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ABSTRACT 

In this work the dynamic behavior of a geodesic dome in 

aluminum alloy is analyzed through numerical models 

obtained by the Finite Element Method and tests carried out in 

the laboratory. It was noted that the numerical and 

experimental results have large differences. Dynamic tests 

were performed using impulse excitation (impact hammer) 

and sweep frequency through harmonic excitation (mini-

shaker) to identify the natural frequencies of the structure. 

Using the Theory of Fourier and Wavelet Transform, it was 

possible to visualize different dynamic behavior of joints. 

Possible causes for the differences involve the type of joint, 

the fixing of the elements in the joints, the profile adopted for 

the elements and boundary conditions for the numerical 

model. 
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1. INTRODUCTION 
Engineers and architects have always a special interest in 

structures that were able to cover large spans without 

intermediate columns. In this context, it appears a structure 

known as a geodesic dome. Following the curved shape of a 

dome, but constructed from bars, the geodesic dome is a 

lightweight structure compared with other types. The geodesic 

domes are structures with a resistance/weight ratio much 

greater than other types of structure, Ramaswamy (2002) [1]. 

Currently the use of geodesic domes is associated with large 

buildings. According to Bysiec (2013) [2] the geodesic domes 

can be assembled to cover spans over than 300 m without 

intermediate columns.  

The first Geodesic Dome built in history was in Germany in a 

city named as Jena (Germany) in 1922 . It was a planetary 

built by Walter Buersfeld for Zeiss industry according 

Makowski (1981) [3]. However, it is impossible speak on 

geodesic domes without speak on Fuller. Robert Buckminster 

Fuller was the bigger sponsor of Geodesic Domes, Kubic 

(2009)[4]. In his book Synergetics, Explorations in the 

Geometry of Thinking (1975) [5] wrote about safe energy and 

develop a world that consume less energy. In this context, he 

wrote about geodesic domes because it uses less raw material. 

Fuller classified Geodesic Dome as a special type of 

Tensegrity Structures, what he considered a bigger group of 

structures. The name Tensegrity is the contraction between 

two words “Tensional” and “Integrity”. Moreover, Fuller 

wrote that this kind of structures is continuous different from 

other structures what he classified how discontinuous. This 

means that this kind of structure absorb the tension better than 

other structures. The design of geodesics domes are based on 

Platonics solids and they are formed by multiple triangles. 

Kenner (1976) [6] and Clinton (1965) [7] demonstrated the 

math to find the coordinates of the nodes that will generate the 

geodesic dome. They also classified the geodesic domes 

according to method is used to find the coordinates.  

The oil industry has used geodesic dome to cover storage 

tanks because geodesic domes has helped to avoid 

evaporation from the storage product and rain water 

contamination. This happens when geodesic domes are used 

together with the internal floating roof. The geodesic dome do 

not need intermediate columns to cover the tank so it allows 

an increase in efficiency of the internal floating roof. For 

more details, see Rossot (2014) [8] and Giacomitti et al. 

(2015) [9].   

In this work a physical model based on a real structure was 

built. The physical model was submitted to dynamic tests. The 

Frequency Response Function (FRF) and the Wavelet 

transform were used to investigate dynamic behavior of the 

joints. 

2. PHYSICAL MODEL DESIGN 
The physical model was based in a real structure used to cover 

a gasoline tank with 24 m diameter. The geodesic dome used 

to cover the gasoline tank is illustrated in Fig. 1. Details about 

the design as, cross section of the bars, size and coordinates of 

the nodes, are according Rossot (2014) [8]. In Fig. 2 is shown 

the pieces that were used to set the physical model. In Fig. 3a 

is illustrated the physical model already built.  Figure 3b 

shows a detail of a node. Since the aim of this paper is to 

study the structure of the geodesic dome and the panels used 

to cover the real geodesic dome are very thin, they was not 

erected on the physical model. 

 

Fig 1: Geodesic dome used to cover a tank with 24 m 

diameter. 

The structure is composed of 51 beams and 130 joints, Fig. 4. 

The beams (L profile) were divided into 15 types (B1 to B15) 

varying according to the length, Table 1. Note that the 

structure pattern is repeatable at every 72 ° and the bars were 

considered fixed in the dome border as show the Fig. 5, (see 

green dots). 
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Fig 2: Demonstration of the scale of the model. 

 

(a) 

 

(b) 

Fig 3: Real model finished. 

 

Fig 4: Representation of the beams in the structure. 

 

Fig 5: Model symmetry. 

Table 1. Size and number of beams in the structure. 

Beam Length (mm) Quantity 

B1 227.93 5 

B2 377.80 10 

B3 290.75 15 

B4 281.14 10 

B5 349.40 10 

B6 246.44 10 

B7 253.51 5 

B8 267.58 5 

B9 281.40 10 

B10 272.90 10 

B11 264.30 10 

B12 275.58 5 

B13 296.19 5 

B14 418,80 10 

B15 450.82 10 

 

3. DYNAMIC TESTS AND RESULTS 
Dynamic test were performed in the laboratory to obtain the 

modal parameters. The first dynamic tests were carried out 

using an impact hammer for the system excitation and 

vibratory data were obtained from six accelerometers placed 

on the structure, Fig. 6. The specification of the impact 
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hammer and accelerometers are shown in Table 2. 

 

Fig 6: Impulsive test using impact hammer. 

Table 2: Transducers. 

Item Description Model Sensibility 

1 Impact hummer 086C03-PCB 2.13 mV/N 

2 Accelometer 333B-PCB 107.9 mV/g 

3 Accelometer 333B-PCB 109.2 mV/g 

4 Accelometer 333B-PCB 111.8 mV/g 

5 Accelometer 333B-PCB 111.5 mV/g 

6 Accelometer 333B-PCB 101.1 mV/g 

7 Accelometer 333B-PCB 109.9 mV/g 

The main idea this paper is to identify union joints with 

inadequate structural behavior. The FRF is obtained by 

correlation between the signal measured by the accelerometer 

and the impulse signal provided by the impact hammer. The 

FRFs are obtained as follows: an impulsive force is applied  in 

the point P1 and the accelerations are evaluated at the points 

A1, A2, A3, A4, A4 and A6, Fig 7. This force is applied 4 

times at the same point in order to evaluate the average 

behavior in accelerometers, Fig. 8 and 9. This procedure is 

repeated 4 times with the application of impulsive forces at 

the points P2 to P5. Then, the accelerometers are moved to the 

positions A1, B2, B3, B4, B5 and B6 and repeats the 

measurement procedure. The last 6 FRFs are obtained with 

accelerometers in the positions A1, C2, C3, C4, C5 and C6. 

Thus, are obtained 18 FRFs. From these signals, a normalized 

signal is obtained  as a function of excitation force. The 

normalized signal called IFRFs is the inverse of FRFs 

(Newland, 1996) [10]. The wavelet transform is applied to the 

signals of IFRF. The purpose of this operation is locate 

regions of concentration of energy that are related to system 

resonance frequencies. Through a scan of the signals 

measured at joints it is possible to identify dynamic behaviors 

which are not identified in the computational results.   

This parameter is the most used for modal identification of 

structures. Through the analysis of the curves it is possible to 

identify energy concentration regions associated with the 

natural frequencies of the system. In a further analysis, the 

inverse of the FRF signals were converted for the time domain 

to the use of wavelet theory. The goal was to identify energy 

concentration regions using vibration signals at the joints. 

Figure 10 shows the FRF curve of one accelerometer and Fig. 

11 the correspondent IFRF four curves (512 points each) of 

the signal starting with the maximum amplitudes of the four 

regions shown in Fig. 9. It can be noted in Fig. 10 that there is 

a region of energy concentration near to frequency band of 30 

Hz. This frequency of resonance is not present in the 

numerical results, where the first natural frequency is around 

190 Hz, Table 3. The numerical analysis was performed using 

the Finite Element Method (FEM). In this work, the FEM was 

applied through the software Abacus CAE version 6.14-2 and 

the geodesic dome was modeled using 3D deformable 

elements. 

 

Fig. 7: Acelerometer position. 

Fig 8: Impulsive force. 

 

Fig 9: Acceleration signal. 

 

Fig 10: FRF curve. 
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Fig 11: IFRF curve. 

Table 3: Ressonance Frequencies.  

Mode 

Number 

Frequency 

[Hz] 

Mode 

Number 

Frequency 

[Hz] 

1 186,01 17 220,44 

2 186,52 18 221,06 

3 187,82 19 222,21 

4 193,77 20 223,67 

5 193,78 21 225,98 

6 193,88 22 227,57 

7 197,18 23 228,81 

8 197,93 24 229,99 

9 202,82 25 230,08 

10 205,00 26 235,79 

11 205,66 27 239,69 

12 206,75 28 241,23 

13 210,98 29 243,57 

14 213,92 30 245,12 

15 216,61 31 248,00 

16 218,11 32 252,74 

The wavelet transform allows the signal decomposition as a 

function of time (by translation) and in scale (by dilation or 

contraction) instead analysis in time and frequency domain as 

in the case of Fourier Transforms. The time-scale analysis 

enables detail locally, the information on a sign. Moreover, do 

not require for the representation of a function, a large amount 

of coefficients, as is the case of the Fourier Transform. A 

detailed description of the wavelet transform can be found at 

Daubechies (1999) [11],  Rucka and Wilde (2006) [12] and 

Lima et al., (2015) [13]. Qin et al., 2015[14]:  

The Continuous Wavelet Transform (CWT) is defined as 

follows: 

( t)dtf( t)ψ=b)C(a,
+

ba,




       

 (1) 

where 

)
a

bt
ψ (a=(t)ψ ba,

2/1         (2) 

a,b(t) is a window function called the mother wavelet, where  

a is a scale and b is a translation. An energy index based on 

(2) was used to analyze de dynamic behavior of the joints. In 

this case, the analyzed signal was the inverse of the FRF. 

Figure 12 shows two different curves of energy for two 

different joints (symmetrical in the model). The lines black 

and blue represent de Energy index for two signals. 

 

(a) 

 

(b) 

Fig. 11: Energy curves of two different joints using 

wavelet transform. 

It is evident from the figures that there are large differences in 

signal behavior in the joints. These energy concentration 

regions are related to different resonance frequencies of the 

system. 

4. CONCLUSIONS 
Dynamic tests using force impulsive was performed. The 

signals obtained from accelerometers and impedance hummer 

were handled in Matlab to obtain the curves of Function 

Frequency Response. All curves were evidenced energy 

concentration regions to low frequencies: 100 Hz, which 

corresponds to a value of 10 on the scale of the Fig 11a and 25 

Hz, which corresponds to a value of 30 on the scale of the Fig 

11b. These frequencies were not contained in the numerical 

results (see Table 3). 

Several factors may have influenced this difference in 

numeric and experimental values of the natural frequencies. 

These factors may be related to the way of fixing elements 

(circular piece and screws that may have gaps); the type of 

element used (L beam) that for fixing it was necessary to 

decrease the contact area; the properties of the material 

(aluminum alloy); the boundary conditions used in the 

numerical model (the elements of the ends are fixed on a 

circular structure that was not considered in the numerical 

model). 
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