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ABSTRACT
Troesch’s problem arose while the investigation of the confinement
of a plasma column by applying radiation pressure was being con-
ducted. It is an unstable problem in itself, with a two-point bound-
ary value. The application of the Optimal Homotopy Asymptotic
Method (OHAM) is used to attain an approximate solution for the
nonlinear differential equation which provides and apt description
of Troesch’s problem. Opposing the other reported results, through
the variational iteration method, Laplace Transform Decomposition
Method, Homotopy Analysis Method, and the Homotopy Perturba-
tion Method, the accuracy of the current solution is commendable
for a remarkably wide range of values of Troesch’s parameter. A
conducted error analysis clearly admits the efficiency of OHAM.
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1. INTRODUCTION
The Troesch’s problem is innately unstable; a detailed exposition
may be observed in the Weibel’s book [1]. It originates from a sys-
tem of non-linear ordinary differential equations being used in the
study of a plasma column confinement by applying radiation pres-
sure and via the gas porous electrodes theory [2,3]. The following
equation governs Troesch problem.

u
′′
= λ sinh(λu) (1)

with boundary conditions u(0) = 0 and u(1) = 1. Because
of its substantial value in many fields, researchers have paid it
much attention by investigating it at length, e.g., a numerical
solution derived using the Monte Carlo method [4], Shooting
Method SM [5], the quasi-linearization technique [6, 7], a method
involving invariant embedding [8], inverse SM [9], Method of
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Adomian Decomposition [10], regular SM amalgamated with the
technique of parameter mapping, overflow trap or the modified
method of Newton’s [11, 12], the Laplace transform with a mod-
ified decomposition technique [13], the hybrid asymptotic Finite
Element Method [14], Variational Iteration Method VIM [15],
Homotopy Perturbation Method [16] and Differential Transformed
method [17]. Additionally, multiple recent international published
articles in which The Troesch’s Problem is addressed can be seen
in many places [18–20].

In the following paper, a numerical treatment for the Troesch’s
problem is introduced that makes use of the OHAM, which is a
brainchild of Marinca and Herisanu [21]. Several studies [22–29]
have resulted in revelation positive facts about this method and
attained solutions of important applications in the fields of engi-
neering and science. Instead of a infinite series of infinite terms
like other methods, the OHAM searches only for only a few terms,
hardly two to three. The convergence ensuring method for OHAM
is special, not to mention more rigorous. OHAM makes sure that
a relatively rapid convergence takes place since it requires only
two or three iterations to reach an accurate result. This is where
the true power of the method lies. OHAM, unlike its peers, does
not require a recurrence formula; it is an iterative technique that
mostly converges to the exact solution after two or three iterations
only. These iterations are conducted by simply identifying some
coefficients. OHAM neither needs high-order approximations, nor
does it have to use the rules established in the frame of homotopy
analysis method; it is a method self-sustained that asks almost
none of the “open questions” that other homotopy procedures ask.

In this paper, we express the concept of OHAM tenderers a
reasonable and dependable solution to reach the solution of
Troesch’s problem. We offer numerical example with different
values of λ to show how efficient and accurate OHAM proves to
be. Optimal homotopy asymptotic method points out its reliability
and its potential for the solution of the aforementioned problem.
This paper’s organization has been listed. In the second section, for
the sake of completeness, we review the basic idea behind OHAM
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Table 1. Calculated values of the constants ti of Troesch problem for λ = 0.5 and
1

λ t1 t2 t3

0.5 -0.993234657663817000 -0.000905419731585015 0.000872001403291403
1 -0.953708996835200000 -0.009626585468833410 0.007761888913008840

briefly. In the next section, which is Section 3, we put forward a
variety of numerical results which verify that our new procedure
allows for quality calculations, such that are comparable to those
obtainable by high-tech techniques, where these are applicable
while also enabling evaluations for Troesch parameter that lie well
beyond those that can be treated with the current techniques. A
conclusive summary is presented in Section 4.

2. BASIC PRINCIPLES OF OPTIMAL HOMOTOPY
ASYMPTOTIC METHOD

Here we put forward the basic ideas of OHAM for solving the non-
linear differential equation, which consists of the form

L
(
u(ζ)

)
+M(ζ) +N

(
u(ζ)

)
= 0; P

(
u,
du

dζ

)
= 0 (2)

Where L is a linear operator, u(ζ) is unknown function and M(ζ)
is known function, N is an non-linear operator and P is boundary
operator.

(1−q)[L(u(ζ, q))+M(ζ)] = H(q)[L(u(ζ, q))+M(ζ)+N(u(ζ, q))]
(3)

and

P
(
u,
du

dζ

)
= 0

where q ∈ [0, 1] is an embedding parameter, H(q) is a non-zero
auxiliary function for q 6= 0 and H(0) = 0, u(ζ, q) is an unknown
function. As q increases from zero to one, the solution u(ζ, q) fluc-
tuates from u◦(ζ) to the solution u(ζ), where u◦(ζ) is attained from
Eq.(3) for q = 0

L(u◦(ζ)) +M(ζ) = 0; P
(
u◦,

du◦
dζ

)
= 0 (4)

we choose the auxiliary function H(q) in the form H(q) =∑
i=1

tiq
i, where ti are constants. Consider the solution of Eq.(3) in

the form

u(ζ; q, ti) = u◦(ζ) +
∑
k≥1

uk(ζ, ti)q
k; i = 1, 2, 3, ... (5)

Substituting Eq.(5) in Eq.(3) and equating the coefficients of the
same powers of q, we attain the governing equations of u◦(ζ) and
uk(ζ). Expanding N(u(ζ; q, ti)) in series with respect to the pa-
rameter q ;

N(u(ζ; q, ti)) = N◦(u◦(ζ)) +
∑
k≥1

Nm(u◦, u1, ..., um)qm (6)

where i = 1, 2, 3, ... and u(ζ; q, ti) is given by Eq.(5). It should be
strongly noted that uk for k ≥ 0 are governed by linear Eq.(4) with

the linear boundary conditions that come from the original prob-
lem, which can be solved without difficulty. The convergence of the
series of Eq.(5) depends upon the auxiliary constants t1, t2, t3, .....
If it is convergent at q = 1, one has

u(ζ, ti) = u◦(ζ)) +
∑
k=1

uk(ζ, ti) (7)

Generally speaking, the solution of Eq.(1) can be determined ap-
proximately in the form

um(ζ, ti) = u◦(ζ)) +

m∑
k=1

uk(ζ, ti); i = 1, 2, 3, ..,m (8)

Substituting Eq.(8) into Eq.(2), we get the following residual

R(ζ, ti) = L(um(ζ, ti)) +M(ζ) +N(um(ζ, ti)) (9)

Where i = 1, 2, 3, ..,m. If R(ζ, ti) = 0 then um(ζ, ti) is likely
to be the exact solution. Usually, such case will not arise for non-
linear problems, but we can minimize the following functional by
least square or Galerkin Method and find values of t1, t2, t3, ..., tm

K(ti) =

∫ b

a

R2(ζ, ti)dζ (10)

where a and b are two values, depending on the given problem. The
unknown constants t1, t2, t3, ..., tm can be optimally recognized
from the conditions

∂K

∂t1
=
∂K

∂t2
= .... =

∂K

∂tm
= 0 (11)

Through these known constants, the approximate solution (of order
m) in Eq.(8) is well determined.

3. APPLICATION OF OPTIMAL HOMOTOPY
ASYMPTOTIC METHOD ON TROESCH’S
PROBLEM

From Eq.(1), we separate linear and non-linear part as L[u] = u
′′

and N [u] = λ sinh(λu)
Now, formulation of homotopy with the help of Eq.(3) gives

(1− q)L[u]−H(ζ, q)
[
L[u]−N [u] +M(ζ)

]
= 0 (12)

We select an auxiliary function in the form

H(ζ, q) = t1q + (t2 + t3ζ)q
2 (13)

where q is an embedding parameter and t1, t2, t3 are constants
which have to be calculated later. Now, zeroth, first and second
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Table 2. Comparison of OHAM with exact solution and other reported approximate solutions for λ = 0.5

ζ Exact This ADM V IM MHPM HPM HAM LDTM

Work [12] [31] [18] [19] [30] [13]

0.1 0.095944 0.095944 0.095938 0.100042 0.095940 0.095948 0.095945 0.095944
0.2 0.192129 0.192129 0.192118 0.200334 0.192119 0.192136 0.192129 0.192129
0.3 0.288794 0.288794 0.288780 0.301128 0.288781 0.288804 0.288795 0.288794
0.4 0.386185 0.386185 0.386169 0.402677 0.386168 0.386197 0.386186 0.386185
0.5 0.484547 0.484547 0.484530 0.505241 0.484527 0.484560 0.484549 0.484547
0.6 0.584133 0.584133 0.584117 0.609082 0.584113 0.584146 0.584135 0.584133
0.7 0.685201 0.685201 0.685187 0.714470 0.685182 0.685212 0.685203 0.685201
0.8 0.788017 0.788017 0.788006 0.821682 0.788002 0.788025 0.788018 0.788017
0.9 0.892854 0.892854 0.892848 0.931008 0.892846 0.892859 0.892855 0.892854

AARE 1.4× 10−9 1.2× 10−5 4.2× 10−2 1.4× 10−5 9.1× 10−6 1.1× 10−6 1.5× 10−8

order problems have been attained by using last two equations and
by equating the identical power of q,

q◦ : u
′′
◦(ζ) = 0

q1 : λt1 sin(λu◦(ζ))− u
′′
◦(ζ)− t1u

′′
◦(ζ) + u

′′
1(ζ) = 0

q2 : λt2 sin(λu◦(ζ)) + λt3ζ sinh(λu◦(ζ)) + λ2t1 cosh(λu◦(ζ))×

u1(ζ)− t2u
′′
◦(ζ)− t3ζu

′′
◦(ζ)− u

′′
1(ζ)− t1u

′′
1(ζ) + u

′′
2(ζ)

From the above equations, these values of u◦(ζ), u1(ζ) and u2(ζ)
can be obtained as a solution of differential equations

u◦(ζ) = ζ

u1(ζ) =
t1
λ
(ζ sinhλ− sinh(λζ))

u2(ζ) =
1

8λ2

[
(8ζ cosh(λ)[−2t3 + λt21 sinh(λ)] + 8 cosh(λζ)

[2t3 − λt21ζ sinh(λ)] + 8(2t3(ζ − 1) + λ(t1 + t21 + t2+

t3)ζ sinh(λ))− 8[λ(t1 + t21 + t2 + t3ζ)− 2t21 sinh(λ)]

sinh(λζ) + t21(−16ζ sinh
2(λ)− λζ sinh(2λ)+

λ sinh(2λζ)
]

(14)

Thus, the approximate solution, as described in Eq.(8), is

u(ζ) =
1

8λ2

[
(8ζ cosh(λ)[−2t3 + λt21 sinh(λ)] + 8 cosh(λζ)[2t3−

λt21ζ sinh(λ)] + 8(2t3(ζ − 1) + λ2ζ + λ(2t1 + t21 + t2+

t3)ζ sinh(λ))− 8[λ(2t1 + t21 + t2 + t3ζ)− 2t21 sinh(λ)]

sinh(λζ) + t21(−16ζ sinh
2(λ)− λζ sinh(2λ)+

λ sinh(2λζ)
]

(15)

To obtain the unknown convergent constants t1, t2, t3, “Minimize”
command in Mathematica 9.0 has been used and obtain the
following values (see Table 1).

In Tables 2 and 3, the numerical solution obtained by the
Optimal homotopy Asymptotic method is compared with the exact

solution and with the numerical solution obtained by different
numerical schemes such as Adomain decomposition method [12],
Laplace transform decomposition method [13], Modified homo-
topy perturbation method [18] homotopy perturbation method [19],
homotopy analysis method [30], Variational iteration method [31]
and for the case λ = 0.5 and λ = 1.0 respectively.

As opposed to other available solutions attained by using the
homotopy perturbation method, Homotopy analysis method,
Adomain decomposition method, Modified homotopy perturbation
method, Variational Iteration method and Laplace transform
decomposition method, the proposed solution exhibits the highest
degree of precision in the results for a remarkable wide range of
values of Troesch’s parameter λ [see Tables 2 and 3].

4. CONCLUDING REMARKS
In this paper, we derived an approximate solution for Troesch’s
problem by Optimal Homotopy Asymptotic Method. Besides that,
we sketched a comparison between the proposed solution, numer-
ical solution, and other approximations reported in the literature.
The numerical results show that the proposed solution remains the
most accurate one. In conclusion, the Optimal Homotopy Asymp-
totic Method is a powerful and efficient technique for the purpose
of finding the approximate solutions for the Troesch’s problem us-
ing a limited number of terms.
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