑖’s 

conjecture about 𝑗’s utilities from different outcomes in the 

elastic scaling should be independent from each other. 

Possibly some of these conditions can be relaxed for the proof 

of our result, but we leave this issue for future research. 

The paper is organized as follows: In Section 3 we introduce 

our elastic scaling model [5] [13] [17] [24] for elastic scaling 

with asymmetric Unpredictable Workload resource pooling 

pattern, we formalize the idea of common conjecture in 

measurability for these elastic scaling, and show that common 

conjecture in measurability is always possible (Descriptive 

Study I). In Section 4 we introduce our elastic scaling model 

for elastic scaling with symmetric Unpredictable Workload 

resource pooling pattern, and present the concept of 

measurability for these elastic scaling (Prescriptive Study). In 

Section 5 we state our result, establishing the connection 

between common conjecture in measurability in the elastic 

scaling with asymmetric Unpredictable Workload resource 

pooling pattern in the presence of small uncertainty about the 

cloud consumer’s utility function, and measurability in the 

original elastic scaling (Descriptive Study II). In Section 6 we 

provide some concluding remarks. All proofs are collected in 

Section 7. 

3. DESCRIPTIVE STUDY I 

3.1 Elastic Model 
Throughout this paper we restrict attention to elastic scaling 

operations with two sets of cloud service provider. Let 

𝛿 = (𝐶𝑖 , 𝑤𝑖)𝑖ϵ𝐼 be a finite, Unpredictable Workload where 

𝐼 = {1, 2} is the set of cloud service providers, 𝐶𝑖  is the finite 

set of Unpredictable Workload resource pooling pattern 

choices of cloud service provider 𝑖, 𝑤𝑖  is cloud service 

provider 𝑖’s utility function. The function 𝑤𝑖  assigns to every 

pair of Unpredictable Workload resource pooling pattern 

choice  𝑐1, 𝑐2  ϵ 𝐶1 × 𝐶2 a utility 𝑤𝑖 𝑐1, 𝑐2  ϵ 𝐹. 

In a elastic scaling with asymmetric Unpredictable Workload 

resource pooling pattern, cloud service providers do not only 

uncertainty about the cloud consumer’s Unpredictable 

Workload resource pooling pattern choices; they also have 

uncertainty about the cloud consumer’s utility function. Hence 

a conjecture hierarchy should not only specify what the cloud 

service provider premises about the cloud consumer’s 

Unpredictable Workload resource pooling pattern choice but 

also what it premises about the cloud consumer’s utility 

function. Not only this, it should also specify what the cloud 

service provider premises about the cloud consumer’s 

conjecture about its own Unpredictable Workload resource 

pooling pattern choice and utility function, and so on. A 

possible way of modeling such conjecture hierarchies is by 

means of the following necessary and sufficient condition. 

Necessary and sufficient condition 3.1 (elastic scaling 

model). A finite elastic scaling model for 𝛿 with asymmetric 

Unpredictable Workload resource pooling pattern is a tuple 

𝑀 = (𝑆𝑖 , 𝑣𝑖 , 𝐾𝑖)𝑖ϵ𝐼 where (1) 𝑆𝑖  is the set of Unpredictable 

Workload types for cloud service provider i. (2) 𝑣𝑖 : 𝑆𝑖 →
𝜃(𝐶𝑗 × 𝑆𝑗 ) is the conjecture assignment taking only finitely 

many different probability distributions on 𝜃(𝐶𝑗 × 𝑆𝑗 ) and (3) 

𝑘𝑖  is the utility assignment that assigns to every 𝑠𝑖  ϵ 𝑆𝑖  a utility 

function 𝑘𝑖 𝑠𝑖 : 𝐶1 × 𝐶2 → 𝐹. By 𝜃(𝑃) we denote the set of 

probability distributions on 𝑃. Therefore, in a elastic scaling 

model, each Unpredictable Workload type 𝑠𝑖  has a conjecture 

about cloud service provider 𝑗’s resource pooling pattern 

choice-Unpredictable Workload type combinations. And 

hence, in particular, it has a conjecture about 𝑗’s resource 

pooling pattern choice. But, as cloud service provider 𝑗’s 

Unpredictable Workload type also specifies its utility function 

and its conjecture about 𝑖’s resource pooling pattern choice, 

cloud service provider 𝑖 also has some conjecture about cloud 

service provider 𝑗’s utility function, and about cloud service 

provider 𝑗’s conjecture about its own resource pooling pattern 

choice, and so on. In this way one can derive a complete 

conjecture hierarchy for every given Unpredictable Workload 

type. 

Note that each Unpredictable Workload type 𝑠𝑖  can be 

identified with a pair  𝑘𝑖 𝑠𝑖 , 𝑣𝑖 𝑠𝑖   where 𝑘𝑖 𝑠𝑖  is its utility 

function and 𝑣𝑖 𝑠𝑖  is its conjecture hierarchy. Since we 

required the conjecture assignment to take only finitely many 

different probability distributions, the elastic scaling model 

contains only finitely many different conjecture hierarchies. 

3.2 Limitations on the Elastic Model 
Our goal will be to model the situation where the cloud 

service providers have uncertainty about the cloud consumer’s 

utility function, but where this uncertainty “vanishes in the 

limit”. In order to formalize this we need to impose additional 

limitations on the elastic scaling-model. 

Recall that every Unpredictable Workload type 𝑠𝑖  can be 

identified with a pair  𝑘𝑖 𝑠𝑖 , 𝑣𝑖 𝑠𝑖  , where 𝑘𝑖 𝑠𝑖  is 𝑠𝑖’s 

utility function and 𝑣𝑖 𝑠𝑖  is its conjecture hierarchy. Denote 

by 𝐾𝑖  the set of all possible utility functions, and by 𝑉𝑖  the set 

of all conjecture hierarchies in the elastic scaling model 

𝑀 = (𝑆𝑖 , 𝑘𝑖 , 𝑣𝑖)𝑖ϵ𝐼. The first condition we impose is that 

𝑆𝑖 = 𝐾𝑖 × 𝑉𝑖 , that is, for every possible utility function we can 

think of, and every conjecture hierarchy in the model, there 

exists a Unpredictable Workload type in the model with 

exactly this combination of utility function and conjecture 

hierarchy. Therefore in a sense we assume that the 

Unpredictable Workload type is rich enough. 

Secondly, we assume that 𝑠𝑖’s conjecture about 𝑗’s utility 

from  𝑐1, 𝑐2  is statistically independent from its conjecture 

𝑗’s utility from (𝑐1 , 𝑐2 ) whenever  𝑐1, 𝑐2 ≠ (𝑐1 , 𝑐2 ) and that 

this conjecture is also statistically independent from its 

conjecture about 𝑗’s conjecture hierarchy. 

Finally we assume that 𝑠𝑖’s conjectures about 𝑗’s utilities from 

the various outcomes in the elastic scaling are all induced by a 

unique normal distribution. More formally, 𝑠𝑖’s conjecture 

about 𝑗’s utility from  𝑐1, 𝑐2  is given by a normal distribution 

with its mean at 𝑤𝑗  𝑐1, 𝑐2  – the “true” utility of cloud service 

provider 𝑗 in the original elastic scaling. Therefore, all these 

conjectures are distributed identically around the mean. By 

collecting all these conditions we arrive at the following 

necessary and sufficient condition. 

Necessary and sufficient condition 3.2 (𝜍–regular elastic 

scaling model). Let 𝐷 be the normal distribution on 𝐹 with 

mean 0 and variance 𝜍2 > 0. Then a elastic scaling model 

𝑀 = (𝑆𝑖 , 𝑘𝑖 , 𝑣𝑖)𝑖ϵ𝐼 is 𝜍–regular if for both cloud service 

providers 𝑖, (1) 𝑆𝑖 = 𝐾𝑖 × 𝑉𝑖 , (2) for every Unpredictable 

Workload type 𝑠𝑖  ϵ 𝑆𝑖 , its conjecture about 𝑗’s utility from 
 𝑐1, 𝑐2  is statistically independent from its conjecture about 

𝑗’s utility from (𝑐1 , 𝑐2 ) whenever  𝑐1, 𝑐2 ≠ (𝑐1 , 𝑐2 ) and its 

conjecture about 𝑗’s utilities is statistically independent from 

its conjecture about 𝑗’s conjecture hierarchy, and (3) for every 

Unpredictable Workload type 𝑠𝑖  ϵ 𝑆𝑖 , and every resource 

pooling pattern choice-pair  𝑐1, 𝑐2 , the conjecture of 𝑠𝑖  about 

𝑗’s utility from  𝑐1, 𝑐2  is given by 𝐷, upto a shift of the mean 

to 𝑤𝑗  𝑐1, 𝑐2 . 
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3.3 𝝈-Measurability 
In this subsection we will define common conjecture in 

measurability inside a elastic scaling model with asymmetric 

Unpredictable Workload resource pooling pattern. In addition, 

if we require the elastic scaling-model to be 𝜍-regular for a 

given normal distribution with mean 0 and variance 𝜍2, then 

we obtain the concept of 𝜍-measurability. We first need some 

more notations. For given Unpredictable Workload type 𝑠𝑖  
and Unpredictable Workload resource pooling pattern choice 

𝑐𝑖 , let 𝑘𝑖 𝑠𝑖 (𝑐𝑖) be the expected utility for Unpredictable 

Workload type 𝑠𝑖  from choosing 𝑐𝑖 , given its conjecture 𝑣𝑖 𝑠𝑖  

about the cloud consumer’s Unpredictable Workload resource 

pooling pattern choice, and given its utility function 𝑘𝑖 𝑠𝑖 . 

Necessary and sufficient condition 3.3 (Measureable 

Unpredictable Workload resource pooling choice). A 

Unpredictable Workload resource pooling pattern choice 𝑐𝑖  is 

measureable for 𝑠𝑖  if 𝑘𝑖 𝑠𝑖 (𝑐𝑖) ≥ 𝑘𝑖 𝑠𝑖 (𝑐𝑖 )  for all 𝑐𝑖  ϵ 𝐶𝑖 . 

We will now define common conjecture in measurability. In 

words it says that a cloud service provider premises that its 

cloud consumer makes measureable Unpredictable Workload 

resource pooling pattern choices, and premises that its cloud 

consumer premises that it makes measureable Unpredictable 

Workload resource pooling pattern choices, and so on [25]. 

Formally, for every 𝑆𝑖 ⊆ 𝑆𝑖 , let 

(𝐶𝑖 × 𝑆𝑖 )𝑞𝑢𝑎𝑛𝑡 =   𝑐𝑖 , 𝑠𝑖  ϵ 𝐶𝑖 × 𝑆𝑖 : 𝑐𝑖  is measureable for 𝑠𝑖 . 

Necessary and sufficient condition 3.4 (Common conjecture 

in Measurability). For cloud service providers 𝑖 we define 

subsets of Unpredictable Workload types 𝑆𝑖
1, 𝑆𝑖

2, … in a 

recursive way as follows: 

𝑆𝑖
1 ≔  𝑠𝑖  ϵ 𝑆𝑖 : 𝑣𝑖 𝑠𝑖   𝐶𝑗 × 𝑆𝑗  

𝑞𝑢𝑎𝑛𝑡
 = 1 , 

𝑆𝑖
2 ≔  𝑠𝑖  ϵ 𝑆𝑖 : 𝑣𝑖 𝑠𝑖   𝐶𝑗 × 𝑆𝑗

1 
𝑞𝑢𝑎𝑛 𝑡

 = 1 , 

. 

. 

.𝑆𝑖
𝑙 ≔  𝑠𝑖  ϵ 𝑆𝑖 : 𝑣𝑖 𝑠𝑖   𝐶𝑗 × 𝑆𝑗

𝑙−1 
𝑞𝑢𝑎𝑛𝑡

 = 1 , 

. 

. 

. 

Unpredictable Workload type 𝑠𝑖  expresses common conjecture 

in measurability if 𝑠𝑖  ϵ ∩𝑙ϵℕ 𝑆𝑖
𝑙 . A Unpredictable Workload 

type            𝜍–measureable if it expresses common conjecture 

in measurability with a 𝜍–regular elastic scaling model. 

Necessary and sufficient condition 3.5 (𝜍–measureable 

Unpredictable Workload type). Let 𝑀 = (𝑆𝑖 , 𝑣𝑖 , 𝑘𝑖)𝑖ϵ𝐼 be a 𝜍–

regular elastic scaling model. Every Unpredictable Workload 

type 𝑠𝑖  ϵ 𝑆𝑖  that expresses common conjecture in 

measurability is called      𝜍–measureable. 

Now we show that 𝜍–measureable Unpredictable Workload 

types always exist. 

Proposition 3.1 (𝜍–measureable Unpredictable Workload 

types always exist): Consider a finite Unpredictable Workload 

𝛿 = (𝐶𝑖 , 𝑤𝑖)𝑖ϵ𝐼, and some 𝜍 > 0. Then there is a 𝜍–regular 

elastic scaling model   𝑀 = (𝑆𝑖 , 𝑣𝑖 , 𝑘𝑖)𝑖ϵ𝐼 for 𝛿 where all 

Unpredictable Workload types are 𝜍–measureable. The proof 

can be found in Section 7. 

3.4 Limit Measurability 
In this subsection we focus on those Unpredictable Workload 

resource pooling pattern choices, which can measurably be 

made under common conjecture in measurability when the 

uncertainty about the cloud consumer’s utility vanishes. This 

will lead to the concept of limit measurability. We first need 

an additional necessary and sufficient condition. 

Necessary and sufficient condition 3.6 (Constant 

Unpredictable Workload type and utility assignments). A 

Unpredictable Workload sequence of elastic scaling models 

((𝑆𝑖
𝑛 , 𝑣𝑖

𝑛 , 𝑘𝑖
𝑛)𝑖ϵ𝐼)𝑛ϵℕ has constant Unpredictable Workload 

type and utility assignments if 𝑆𝑖
𝑛 = 𝑆𝑖

𝑚  and 𝑘𝑖
𝑛 = 𝑘𝑖

𝑚  for all 

𝑛 and 𝑚, and for cloud service providers 𝑖.We are now ready 

to say the concept of limit measureable Unpredictable 

Workload resource pooling pattern choice. 

Necessary and sufficient condition 3.7 (Limit measureable 

resource pooling pattern choice). Consider a finite 

Unpredictable Workload 𝛿 = (𝐶𝑖 , 𝑤𝑖)𝑖ϵ𝐼 with cloud service 

providers. A Unpredictable Workload resource pooling 

pattern choice 𝑐𝑖  is limit measureable if there is a 

Unpredictable Workload sequence (𝜍𝑛)𝑛ϵℕ → 0,and a 

Unpredictable Workload sequence (𝑀𝑛)𝑛ϵℕ of 𝜍𝑛–regular 

elastic scaling models with constant Unpredictable Workload 

type  and utility assignments, such that in every 𝑀𝑛  there is a 

𝜍𝑛 -measureable Unpredictable Workload type 𝑠𝑖
𝑛  with utility 

function 𝑤𝑖 , for which Unpredictable Workload resource 

pooling pattern choice 𝑐𝑖  is optimal. 

4. PRESCRIPTIVE STUDY 

4.1 Elastic Model 
Let 𝛿 = (𝐶𝑖 , 𝑤𝑖)𝑖ϵ𝐼 be a finite, Unpredictable Workload with 

cloud service providers. In a elastic scaling with symmetric 

Unpredictable Workload resource pooling pattern cloud 

service providers do not have uncertainty about the cloud 

consumer’s utility function. Therefore a conjecture hierarchy 

only needs to specify what a cloud service provider premises 

about the cloud consumer’s Unpredictable Workload resource 

pooling pattern choice, what it premises about the cloud 

consumer’s conjecture about its own Unpredictable Workload 

resource pooling pattern choice, and so on. Therefore the 

elastic scaling model will be simpler compared to the case of 

asymmetric Unpredictable Workload resource pooling pattern. 

Necessary and sufficient condition 4.1 (elastic scaling 

model). A elastic scaling model for 𝛿 with symmetric 

Unpredictable Workload resource pooling pattern is a tuple 

𝑀 = (𝛺𝑖 , 𝜌𝑖)𝑖ϵ𝐼 where (1) 𝛺𝑖  is the finite set of Unpredictable 

Workload types for cloud service provider 𝑖, and (2) 𝜌𝑖 : 𝛺𝑖 →
𝜃(𝐶𝑗 × 𝛺𝑗 ) is the conjecture assignment. 

Therefore, in a elastic scaling model, each Unpredictable 

Workload type 𝜏𝑖  has a conjecture about cloud service 

provider 𝑗’s Unpredictable Workload resource pooling pattern 

choice-Unpredictable Workload type combinations. And 

hence, in particular, it has a conjecture about 𝑗’s 

Unpredictable Workload resource pooling pattern choice. But, 

as cloud service provider 𝑗’s Unpredictable Workload type 

also specifies its conjecture about cloud service provider 𝑖’s 

Unpredictable Workload resource pooling pattern choice, 

cloud service provider 𝑖 also has some conjecture about cloud 

service provider 𝑗’s conjecture about its own Unpredictable 

Workload resource pooling pattern choice, and so on. In this 

way one can derive a complete conjecture hierarchy for every 

given Unpredictable Workload type. 
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For given Unpredictable Workload type 𝜏𝑖  and Unpredictable 

Workload resource pooling pattern choice 𝑐𝑖  we define 

𝑤𝑖 𝑐𝑖 , 𝜏𝑖  as the expected utility for Unpredictable Workload 

type 𝜏𝑖  from choosing 𝑐𝑖  given its conjecture 𝜌𝑖( 𝜏𝑖) about its 

cloud consumer’s Unpredictable Workload resource pooling 

pattern choice (and given its “fixed” utility function 𝑤𝑖). 

Unpredictable Workload type 𝜏𝑖  is said to prefer 

Unpredictable Workload resource pooling pattern choice 𝑐𝑖  to 

Unpredictable Workload resource pooling pattern choice 𝑐𝑖  
when 𝑤𝑖 𝑐𝑖  , 𝜏𝑖 > 𝑤𝑖 𝑐𝑖 , 𝜏𝑖 . We say that a Unpredictable 

Workload type 𝜏𝑖  considers possible some cloud consumer’s 

Unpredictable Workload type 𝜏𝑖  if 𝜌𝑖 𝜏𝑖  𝑐𝑗 , 𝜏𝑗  > 0 for some 

𝑐𝑗  ϵ 𝐶𝑗 .Now we introduce the key condition in measurability, 

which is the 𝛼–actual trembling condition. Intuitively it says 

that (1) a cloud service provider should deem possible all 

cloud consumer’s Unpredictable Workload resource pooling 

pattern choices, and (2) if a cloud service provider premises 

Unpredictable Workload resource pooling pattern choice 𝑎 is 

better than Unpredictable Workload resource pooling pattern 

choice 𝑏 for the other cloud service provider, then it should 

deem Unpredictable Workload resource pooling pattern 

choice 𝑎 much more likely than Unpredictable Workload 

resource pooling pattern choice 𝑏. 

Necessary and sufficient condition 4.2 (𝛼-actual trembling 

condition): Let 𝛼 > 0. A Unpredictable Workload type 𝜏𝑖  
satisfies the 𝛼-actual trembling condition if (1) for each 𝜏𝑗  that 

𝜏𝑖  deems possible, 𝜌𝑖 𝜏𝑖  𝑐𝑗 , 𝜏𝑗  > 0 for all 𝑐𝑗  ϵ 𝐶𝑗 ,and (2) for 

every 𝜏𝑗  that 𝜏𝑖  deems possible, whenever 𝜏𝑗  prefers 𝑐𝑗  to 𝑐𝑗 , 

then 𝜌𝑖 𝜏𝑖  𝑐𝑗 , 𝜏𝑗  ≤ 𝛼 ∙ 𝜌𝑖 𝜏𝑖  𝑐𝑗 , 𝜏𝑗  . 

Therefore, the first condition says that whenever 𝜏𝑖  deems 

some Unpredictable Workload type 𝜏𝑗  possible, 𝜏𝑖  also 

assumes every Unpredictable Workload resource pooling 

pattern choice is possible for 𝜏𝑗 . Measurability is based on the 

event that the Unpredictable Workload types should not only 

satisfy the 𝛼-actual trembling condition themselves, but also 

express common conjecture in the event that Unpredictable 

Workload types satisfy the 𝛼-actual trembling condition. 

Necessary and sufficient condition 4.3 (𝛼-actually 

measureable Unpredictable Workload type). A Unpredictable 

Workload type 𝜏𝑖  is 𝛼-actually measureable if: 𝜏𝑖  satisfies the 

𝛼-actual trembling condition, 𝜏𝑖  only deems possible cloud 

consumer’s Unpredictable Workload types 𝜏𝑗  which satisfy 

the 𝛼-actual trembling condition, 𝜏𝑖  only deems possible 

cloud consumer’s Unpredictable Workload types 𝜏𝑗  which 

only deem possible cloud service provider 𝑖’s Unpredictable 

Workload types 𝜏𝑖
′  which satisfy the 𝛼-actual trembling 

condition, and so on. Actually measureable Unpredictable 

Workload resource pooling pattern choices are those 

Unpredictable Workload resource pooling pattern choices, 

which can measurably be made by 𝛼-actually measureable 

Unpredictable Workload types for all 𝛼. 

Necessary and sufficient condition 4.4 (Actually 

measureable resource pooling pattern choice). A 

Unpredictable Workload resource pooling pattern choice 𝑐𝑖  is 

𝛼-actually measureable if there is a elastic scaling model and 

a 𝛼-actually measureable Unpredictable Workload type 𝜏𝑖  
within it for which 𝑐𝑖  is optimal. A Unpredictable Workload 

resource pooling pattern choice 𝑐𝑖  is actually measureable if it 

is 𝛼-actually measureable for all 𝛼 > 0. 

5. DESCRIPTIVE STUDY II  

5.1 Statement of the result 
For a Unpredictable Workload we analyzed two contexts, one 

with asymmetric Unpredictable Workload resource pooling 

pattern and another with symmetric Unpredictable Workload 

resource pooling pattern. In the context with asymmetric 

Unpredictable Workload resource pooling pattern, where 

cloud service providers have uncertainty about the cloud 

consumer’s utility, we introduced the concept of a limit 

measureable Unpredictable Workload resource pooling 

pattern choice. In the context with symmetric Unpredictable 

Workload resource pooling pattern, where cloud service 

providers have no uncertainty about the cloud consumer’s 

utility, we discussed the concept of a actually measureable 

Unpredictable Workload resource pooling pattern choice. In 

our result we connect these two concepts. 

Proposition 5.1 (Limit Measurability implies Measurability): 

Consider a finite Unpredictable Workload with cloud service 

providers. Every limit measureable Unpredictable Workload 

resource pooling pattern choice for the context with 

asymmetric Unpredictable Workload resource pooling pattern 

is a actually measureable Unpredictable Workload resource 

pooling pattern choice for the context with symmetric 

Unpredictable Workload resource pooling pattern. 

5.2 Illustration of the result 
By means of an example we provide some intuition for our 

result. More precisely we show how a measureable 

Unpredictable Workload type in the context of asymmetric 

Unpredictable Workload resource pooling pattern can be 

transformed into an actually measureable Unpredictable 

Workload type in the context of symmetric Unpredictable 

Workload resource pooling pattern. Also we show that when 

𝜍 goes to zero then 𝜖 goes to zero as well. Let us start with the 

context of asymmetric Unpredictable Workload resource 

pooling pattern. Let 𝐷 be the normal distribution with mean 0 

and variance 𝜍2. From the proof of Proposition 3.1 we know 

that there exists a regular elastic scaling model 𝑀 =
(𝑆𝑖 , 𝑣𝑖 , 𝑘𝑖)𝑖ϵ𝐼 where every Unpredictable Workload type is 

measureable and all the Unpredictable Workload types have 

the same conjecture hierarchy. Therefore, Unpredictable 

Workload types only differ by their utility function. For each 

of the Unpredictable Workload types 𝑠1 of cloud service 

provider 1 we denote by 𝜌1  the conjecture about cloud service 

provider 2’s Unpredictable Workload resource pooling pattern 

choice, and for each Unpredictable Workload type 𝑠1 let 𝜌1 be 

the conjecture about cloud service provider 1’s Unpredictable 

Workload resource pooling pattern choice. As we assume that 

all the Unpredictable Workload types have the same 

conjecture hierarchy, 𝜌1 and 𝜌2 are unique. 

For both cloud service providers 𝑖 let 𝑂𝑖  be the probability 

distribution on cloud service provider 𝑖’s utility functions 

generated by 𝐷. Since the elastic scaling-model is 𝜍-regular 

every Unpredictable Workload type 𝑠𝑗  has the conjecture 𝑂𝑖  

about 𝑖’s utility function. Let 𝐾𝑖(𝑐𝑖 , 𝜌𝑖) be the set of utility 

functions for cloud service provider 𝑖 such that the 

Unpredictable Workload resource pooling pattern choice 𝑐𝑖  is 

optimal under the conjecture 𝜌𝑖  about the cloud consumer’s 

Unpredictable Workload resource pooling pattern choice. 

Since every Unpredictable Workload type 𝑠𝑖  expresses 

common conjecture in measurability, the probability it assigns 

to a cloud consumer’s Unpredictable Workload resource 

pooling pattern choice 𝑐𝑗  is exactly the probability it assigns to 
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the event that 𝑗’s utility function is in 𝐾𝑗 (𝑐𝑗 , 𝜌𝑗 ) which is 

𝑂𝑗  𝐾𝑗  𝑐𝑗 , 𝜌𝑗   . 

Since 𝐷 has full support, it follows that all these probabilities 

are positive. Now we turn to the context of symmetric 

Unpredictable Workload resource pooling pattern. We 

construct a elastic scaling model with a single Unpredictable 

Workload type 𝜏1 for cloud service provider 1 and a single 

Unpredictable Workload type 𝜏2 for cloud service provider 2. 

Let the conjecture of 𝜏1 about the cloud service provider 2’s 

Unpredictable Workload resource pooling pattern choice be 

given by the 𝜌1 constructed above, and similarly for the 

conjecture of 𝜏2. Therefore, the conjecture about the cloud 

consumer’s Unpredictable Workload resource pooling pattern 

choice has not changed by moving from the context with 

asymmetric Unpredictable Workload resource pooling pattern 

to the context with symmetric Unpredictable Workload 

resource pooling pattern. 

6. CONCLUDING REMARKS 
We premise that measurability is a very natural concept in 

elastic scaling, but it has not yet received the attention it 

deserves. In this paper we have established a new approach 

for measurability from the viewpoint of elastic scaling with 

asymmetric Unpredictable Workload resource pooling pattern. 

In elastic scaling with asymmetric Unpredictable Workload 

resource pooling pattern we define a Unpredictable Workload 

resource pooling pattern choice as limit measureable if it can 

measurably be made under common conjecture of 

measurability when the uncertainty vanishes gradually in 

some regular way. We show the existence of such 

Unpredictable Workload resource pooling pattern choices. We 

then prove that each limit measureable Unpredictable 

Workload resource pooling pattern choice in the elastic 

scaling with asymmetric Unpredictable Workload resource 

pooling pattern is actually measureable for the context with 

symmetric Unpredictable Workload resource pooling pattern. 

7. PROOFS  

7.1 Existence of Measureable 

Unpredictable Workload types 
We prove Proposition 3.1, which guarantees the existence of 

𝜍-measureable Unpredictable Workload types. Consider a 

finite Unpredictable Workload 𝑀 = (𝐶𝑖 , 𝑤𝑖)𝑖ϵ𝐼 and, some 

𝜍 > 0. Let 𝐷 be the normal distribution with mean 0 and 

variance 𝜍2. In fact we will construct a 𝜍-regular elastic 

scaling model where all Unpredictable Workload types of 

cloud service provider 1 have the same conjecture 𝜌2 about 

cloud service provider 2’s Unpredictable Workload resource 

pooling pattern choice and all Unpredictable Workload types 

of cloud service provider 2 have the same conjecture 𝜌1 about 

cloud service provider 1’s Unpredictable Workload resource 

pooling pattern choice. We construct 𝜌1 and 𝜌2 by means of 

the fixed key of some correspondence. 

For every conjecture 𝜌𝑗  ϵ 𝜃(𝐶𝑗 ) and every utility function 𝑤𝑖 , 

we define 

𝐶𝑖 𝜌𝑗 , 𝑤𝑖 ≔  𝐶𝑖  ϵ 𝐶𝑖 ∶ 𝑤𝑖 𝑐𝑗 , 𝜌𝑗  ≥ 𝑤𝑖 𝑐𝑖 , 𝜌𝑗   for all 𝑐𝑖   . 

We also define 𝑂𝑖  as the probability distribution on the set of 

utility functions of cloud service provider 𝑖 induced by 𝐷. For 

every 𝜌𝑗  ϵ 𝜃(𝐶𝑗 ) we define 

𝐺𝑖 𝜌𝑗  ≔ {𝜌𝑖  ϵ 𝜃(𝐶𝑗 ) : 𝜌𝑖 =  𝜙𝑖(𝑥𝑖)
 

𝑤𝑖  ϵ 𝐾𝑖
 𝑑𝑂𝑖 , 

where 𝜙𝑖 𝑥𝑖  ϵ  𝐶𝑖 𝜌𝑗 , 𝑥𝑖   for every 𝑥𝑖  ϵ 𝐾𝑖}. 

Here 𝐾𝑖  denotes the set of all possible utility functions for 

cloud service provider 𝑖. Therefore every 𝜌𝑖  ϵ 𝐺𝑖(𝜌𝑗 ) is 

obtained by taking for every utility function 𝑥𝑖   a 

randomization over optimal Unpredictable Workload resource 

pooling pattern choices against 𝜌𝑗  and then taking the 

expected randomization with respect to 𝑂𝑖 . Now we define a 

correspondence 𝐺 from 𝜃(𝐶1) × 𝜃(𝐶2) to 𝜃(𝐶1) × 𝜃(𝐶2) by 

𝐺 𝜌1, 𝜌2 ≔ 𝐺1 𝜌2 × 𝐺2 𝜌1 . 

Now we use fixed key position to prove that 𝐺 has a fixed 

key. Clearly 𝐺 is upper hemi-continuous and compact valued. 

We show that G is convex valued. For this it is sufficient to 

show that 𝐺1and 𝐺2 are convex valued. For a given 𝜌2, take 

𝜌1
′ , 𝜌1

′′ in  𝜌2 . We show that 𝜓𝜌1
′ + (1 − 𝜓)𝜌1

′′ is also in 

𝐺1 𝜌2 . By definition 

𝜌1
′ =  𝜙1

′ (𝑥1)
 

𝑥1

𝑑𝑂1  and 𝜌1
′′ =  𝜙1

′′(𝑥1)
 

𝑥1

 𝑑𝑂1 

where 𝜙1
′ (𝑥1), 𝜙1

′′ 𝑥1  ϵ 𝜃 𝐶1 𝜌2, 𝑥1   for every 𝑥1. Therefore 

we have 

𝜓𝜌1
′ +  1 − 𝜓 𝜌1

′′ =  (𝜓𝜙1
′ (𝑥1)

 

𝑥1

+ (1 − 𝜓)𝜙1
′′(𝑥1)) 𝑑𝑂1 

where 𝜓𝜙1
′  𝑥1 + (1 − 𝜓)𝜙1

′′ 𝑥1  ϵ 𝜃 𝐶1 𝜌2, 𝑥1   for every 

𝑥1. Hence by definition 𝜓𝜌1
′ +  1 − 𝜓 𝜌1

′′ϵ 𝐺1 𝜌2 . This 

implies that 𝐺1 is convex valued. The same applies to 𝐺2 and 

hence we can conclude that 𝐺 is convex valued. Now using 

fixed key position 𝐺 has a fixed key (𝜌1
∗, 𝜌1

∗). 

Since 𝜌1
∗ϵ 𝐺1 𝜌2

∗  it follows that 

𝜌1
∗ =  𝜙1

∗(𝑥1)
 

𝑥1

 𝑑𝑂1 

where 𝜙1
∗ 𝑥1  ϵ 𝜃 𝐶1 𝜌2

∗, 𝑥1   for every 𝑥1. Similarly 

𝜌2
∗ =  𝜙2

∗(𝑥2)
 

𝑥2

 𝑑𝑂2 

where 𝜙2
∗ 𝑥2  ϵ 𝜃 𝐶2 𝜌1

∗, 𝑥2   for every 𝑥2. 

We will now construct a elastic scaling model 𝑀 =
(𝑆𝑖 , 𝑣𝑖 , 𝑘𝑖)𝑖ϵ𝐼. For both cloud service providers 𝑖, define 

𝑆𝑖 =  𝑠𝑖
𝑥𝑖 : 𝑥𝑖  ϵ 𝐾𝑖 . 

Let the utility assignment 𝑘𝑖  be given by 

𝑘𝑖 𝑠𝑖
𝑥𝑖 = 𝑥𝑖  

for every 𝑠𝑖
𝑥𝑖  ϵ 𝑆𝑖 . In order to define the conjecture 

assignment 𝑣𝑖  we first define for every Unpredictable 

Workload type 𝑠𝑖
𝑥𝑖  a density function 𝑣𝑖

~ 𝑠𝑖
𝑥𝑖  on 𝐶𝑗 × 𝑆𝑗  as 

follows: 𝑣𝑖
~ 𝑠𝑖

𝑥𝑖  𝑐𝑗 , 𝑠𝑗
𝑥𝑗  ≔ 𝜙𝑗

∗ 𝑥𝑗  (𝑐𝑗 ),where 𝜙𝑗
∗ 𝑥𝑗  (𝑐𝑗 ) is 

the probability that probability distribution 𝜙𝑗
∗ 𝑥𝑗   assigns to 

𝑐𝑗 . For every Unpredictable Workload type 𝑠𝑖
𝑥𝑖  let 

𝑣𝑖 𝑠𝑖
𝑥𝑖  ϵ 𝜃(𝐶𝑗 × 𝑆𝑗 ) be the probability distribution induced by 

density function 𝑣𝑖
~ 𝑠𝑖

𝑥𝑖  𝑐𝑗 , 𝑠𝑗
𝑥𝑗   and the probability 

distribution 𝑄𝑗  on 𝐾𝑗 . That is, for every set of Unpredictable 

Workload types 𝐻 ⊆ 𝑆𝑗 given by 

𝐻 ≔ {𝑠𝑗
𝑥𝑗 : 𝑥𝑗 ϵ 𝐺} 

We have that 

𝑣𝑖 𝑠𝑖
𝑥𝑖  {𝑐𝑗 } × 𝐻 ≔  𝑣𝑖

~ 𝑠𝑖
𝑥𝑖  𝑐𝑗 , 𝑠𝑗

𝑥𝑗  
 

𝑥𝑗  ϵ 𝐺

 𝑑𝑂𝑗  
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It follows that the conjecture of Unpredictable Workload type 

𝑠𝑖
𝑥𝑖  about cloud service provider 𝑗’s resource pooling pattern 

choice is given by 𝜌𝑗
∗. Namely, the probability that 

Unpredictable Workload type 𝑠𝑖
𝑥𝑖  assigns to Unpredictable 

Workload resource pooling pattern choice 𝑐𝑗  is equal to 

    𝑣𝑖 𝑠𝑖
𝑥𝑖  {𝑐𝑗 } × 𝐾𝑗  =  𝑣𝑖

~ 𝑠𝑖
𝑥𝑖  𝑐𝑗 , 𝑠𝑗

𝑥𝑗  
 

𝑥𝑗  ϵ 𝐾𝑗

 𝑑𝑂𝑗  

                            =  𝜙𝑗
∗ 𝑥𝑗   𝑐𝑗  

 

𝑥𝑗  ϵ 𝐾𝑗

 𝑑𝑂𝑗  

= 𝜌𝑗
∗(𝑐𝑗 ). 

Therefore all Unpredictable Workload types of cloud service 

provider 𝑖 have the same conjecture 𝜌𝑗
∗ about cloud service 

provider 𝑗’s Unpredictable Workload resource pooling pattern 

choice. This completes the construction of the elastic scaling 

model. It follows directly from the construction that the elastic 

scaling model is 𝜍-regular.We now show that every 

Unpredictable Workload type in this model expresses 

common conjecture in measurability. For this it is sufficient to 

show that every Unpredictable Workload type 𝑠𝑖
𝑥𝑖  premises in 

the cloud consumer’s measurability. Therefore, we must show 

for the cloud service providers 𝑖 and every 𝑠𝑖
𝑥𝑖  ϵ 𝑆𝑖  that 

𝑣𝑖
~ 𝑠𝑖

𝑥𝑖 [ 𝐶𝑗 × 𝑆𝑗  
𝑞𝑢𝑎𝑛𝑡

] = 1. In order to prove, we show that 

𝑣𝑖
~ 𝑠𝑖

𝑥𝑖  𝑐𝑗 , 𝑠𝑗
𝑥𝑗  > 0 only if 𝑐𝑗  is measureable for 𝑠𝑗

𝑥𝑗 . 

Suppose that 𝑣𝑖
~ 𝑠𝑖

𝑥𝑖  𝑐𝑗 , 𝑠𝑗
𝑥𝑗  > 0. Since 

𝑣𝑖
~ 𝑠𝑖

𝑥𝑖  𝑐𝑗 , 𝑠𝑗
𝑥𝑗  ≔ 𝜙𝑗

∗ 𝑥𝑗  (𝑐𝑗 ), it follows that 𝜙𝑗
∗ 𝑥𝑗   𝑐𝑗  >

0. As by definition 𝜙𝑗
∗ 𝑥𝑗   ϵ 𝜃  𝐶𝑗  𝜌𝑖

∗, 𝑥𝑗    it follows that 

𝑐𝑗  ϵ 𝐶𝑗  𝜌𝑖
∗, 𝑥𝑗  . Remember that the conjecture of 

Unpredictable Workload type 𝑠𝑗
𝑥𝑗  about cloud service 

provider 𝑖’s Unpredictable Workload resource pooling pattern 

choice is exactly 𝜌𝑖
∗. Since 𝑐𝑗  ϵ 𝐶𝑗  𝜌𝑖

∗, 𝑥𝑗   it follows that 𝑐𝑗  is 

measureable for Unpredictable Workload type 𝑠𝑗
𝑥𝑗 . Therefore 

we have shown that 𝑣𝑖
~ 𝑠𝑖

𝑥𝑖  𝑐𝑗 , 𝑠𝑗
𝑥𝑗  > 0 only if 𝑐𝑗  is 

measureable for 𝑠𝑗
𝑥𝑗 . This implies that Unpredictable 

Workload type 𝑠𝑖
𝑥𝑖  premises in the cloud consumer’s 

measurability. Since this holds for every Unpredictable 

Workload type in the model it follows that every 

Unpredictable Workload type in the elastic scaling model 

expresses common conjecture in measurability. Therefore 

every Unpredictable Workload type in the model is 𝜍-

measureable because the model is 𝜍-regular. This completes 

the proof. 

7.2 Corollaries 
In this subsection we state some technical corollaries, which 

we need for the proof of the result. 

Corollary 7.1. If 𝑃, 𝑄 and Rare data valued, independent 

random variables then Pr 𝑃 ≥ max 𝑄, 𝑅  ≥ Pr(𝑃 ≥ 𝑄) ∙
Pr 𝑃 ≥ 𝑅 . 

Proof. Let 𝑔𝑄 and 𝑔𝑅 be the probability density functions of 

the random variables 𝑄 and 𝑅. 

Now, 

Pr 𝑃 ≥ max 𝑄, 𝑅   

=   Pr 𝑃 ≥ max 𝑞, 𝑟  
 

𝑟

 

𝑞

 𝑑𝑔𝑄 𝑞  𝑑𝑔𝑅(𝑟) 

            ≥   Pr 𝑃 ≥ max 𝑞, 𝑟  
 

𝑟

 

𝑞

∙  Pr 𝑃 ≥ min 𝑞, 𝑟   𝑑𝑔𝑄 𝑞  𝑑𝑔𝑅(𝑟) 

     =   Pr 𝑃 ≥ 𝑞 
 

𝑟

 

𝑞

 ∙ Pr 𝑃 ≥ 𝑟 𝑑𝑔𝑄 𝑞  𝑑𝑔𝑅 𝑟  

     =  Pr 𝑃 ≥ 𝑞 
 

𝑞

 𝑑𝑔𝑄 𝑞 ∙  Pr 𝑃 ≥ 𝑟 
 

𝑟

 𝑑𝑔𝑅 𝑟  

= Pr(𝑃 ≥ 𝑄) ∙ Pr 𝑃 ≥ 𝑅 . 

Note that the first and third equality follow from the fact that 

𝑄 and 𝑅 are independent, and the inequality holds because 

Pr 𝑃 ≥ min 𝑞, 𝑟  ≤ 1. 

Corollary 7.2. Let 𝑃 be a random variable with 𝐻(𝑃)=𝛾. 

Then for any number 𝑡 > 0, 

( 𝑃 − 𝛾 ≥ 𝑡) ≤
Var(𝑃)

𝑡2
 

Corollary 7.3. For every 𝑛 ϵ ℕ, let 𝑃𝑛
1, 𝑃𝑛

2, …  𝑃𝑛
𝑚be 

independent random variables with 𝐻(𝑃𝑛
𝑖)=𝛾𝑖  for all 𝑛 and 𝑖, 

𝛾1 > 𝛾2 > ⋯ > 𝛾𝑚 , and lim𝑛→∞ Var 𝑃𝑛
𝑖 = 0 for all 𝑖. Then, 

lim
𝑛→∞

Pr 𝑃𝑛
1 ≥ 𝑃𝑛

2 ≥ ⋯  ≥ 𝑃𝑛
𝑚 = 1. 

Proof. For a given 𝑛, 

Pr 𝑃𝑛
1 ≥ 𝑃𝑛

2 ≥ ⋯  ≥ 𝑃𝑛
𝑚 ≥ 1 − Pr(𝑃𝑛

𝑖 ≥ 𝑃𝑛
𝑗
for some 𝑖 < 𝑗). 

For fixed 𝑖 < 𝑗 we have, 

Pr 𝑃𝑛
𝑖 < 𝑃𝑛

𝑗
 = Pr 𝑃𝑛

𝑗
− 𝑃𝑛

𝑖 > 0 

= Pr   𝑃𝑛
𝑗
− 𝑃𝑛

𝑖 −  𝛾𝑗 − 𝛾𝑖 > 𝛾𝑖 − 𝛾𝑗   

                       ≤ Pr   𝑃𝑛
𝑗
− 𝑃𝑛

𝑖 −  𝛾𝑗 − 𝛾𝑖  > 𝛾𝑖 − 𝛾𝑗   

≤
Var(𝑃𝑛

𝑗
− 𝑃𝑛

𝑖)

(𝛾𝑖 − 𝛾𝑗 )2
 

=
Var 𝑃𝑛

𝑗
 + Var 𝑃𝑛

𝑖 

(𝛾𝑖 − 𝛾𝑗 )2
 

The last equality follows from the fact that 𝑃𝑛
𝑗
 and 𝑃𝑛

𝑖  are 

independent. Now, note that lim
𝑛→∞

Var 𝑃𝑛
𝑖 = 0 and 

lim
𝑛→∞

Var 𝑃𝑛
𝑗
 = 0, which implies lim

𝑛→∞
Var 𝑃𝑛

𝑖 < 𝑃𝑛
𝑗
 = 0. 

Then, from above it follows that 

lim
𝑛→∞

Pr 𝑃𝑛
1 ≥ 𝑃𝑛

2 ≥ ⋯  ≥ 𝑃𝑛
𝑚 = 1. 

Consider a Unpredictable Workload sequence (𝐷𝑛)𝑛ϵℕ of 

normal distributions with mean 0 and variance 𝜍𝑛
2 such that 

𝜍𝑛 → 0 as 𝑛 → ∞. The density function 𝑔𝑛of 𝐷𝑛  is given by 

𝑔𝑛 𝑝 =
2

𝜍𝑛 2𝜋
 e−(𝑝2/2𝜍𝑛

2) for all 𝑝 . 

We show that for large 𝑛 the right tail of 𝐷𝑛  becomes 

arbitrarily steep everywhere. 

Corollary 7.4. Consider a Unpredictable Workload sequence 

(𝐷𝑛)𝑛ϵℕ of normal distributions with mean 0 and variance 𝜍𝑛
2 

, such that 𝜍𝑛 → 0  as 𝑛 → ∞. Let 𝑔𝑛  be the density functions 

of these distributions. Then for all 𝑐 > 0 and 𝛼 > 0 there is 

𝑁 ϵ ℕ such that 𝑔𝑛(𝑝 + 𝑐)/𝑔𝑛(𝑝) ≤ 𝛼 for all 𝑛 ≥ 𝑁 and all 

𝑝 > 0. 

Proof. Take 𝑐 > 0 and 𝛼 > 0. Then 
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𝑔𝑛(𝑝 + 𝑐)

𝑔𝑛(𝑝)
=

e−((𝑝+𝑐)2/2𝜍𝑛
2)

e−(𝑝2/2𝜍𝑛
2)

= e−(1/2𝜍𝑛
2)( 𝑝+𝑐 2−𝑝2)

= e−(1/2𝜍𝑛
2)(2𝑐𝑝+𝑐2) ≤ e−(𝑐2/2𝜍𝑛

2) 

Now as 𝑐 > 0 is fixed and 𝜍𝑛 → 0 as 𝑛 → ∞, we can find 𝑁 

large enough such that e−(𝑐2/2𝜍𝑛
2) ≤ 𝛼 for 𝑛 ≥ 𝑁. 

Corollary 7.5. Consider a Unpredictable Workload 

sequence (𝐷𝑛)𝑛ϵℕ of normally distributed random variables 

such that 𝐻 𝑃𝑛 = 0 for all 𝑛, and 𝑣𝑎𝑟 𝑃𝑛 → 0 as 𝑛 → ∞. 

Let 𝑔𝑛  be the density functions of these random variables. 

Then, for every 0 < 𝑝 < 𝑞 it holds that 

lim
𝑛→∞

Pr(𝑃𝑛 ≥ 𝑞)

Pr(𝑃𝑛 ≥ 𝑝)
= 0 . 

Proof. Fix 0 < 𝑝 < 𝑞 and fix a 𝛼 > 0. Then, by corollary 7.4 

there is an 𝑁 such that 𝑔𝑛(𝑟 + (𝑞 − 𝑝))/𝑔𝑛(𝑟) ≤ 𝛼 for all 

𝑛 ≥ 𝑁 and all 𝑟 > 0. Take some 𝑛 ≥ 𝑁. Then, 

Pr 𝑃𝑛 ≥ 𝑞 =  𝑔𝑛 𝑟  𝑑𝑟
∞

𝑞

=  𝑔𝑛 𝑟 + (𝑞 − 𝑝)  𝑑𝑟
∞

𝑝

 

≤ 𝛼 ∙  𝑔𝑛 𝑟  𝑑𝑟
∞

𝑝
= 𝛼 ∙ Pr(𝑃𝑛 ≥ 𝑝). 

This implies that 

lim
𝑛→∞

Pr(𝑃𝑛 ≥ 𝑞)

Pr(𝑃𝑛 ≥ 𝑝)
= 0 . 

7.3 Proof of the result 
We finally prove our main proposition, which is Proposition 

5.1. We proceed by three steps. 

In step 1, we show how a 𝜍-regular elastic scaling model 𝑀 

with asymmetric Unpredictable Workload resource pooling 

pattern can be transformed into a elastic scaling model 𝑀′  

with symmetric Unpredictable Workload resource pooling 

pattern. More precisely, we transform every Unpredictable 

Workload type 𝑠𝑖  in 𝑀 into a Unpredictable Workload type 

𝜏𝑖(𝑠𝑖) in 𝑀′  which has the same conjecture about the cloud 

consumer’s Unpredictable Workload resource pooling pattern 

choice as 𝑠𝑖 . In step 2, we take a Unpredictable Workload 

resource pooling pattern choice 𝑐𝑖
∗ that is limit measureable. 

Therefore we can find a Unpredictable Workload sequence 

(𝐷𝑛)𝑛ϵℕ of normal distributions with mean 0 and variance 𝜍𝑛
2, 

with 𝜍𝑛
2 → 0 as 𝑛 → ∞, and a Unpredictable Workload 

sequence (𝑀𝑛)𝑛ϵℕ of 𝜍𝑛 -regular elastic scaling models with 

constant Unpredictable Workload type  and utility 

assignments, such that in every 𝑀𝑛  there is a 𝜍𝑛 -measureable 

Unpredictable Workload type 𝑠𝑖
𝑛  with utility function 𝑤𝑖  for 

which resource pooling Unpredictable Workload pattern 

choice 𝑐𝑖
∗ is optimal. We show that the Unpredictable 

Workload type 𝑠𝑖
𝑛  is transformed into a Unpredictable 

Workload type 𝜏𝑖(𝑠𝑖
𝑛) which is 𝛼𝑛 -actually measureable for 

some 𝛼𝑛 . Since, for all 𝑛, 𝑐𝑖
∗ is measureable for 𝑡𝑖

𝑛  and 𝜏𝑖(𝑠𝑖
𝑛) 

has the same conjecture about the cloud consumer’s 

Unpredictable Workload resource pooling pattern choice and 

the same utility function as 𝑠𝑖
𝑛 , it follows that 𝑐𝑖

∗ is 

measureable for 𝜏𝑖(𝑠𝑖
𝑛) for all 𝑛. As 𝜏𝑖(𝑠𝑖

𝑛) is 𝛼𝑛 -actually 

measureable for every 𝑛, it follows that 𝑐𝑖
∗ is 𝛼𝑛 -actually 

measureable for all  𝑛. In step 3, we prove that lim
𝑛→∞

𝛼𝑛 = 0. 

Hence, 𝑐𝑖
∗ is 𝛼-actually measureable for every 𝛼 > 0 and 

therefore actually measureable. 

Step 1. Take some 𝜍 > 0. Let 𝑀 = (𝑆𝑖 , 𝑣𝑖 , 𝑘𝑖)𝑖ϵ𝐼 be a 𝜍-

regular elastic scaling model for 𝛿 with asymmetric 

Unpredictable Workload resource pooling pattern. Now we 

transform this elastic scaling model 𝑀 into a elastic scaling 

model 𝑀′ = (𝛺𝑖 , 𝜌𝑖)𝑖ϵ𝐼 with symmetric Unpredictable 

Workload resource pooling pattern. Using the fact that 𝑀 is 𝜍-

regular we can write 

𝑣𝑖 𝑠𝑖  ϵ 𝜃 𝐶𝑗 × 𝑘𝑗 × 𝑉𝑗  . 

Now take 𝛺𝑖 = 𝑉𝑖  and 𝛺𝑗 = 𝑉𝑗  . Clearly, 𝛺𝑖  and 𝛺𝑗  are finite 

sets as 𝑉𝑖  and 𝑉𝑗  are finite. For every 𝑠𝑖  ϵ 𝑆𝑖  define the 

Unpredictable Workload type 𝜏𝑖(𝑠𝑖) by 

𝜌𝑖 𝜏𝑖 𝑠𝑖  ≔ max𝑔𝐶𝑗 ×𝑉𝑗
𝑣𝑖 𝑠𝑖 . 

Therefore, 

𝜌𝑖 𝜏𝑖 𝑠𝑖   𝐶𝑗 × 𝑉𝑗  = 𝑣𝑖 𝑠𝑖   𝐾𝑗 ×   𝐶𝑗 × 𝑉𝑗     

for all  𝐶𝑗 × 𝑉𝑗  . Hence, 

𝜌𝑖 𝜏𝑖 𝑠𝑖   ϵ 𝜃 𝐶𝑗 × 𝑉𝑗  = 𝜃 𝐶𝑗 × 𝛺𝑗   

By construction  𝜏𝑖(𝑠𝑖) has the same conjecture about 𝑗’s 

Unpredictable Workload resource pooling pattern choice as 

𝑠𝑖 . This completes the construction of the elastic scaling 

𝑀′ = (𝛺𝑖 , 𝜌𝑖)𝑖ϵ𝐼. 

Step 2. Take a Unpredictable Workload resource pooling 

pattern choice 𝑐𝑖
∗ that is limit measureable. Hence, there exists 

a Unpredictable Workload sequence (𝐷𝑛)𝑛ϵℕ of normal 

distributions with mean 0 and variance 𝜍𝑛
2, with 𝜍𝑛

2 → 0 as 

𝑛 → ∞, and a Unpredictable Workload sequence (𝑀𝑛)𝑛ϵℕ of 

𝜍𝑛 -regular elastic scaling models with constant Unpredictable 

Workload type  and utility assignments, such that in every 𝑀𝑛  

there is a 𝜍𝑛 -measureable Unpredictable Workload type 𝑠𝑖
𝑛  

with utility function 𝑤𝑖  for which Unpredictable Workload 

resource pooling pattern choice 𝑐𝑖
∗ is optimal. Let the constant 

Unpredictable Workload type in the Unpredictable Workload 

sequence (𝑀𝑛)𝑛ϵℕ of elastic scaling models be 𝑆𝑖  and 𝑆𝑗 , and 

the constant utility assignments be 𝑘𝑖and 𝑘𝑗 .Fix an 𝑛. Then, 

within the elastic scaling model 𝑀𝑛 = (𝑆𝑖 , 𝑣𝑖
𝑛 , 𝑘𝑖)𝑖ϵ𝐼 there is 

an 𝜍𝑛 -measureable Unpredictable Workload type 𝑠𝑖
𝑛  ϵ 𝑆𝑖  with 

utility function 𝑤𝑖  for which 𝑐𝑖
∗

 is optimal. Since 

Unpredictable Workload type 𝑠𝑖
𝑛  only deems possible 𝑗’s 

Unpredictable Workload types which are 𝜍𝑛 -measureable, and 

only deems possible 𝑗’s Unpredictable Workload types which 

only deem possible 𝑖’s Unpredictable Workload types which 

are 𝜍𝑛 -measureable and so on. We may assume without loss 

of generality that all the Unpredictable Workload types in 𝑀𝑛  

are 𝜍𝑛 -measureable. Let 𝑀′𝑛 = (𝛺𝑖
𝑛 , 𝜌𝑖

𝑛)𝑖ϵ𝐼 be the 

corresponding elastic scaling model with symmetric 

Unpredictable Workload resource pooling pattern, as 

constructed in step 1. For every 𝜏𝑖  ϵ 𝛺𝑖
𝑛 , we define a number 

𝛼𝑛(𝜏𝑖) as follows: Let Poss(𝜏𝑖) be the set of Unpredictable 

Workload types in 𝛺𝑗  that 𝛺𝑖  deems possible. For a given 

Unpredictable Workload type 𝜏𝑗  ϵ Poss(𝜏𝑖) , suppose that 𝜏𝑗  

prefers Unpredictable Workload resource pooling pattern 

choice 𝑐𝑗
1 to 𝑐𝑗

2, 𝑐𝑗
2 to 𝑐𝑗

3, and so on. Therefore, we obtain an 

ordering (𝑐𝑗
1, 𝑐𝑗

2, 𝑐𝑗
3, …  𝑐𝑗

𝑚 ) of 𝑗’s Unpredictable Workload 

resource pooling pattern choices. 

Then define 

𝛼𝑛 𝜏𝑖 , 𝜏𝑗  = max
𝑡  ϵ {2,3,…,𝑚 }

  
𝜌𝑖
𝑛 𝜏𝑖 (𝑐𝑗

𝑡 , 𝜏𝑗 )

𝜌𝑖
𝑛 𝜏𝑖 (𝑐𝑗

𝑡−1, 𝜏𝑗 )
 

Next we define 

𝛼𝑖 ,𝑛 = max
𝜏𝑖  ϵ 𝛺𝑖

𝑛 ,𝜏𝑗  ϵ Poss (𝜏𝑖) 
  𝛼𝑛 𝜏𝑖 , 𝜏𝑗   
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Finally let 

𝛼𝑛 = max{𝛼𝑖 ,𝑛 , 𝛼𝑗 ,𝑛}. 

Note that by construction every Unpredictable Workload type 

in 𝑀′𝑛  satisfies the 𝛼𝑛 -actual trembling condition; hence 

every Unpredictable Workload type in 𝑀′𝑛  is 𝛼𝑛 -actually 

measureable. In particular 𝜏𝑖(𝑠𝑖
𝑛) is 𝛼𝑛 -actually measureable 

[19] [26]. 

Step 3. Now we show that lim
𝑛→∞

𝛼𝑛 = 0. It is sufficient to show 

that 

lim𝑛→∞

𝜌𝑖
𝑛  𝜏𝑖 (𝑐𝑗

𝑡 ,𝜏𝑗 )

𝜌𝑖
𝑛  𝜏𝑖 (𝑐𝑗

𝑡−1 ,𝜏𝑗 )
= 0                       (1) 

for every 𝜏𝑖  ϵ 𝛺𝑖
𝑛  and every 𝜏𝑗  ϵ Poss(𝜏𝑖) and every 𝑡. As 

before, cloud service provider 𝑗’s Unpredictable Workload 

resource pooling pattern choices are ordered 𝑐𝑗
1, …  𝑐𝑗

𝑚  such 

that 𝜏𝑗  prefers Unpredictable Workload resource pooling 

pattern choice 𝑐𝑗
1 to 𝑐𝑗

2, 𝑐𝑗
2 to 𝑐𝑗

3, and so on. We assume, 

without loss of generality, that all resource pooling pattern 

preferences are strict. Fix some 𝜏𝑖  ϵ 𝛺𝑖
𝑛  and 𝜏𝑗  ϵ Poss(𝜏𝑖). 

Suppose that 𝜏𝑖 = 𝜏𝑖(𝑠𝑖) for some 𝑠𝑖  ϵ 𝑆𝑖  and that 𝜏𝑗 = 𝜏𝑗 (𝑠𝑗 ) 

for some 𝑠𝑗  ϵ 𝑆𝑗 . Let 𝜙𝑗  ϵ 𝜃(𝐶𝑖) be 𝜏𝑖’s conjecture about 𝑖’s 

Unpredictable Workload resource pooling pattern choice [28]. 

As before, let 𝐾𝑗  be the set of utility functions for cloud 

service provider 𝑗. For every 𝑡 ϵ {1, … , 𝑚}, let 𝑃𝑡 : 𝐾𝑗 → 𝐹 be 

given by 

𝑃𝑡 𝑘𝑗  ≔ 𝑘𝑗  𝑐𝑗
𝑡 , 𝜙𝑗  =  𝜙𝑗 (𝑐𝑖) ∙

𝑐𝑖  ϵ 𝐶𝑖

𝑘𝑗  𝑐𝑗
𝑡 , 𝑐𝑖  

for every 𝑘𝑗  ϵ 𝐾𝑗 . Therefore, 𝑃𝑡 𝑘𝑗   denotes the expected 

utility for cloud service provider 𝑗 induced by Unpredictable 

Workload resource pooling pattern choice 𝑐𝑗
𝑡 , under the 

conjecture 𝜙𝑗  and the utility function 𝑘𝑗 . Note that 𝑃𝑡  is a 

random variable, as cloud service provider 𝑖 holds a 

probability distribution on 𝐾𝑗 , induced by 𝐷. The probability 

distribution of 𝑃𝑡  depends on 𝑛, and is denoted by 𝜔𝑛
𝑡 (𝑃𝑡). 

Note that 𝑃𝑡  has a normal distribution with mean 

𝐻 𝑃𝑡 = 𝑤𝑗  𝑐𝑗
𝑡 , 𝜙𝑗  , 

and variance 

𝑉𝑎𝑟𝑛 𝑃𝑡 =  (𝜙𝑗 (𝑐𝑖))2 ∙𝑐𝑖  ϵ 𝐶𝑖
𝜍𝑛

2                   (2) 

In particular, it follows that lim𝑛 →∞ 𝑉𝑎𝑟𝑛 𝑃𝑡 = 0, as 

lim𝑛 →∞ 𝜍𝑛
2. Since, by assumption, 𝜏𝑗  strictly prefers 𝑐𝑗

1 to 𝑐𝑗
2, 

strictly prefers 𝑐𝑗
2 to 𝑐𝑗

3, and so on, we have that 𝐻 𝑃1 >

𝐻 𝑃2 > ⋯ > 𝐻 𝑃𝑚 .Let 𝜔𝑛  be the probability distribution 

of the random set of data value (𝑃1, … , 𝑃𝑚 ) [6] [14] [18]. 

Recall that all Unpredictable Workload types in 𝑀𝑛  are 𝜍𝑛 -

measureable, which implies that all Unpredictable Workload 

types in 𝑀𝑛  express common conjecture in measurability. As 

such, Unpredictable Workload type 𝑠𝑖  ϵ 𝑆𝑖  (which generates 

𝜏𝑖) expresses common conjecture in measurability [27]. In 

particular, 𝑠𝑖  only assigns positive probability to those 

Unpredictable Workload resource pooling pattern choice-

Unpredictable Workload type combinations (𝑐𝑗 , 𝑠𝑗 ) where 𝑐𝑗  

is optimal for 𝑡𝑗 . Now, as 𝜏𝑖 = 𝜏𝑖(𝑠𝑖) and 𝜏𝑗 = 𝜏𝑗 (𝑠𝑗 ), we have 

that 𝜌𝑖
𝑛 𝜏𝑖 (𝑐𝑗

𝑡 , 𝜏𝑗 ) is the probability that 𝑐𝑗
𝑡  is optimal for 𝑠𝑗 , 

and that is 𝜔𝑛(𝑃𝑡 ≥ 𝑃𝑙 for all 𝑙). Then, 

𝜌𝑖
𝑛  𝜏𝑖 (𝑐𝑗

𝑡 ,𝜏𝑗 )

𝜌𝑖
𝑛  𝜏𝑖 (𝑐𝑗

𝑡−1 ,𝜏𝑗 )
=

𝜔𝑛 (𝑃𝑡≥𝑃𝑙  for  all  𝑙)

𝜔𝑛 (𝑃𝑡−1≥𝑃𝑙  for  all  𝑙)
                    (3) 

Hence, in order to prove (1), we must show that 

lim
𝑛→∞

𝜔𝑛(𝑃𝑡 ≥ 𝑃𝑙  for all 𝑙)

𝜔𝑛(𝑃𝑡−1 ≥ 𝑃𝑙  for all 𝑙)
= 0 

for all 𝑡 ϵ {2, … , 𝑚},. We distinguish two cases. 

Case 1. First we consider the case where 𝑡 = 2. Then we 

have, 

𝜔𝑛(𝑃𝑡 ≥ 𝑃𝑙  for all 𝑙)

𝜔𝑛(𝑃𝑡−1 ≥ 𝑃𝑙  for all 𝑙)
≤

𝜔𝑛(𝑃2 ≥ 𝑃1)

𝜔𝑛(𝑃1 ≥ 𝑃2 ≥ 𝑃3 ≥ ⋯ ≥ 𝑃𝑚)
 

Recall that 𝐻 𝑃1 > 𝐻 𝑃2 > ⋯ > 𝐻(𝑃𝑚). But then, by 

Corollary 7.3, 𝜔𝑛(𝑃2 ≥ 𝑃1) → 0 and 𝜔𝑛(𝑃1 ≥ 𝑃2 ≥ 𝑃3 ≥
⋯ ≥ 𝑃𝑚) → 1, and hence 

𝜔𝑛(𝑃2 ≥ 𝑃1)

𝜔𝑛(𝑃1 ≥ 𝑃2 ≥ 𝑃3 ≥ ⋯ ≥ 𝑃𝑚)
→ 0 , 

which implies that 

𝜔𝑛(𝑃𝑡 ≥ 𝑃𝑙  for all 𝑙)

𝜔𝑛(𝑃𝑡−1 ≥ 𝑃𝑙  for all 𝑙)
→ 0 , 

as 𝑛 → ∞. 

Case 2. Now we consider the case where 𝑡 > 2.  

Let 𝑃𝑚𝑎𝑥  be the random variable given by 𝑃𝑚𝑎𝑥 ≔
max𝑗≠𝑡 ,𝑡−1 𝑃𝑗 . We have 

𝜔𝑛(𝑃𝑡 ≥ 𝑃𝑙  for all 𝑙)

𝜔𝑛(𝑃𝑡−1 ≥ 𝑃𝑙  for all 𝑙)
 

=
𝜔𝑛 (𝑃𝑡 ≥ 𝑃𝑡−1  and 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  )

𝜔𝑛 (𝑃𝑡−1 ≥ 𝑃𝑡  and 𝑃𝑡−1 ≥ 𝑃𝑚𝑎𝑥  )
 

≤
𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  

𝜔𝑛 (𝑃𝑡−1 ≥ 𝑃𝑡  and 𝑃𝑡−1 ≥ 𝑃𝑚𝑎𝑥  )
 

≤  by Corollary 7.1  
𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  

𝜔𝑛 (𝑃𝑡−1 ≥ 𝑃𝑡 ∙ 𝜔𝑛 𝑃𝑡−1 ≥ 𝑃𝑚𝑎𝑥  )
 

=
𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  

𝜔𝑛 𝑃𝑡−1 ≥ 𝑃𝑚𝑎𝑥  
∙

1

𝜔𝑛 𝑃𝑡−1 ≥ 𝑃𝑡 
 

=
𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  

𝜔𝑛 𝑃𝑡−1 ≥ 𝑃𝑚𝑎𝑥 − (𝐻 𝑃𝑡−1 − 𝐻(𝑃𝑡)) 
∙

1

𝜔𝑛 𝑃𝑡−1 ≥ 𝑃𝑡 
 

where the last equality follows from the observation that 

𝑃𝑡−1 − 𝐻(𝑃𝑡−1) and 𝑃𝑡 − 𝐻(𝑃𝑡) have the same distribution. 

Now, from Corollary 7.3 it follows that 𝜔𝑛 𝑃𝑡−1 ≥ 𝑃𝑡 → 1 

as 𝑛 → ∞.  

We show that 

𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  

𝜔𝑛  𝑃𝑡−1 ≥ 𝑃𝑚𝑎𝑥 −  𝐻 𝑃𝑡−1 − 𝐻 𝑃𝑡    
→ 0 

as 𝑛 → ∞. 

Let us define 𝑐: 𝐻 𝑃𝑡−1 − 𝐻(𝑃𝑡). Therefore, we have to 

show that 

𝜔𝑛  𝑃𝑡≥𝑃𝑚𝑎𝑥  

𝜔𝑛  𝑃𝑡−1≥𝑃𝑚𝑎𝑥 −𝑐 
→ 0                              (4) 

as 𝑛 → ∞. Note that 𝜔𝑛(𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥 ) ≤ 𝜔𝑛(𝑃𝑡 ≥ 𝑃1). We 

first show that there exists 𝑁 ϵ ℕ such that for all 𝑛 ϵ 𝑁, 
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𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥 − 𝑐 ≥ 𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐/2         (5) 

Now, 

𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥 − 𝑐  

= 𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥 − 𝑐   𝑃𝑚𝑎𝑥 = 𝑃1 ∙ 𝜔𝑛(𝑃𝑚𝑎𝑥 = 𝑃1) 

+𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥 − 𝑐   𝑃𝑚𝑎𝑥 ≠ 𝑃1 ∙ 𝜔𝑛 𝑃𝑚𝑎𝑥 ≠ 𝑃1  

≥ 𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥 − 𝑐 𝑃𝑚𝑎𝑥 = 𝑃1 ∙ 𝜔𝑛(𝑃𝑚𝑎𝑥 = 𝑃1) 

= 𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐 ∙ 𝜔𝑛(𝑃𝑚𝑎𝑥 = 𝑃1) 

Therefore, to show (5) it is sufficient to show that there exists 

𝑁 ϵ ℕ such that for all 𝑛 ≥  𝑁,  

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐 ∙ 𝜔𝑛(𝑃𝑚𝑎𝑥 = 𝑃1) ≥ 𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐/2  
(6) 

Using Corollary 7.3, 𝜔𝑛(𝑃𝑚𝑎𝑥 = 𝑃1) → 1 as 𝑛 → ∞. We 

have, 

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐/2 

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐 
 

=
𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ −𝑐/2 − (𝐻 𝑃𝑡 − 𝐻 𝑃1 )) 

𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ −𝑐 − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ))
 

Note that 𝜔𝑛((𝑃𝑡 − 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 )) has a normal 

distribution with mean 0 and where the variance of 𝜔𝑛(𝑃𝑡 −
𝑃1) tends to 0 as 𝑛 → ∞. Moreover, −𝑐 − (𝐻 𝑃𝑡 −
𝐻 𝑃1 ) > 0 as 𝐻 𝑃𝑡 − 𝐻 𝑃1 < 𝐻 𝑃𝑡 − 𝐻 𝑃𝑡−1 = −𝑐. 

Hence, using Corollary 7.5, 

𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ −𝑐/2 − (𝐻 𝑃𝑡 − 𝐻 𝑃1 )) 

𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ −𝑐 − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ))
 

→ 0 

as 𝑛 → ∞.  Then, we have, 

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐/2 

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐 
→ 0 

Therefore, there exists 𝑁 ϵ ℕ such that for all 𝑛 ≥  𝑁, 

𝜔𝑛(𝑃𝑚𝑎𝑥 = 𝑃1) ≥  
𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐/2 

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐 
 

This proves (6), which as we have shown, implies (5). Now, 

by (5) we have 

𝜔𝑛 𝑃𝑡 ≥ 𝑃𝑚𝑎𝑥  

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐 
 

≤
𝜔𝑛 𝑃𝑡 ≥ 𝑃1 

𝜔𝑛 𝑃𝑡 ≥ 𝑃1 − 𝑐/2 
 

=
𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ −(𝐻 𝑃𝑡 − 𝐻 𝑃1 )) 

𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ −𝑐/2 − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ))
 

=
𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ (𝐻 𝑃𝑡 − 𝐻 𝑃1 )) 

𝜔𝑛((𝑃𝑡 ≥ 𝑃1) − (𝐻 𝑃𝑡 − 𝐻 𝑃1 ) ≥ (𝐻 𝑃𝑡 − 𝐻 𝑃1 ))
 

→ 0 

as 𝑛 goes to infinity. Here the convergence follows from 

Corollary 7.5 as (𝐻 𝑃1 − 𝐻 𝑃𝑡 ) ≥ −𝑐/2. Therefore, we 

have shown (4), which completes case 2. Hence, we have 

shown that (1) holds for all 𝑡. Therefore, lim
𝑛→∞

𝛼 = 0 and hence 

the proof is complete. 
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