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ABSTRACT
In asymetric cryptography, Elliptic Curve Cryptography (ECC) is
the fastest in term of computation and the strongest in term of se-
curity. It can be used in message encryption/decryption, digital sig-
nature or key exchange. ECC can be implemented in hard over bi-
nary field GF (2n) or in soft over prime field GF (p). This paper
presents an efficient software implementation of ECC scalar mul-
tiplication over prime field using GNU Multiple Precision (GMP)
Library. The differential fault attacks (DFA) on the RSA cryptosys-
tem can be extended to ECC one by inserting bit errors during com-
putation. In this paper, a ”No Correctness Check for Input Points”
(NCCIP) attacks was applied and a countermeasures was given to
protect ECC cryptosystem against it. Software implementation in C
language, using GMP library, was simulated on Intel(R) Core(TM)
i3 CPU M380 @ 2.87GHz(3 GB RAM, 32-bit architecture).
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1. INTRODUCTION
RSA is the most asymmetric scheme used in the classical proto-
col for both encryption and decryption. But the confidentiality of
the cryptosystem depends on the security of the private key. In this
way, increasing the key length can not be a solution in some cases
because systems can suffer from luck of memory. The current se-
curity trends are increasing the security mechanisms complexity
and decreasing key/operand size. For this reason, researches moved
to asymmetric scheme providing a high level of security with the
minimum key size such as Elliptic/Hyperelliptic cryptography and
Pairing computation based on algebraic curves. Protocols based on
these schemes are Elgamel encryption, and DiffieHellman (DH)
key exchange. DH key exchange is how to create a key together
without be saved, never transmitted, and never made visible any-
where, which represent an important advantages to be used. The
hardness of the algebraic curves is the hardness to solve discrete
logarithm problem (DLP); let G be a finite cyclic group, and g a
generator of G, let take x such as: x ∈ G, then find natural number
t, such as gt = x, if t exists [1].
Researches prove that modular arithmetic operations in binary
fields curves are cheaper to be implement in hardware than prime
field curves, contrarily to software implementation, fast integer
multiplication is less efficient in hard. Thus, modular arithmetic

operations should be well studied in order to find an efficient im-
plementation, authors in [2] and [3] studied arithmetic operation
over finite fields. Many software implementation was ben proposed
[4, 5, 6]. In this paper, a software implementation of scalar multipli-
cation over prime elliptic curves using GMP Library will be firstly
presented, which is a portable library written in C, with some op-
timized routines written in assembly code, specialized for different
processors, more information is given in [7]. It’s suitable for integer
arithmetic using big operands size. In this work, operand dimension
limit is 232 − 1 bits on 32-bit machines. The GMP library is useful
for doing multiple precision arithmetic quickly, for this reason it
was used, because ECC is based on point addition/doubling which
require fast integer multiplication [8, 9, 10].
This paper also, focus on DFA attack in El-Gamal cryptosystem.
DFA has been successful in attacking RSA cryptosystems on smart
card [11]. One of the DFA attack, which is NCCIP, will be pre-
sented and applied . Attacks will continue to become more inno-
vative and sophisticated, so proposed cryptosystem have to be well
protected. A technique used to resist to DFAs attacks is to make the
software implementation more robust by reducing the weakness of
the software. This paper will also provide countermeasure to NC-
CIP attack, ECC cryptosystem have to check in the first way if input
points belong to the selected elliptic curve.
The present paper is organized as follows. Section 2 gives briefly
mathematical background of Elliptic Curves. Within section 3,
the scalar multiplication algorithm will be presented. Section 4
presents the software implementation of ECC using El-Gamal pro-
tocol. DFA attacks will be applied to the proposed ECC implemen-
tation in section 5. To protect the proposed software implementa-
tion, countermeasure have to be applied, that will be presented in
section 6, then practical remarks will be given. Finally, a conclusion
will be given in section 7.

2. ELLIPTIC CURVES MATHEMATICAL
BACKGROUND

In this section, Elliptic Curves over finite prime field Fp will be
briefly introduced and the formula of point addition and point dou-
bling will be given. An Elliptic Curve has the general following
form:

E(Fq) = (x, y) ∈ Fq × Fq

such as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ∪O
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2.1 Elliptic Curves Over Finite Prime Field Fp

Let’s take an odd prime number p and a finite prime field Fp which
contains p elements. Each odd prime number p have only one finite
prime field Fp, however, the field elements representation can vary
[8]. If a, b ∈ Fp and 4a3+27b2 6= 0(modp) then the elliptic curve
over Fp have the following set of points [12]:

E(Fp) = (x, y) ∈ F2
p|y2 = x3 + ax+ b(modp)

4a3 + 27b2 6= 0(modp) ∧ a, b, y, x ∈ Fp ∪ O

where O is the point at infinity.

The number of elements #E(Fp), inE(Fp) is equal to the number
of points of elliptic curve over Fp. According to the Hasse Theorem
#E(Fp) belongs to the interval [8]:

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p,

The number of elements #E(Fp) in E(Fp) is called the order of
group.

2.2 Addition and Doubling Operation in E(Fp)
In this section, the algebraic formula of point addition and point
doubling will be presented.
Let P1 = (x1, y1) , P2 = (x2, y2) ∈ E(Fp)

(1) P1 + P2 = (x1, y1) + (x2, y2) = (x2, y2) + (x1, y1) =
(x3, y3) = P3

• x3 = λ2 − x1− x2(modp)
• y3 = λ(x1 − x3)− y1(modp)
• λ = ( y2−y1

x2−x1
(modp)

Fig. 1. EC point Addition and Doubling

(2) 2× P1 = (x1, y1) + (x1, y1) = P4

• x4 = λ2
2 − 2x1(modp)

• y4 = λ2(x1 − x4)− y1(modp)
• λ2 =

3x2
1+a

2y1
(modp)

As it’s mentioned in Figure 1, to add 2 distinct points, p1 and p2,
the straight line defined by these points should be drawn, its inter-
section with the curve E gives the point p3, then the negation of this
point is the result of point addition which is p4. For point doubling,

the tangent to the curve E, at q gives the point q1, its negation q2 is
the final result.

3. MONTGOMERY SCALAR MULTIPLICATION
Montgomery [13] have well studied the scalar multiplication and
gave an important approach. Let’s G a cyclic subgroup of E(K) of
prime order n generated by a point P.

G =< P >= O,P, [2]P, ..., [n− 1]P ⊆ E(K)

Let’s k ∈ Z, and P,Q ∈ G so :

Q = [k]P = P + P + . . .+ P︸ ︷︷ ︸
k times

Algorithm 1 give the Montgomery Add and Double method which
was developed for fast scalar multiplication on EC:

Algorithm 1 : Montgomery Double and Add algorithm over Fp

Input: P (x, y) ∈ E(Fp), k >= 1
Output: Q = kP
Set S0 = 0;S1 = P
if k > 0 then

if k = 1(mod2) then
S0 = S0 + S1

S1 = 2S1

k = k/2
end if

end if
return (Q = S1 = kP )

Figure 2 presents ECC hierarchy, thus, scalar multiplication is
based in two main operations: point addition and point doubling.
These operations need arithmetic operations (multiplication, addi-
tion and squaring). An optimized implementation is based on an
optimized arithmetic operations modules.

Fig. 2. Elliptic Curve Hierarchy

It is possible to calculate Q=[k]P, but it’s difficult to find k knowing
the points P and Q. The security of ECC cryptosystems is based on
the difficulty to solve this problem called Elliptic Curve Discrete
Logarithm Problem (ECDLP).
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4. SOFTWARE IMPLEMENTATION OF ECC
In this section, ECC software implementation design and its sim-
ulation using Intel(R) Core(TM) i3 CPU M380 @ 2.87GHz pro-
cessor (3 GB RAM, 32-bit architecture) will be presented. Imple-
mentation was done in C language using GNU Multiple Precision
(GMP) library which support large integers, for this reason that the
main target applications for it are cryptography applications and al-
gebra systems. The advantage for GMP increases with the operand
sizes for many operations, since GMP uses asymptotically faster
algorithms [14]. In [15], M. Welschenbach compared between the
FLINT/C and GMP functions. He find that the GMP multiplication
and division are faster by 30% and 40% than the corresponding
FLINT/C functions. He showed that the GMP library is the fastest
of the available libraries for large-integer arithmetic, Table 1 com-
pares Multiplication operation in C, and using GMP Library which
is the fastest. GMP developers prove that the GMP library achieved
a speed of a factor of two comparing with other library.
”Double and Add” method for scalar multiplication and El-Gamal
public key Encryption/Decryption Scheme based on DH was been
used. Figure 3 presents an example of key exchange using Diffie-
Hellman protocol.
Alice and Bob would like to communicate secret messages to-
gether. They should fix system parameters; they agree on an elliptic
curve E over Fq with q = pn is large (and p is prime), a group (G,
+, O) and a point P ∈ E generator of the group and of order p.
For the key generation, Alice chooses random n ∈ [1, q − 1] and
calculates Kn = n × P . Bob also chooses random s ∈ [1, q − 1]
and calculates Ks = s × P . Then Alice and Bob exchange their
keysKn andKs. Alice computesK = n×Ks, and Bob calculates
K = s×Kn. So, the shared secret key K = n× s× P .

Fig. 3. Diffie-Hellman key exchange

Then, if Alice chooses a massage m to be sent to Bob, so the mes-
sage encryption and decryption is as follow:
Encryption of a message m:

—Pick k ∈ [1, q − 1].
—Compute the points kP = (x1, y1) and kQ = (x2, y2), and
c = x2 +m.

—The ciphertext is (x1, y1, c).

Decryption:

—Compute (x′2, y
′
2) = d(x1, y1) and m = c− x′2.

Figure 4 shows the timing of El-Gamal protocol implemented in
this work, the first remark is that when the key size increase, the
necessary time for Encryption/Decryption increase slowly.
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Fig. 4. The timings of El-Gamal Encryption/Decryption

In the next section, software implementations results will be pre-
sented and discussed.

5. RESULTS AND COMPARISON
In this section implementation results will be presented and com-
pared with the state of the art software implementations. Table 2
summarize the timing of scalar multiplication of different software
implementation.
Comparing this work to those in [16] and [17] over F2163 , there is a
gain of 11.32% and 38.26% respectively. In addition, results of the
proposed software implementation over F2233 outperforms those in
[16] and [17] by a 11.87% and 30.15% respectively. Performance of
[16] and [17] decreases by about 10.92%and 27.49% respectively.
Differential Fault attack will be applied, in the next section, to the
proposed implementation in order to get the private key.

6. FAULT INJECTION ATTACKS
An Elliptic curve E is given by a nonsingular Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

The coefficients ai are in a field K and E(K) denotes the set of all
solutions (x, y) ∈ K × K, together with the point at infinity O.
Biehl et al. [18] note that when calculating a scalar multiplication,
the coefficient a6 is not used. By changing it, from the curve E,
another curve E’ is found such as:

E ′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a′6

The result of the scalar multiplication is identical. If a cryptosys-
tem receives a point P’(x’,y’) with x′, y′ ∈ K but P ′ /∈ E, then
the scalar multiplication [k]P is calculated on the curve E’ defined
above with a′6 = y′2 + a1x

′y′+ a3y
′ − x′3 − a2x′2 − a4x′ instead

of the original curve E. But the point P’ is not arbitrary chosen, it’s
chosen such that the cardinal points of E’ group has a small factor
r and such that P’ is of order r. If r is relatively small, the attacker
can solve the discrete logarithm problem in the subgroup of order
r and find kr = kmodr. Repeating the fault injection, the attacker
gets several kr for different r and, thanks to the Chinese remainder
theorem, he can find the secret key k. In particular, an attack is pos-
sible by injecting any fault on the coordinates x or y point P. With
stronger assumptions, the attacker can even find the secret k having
injected any fault on the two coordinates.
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6.1 Chinese Remainder Theorem
In this section, Chinese remainder theorem will be briefly pre-
sented.
Given a set of simultaneous congruences:

n = ni(modmi)

The problem can be stated as finding n, given its remainders of
division by several numbers m1,m2, ...,mk:

n = n1 (mod m1)
n = n2 (mod m2)
n = n3 (mod m3)

.

.

.
n = nr (mod mr)

For i = 1, ..., r , all the mi are pairwise relatively prime, the solu-
tion of the set of congruences is

x = (n1×b1× (M/(m1))+ ...+nr×br× (M/(mr)))(modM)

where:M = m1×m2× ...×mr and bi×(M/mi) = 1(modmi).

6.2 ECC attack of the proposed software
implementation

In this section, an example to apply NCCIP attack on the pro-
posed software implementation will be detailed. Let’s take an el-
liptic curve E over Fp having the following form:

y2 = x3 + a4x+ a6mod5

, with a1 = a2 = a3 = 0 and a4 6= 0.
The correspondent equation of a′6 is: a′6 = y′2 − x′3 − a4x′.
Let Alice and Bob fix a point P (0, 4) ∈ E and choose their private
keys respectively: a=2 and b=3.
Alice and Bob calculate respectively: Pa = a×P and Pb = b×P .
After exchange keys every one find that the shared key is: K =
b× Pa = a× Pb = a× b× P In this case K = (2, 1).
The NCCIP attack consists on modified the input points coordi-
nates, here only x-coordinate will be modified.

(1) P → G1 = (1, 4), when replacing x’ by 1 and y’ by 4, then
a′6 = 4, the G1 order is r1 = 3. The new curve have the
following equation:

E ′1 : y21 = x31 + x1 + 4mod5

In this case: K= (0,0).

(2) P → G2 = (2, 4), when replacing x’ by 2 and y’ by 4, then
a′6 = 1, the G2 order is r2 = 3. The new curve have the
following equation:

E ′1 : y21 = x31 + x1 + 1mod5

In this case: K= (0,0).

(3) P → G3 = (3, 4), when replacing x’ by 3 and y’ by 4, then
a′6 = 1, the G3 order is r3 = 5. The new curve have the
following equation:

E ′1 : y21 = x31 + x1 + 1mod5

In this case: K= (2,4).

(4) P → G4 = (4, 4), when replacing x’ by 4 and y’ by 4, then
a′6 = 3, the G4 order is r4 = 2. The new curve have the
following equation:

E ′1 : y21 = x31 + x1 + 3mod5

In this case: K= (1,0).

The obtained values can be used, here r1 = r2, and r2, r3 and
r4 are pairwise prime. Now, the Chinese reminder theorem will be
applied :

Kr2 = Kmodr2

Kr3 = Kmodr3

Kr4 = Kmodr4

 ⇒ (1, 0) = kmod2

(0, 0) = kmod3

(2, 4) = kmod5

 ⇒ k = (2, 1)

Finally, the key k is found which is (2,1).

7. COUNTERMEASURES
As the different cryptographic schemes, ECC implementation is
susceptible to software attacks. This section discusses the potential
countermeasures of software DFA attacks, specially NCCIP attack
where an adversary attempts to change input point coordinates. For
this reason, DFA attacks have to be taken into account, when im-
plementing ECC in software and the appropriate countermeasures
should be added. To avoid NCCIP attack in scalar multiplication,
point P must be a valid point on the curve, as it is advised in the pro-
tocols of most ECC. This software countermeasures against DFA
are applied at proposed source code, and different tests was made
to find the key k, but with a fail. Experimental results illustrate the
effectiveness of this approach on ECC software implementations.

8. CONCLUSION AND FUTURE WORK
In this work, an efficient software implementation of the scalar mul-
tiplication over prime field elliptic curves was proposed. One of the
DFA attacks (NCCIP) was been studied. Thus, without protecting
ECC software implementation there are a big risk that an adversary
steal the key. Proposed implementation was analyzed and the ap-
propriate countermeasures against DFA was applied.
A possible future work is to inject errors in the base field of ellip-
tic curve, in prime p of Fp if a big curve characteristic is used. In
addition, errors can be applied to curve parameters: a1, a2, a3 or
a4.
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Table 1. Calculation times for multiplication operation in GMP Library and C.
128 256 512 768 1024

Multiplication in C 1.5× 10−6 2.2× 10−6 4.6× 10−6 9.1× 10−6 1.4× 10−5

Multiplication in GMP 1.7× 10−7 5.5× 10−7 1.8× 10−6 3.7× 10−6 8.1× 10−6

Table 2. Timing of scalar multiplication operations in
Elliptic Curve over different Fq

Design Field Time
(ms)

This
work

F2163 3.76
F2233 7.67
F2283 11.21

[16]
F2163 4.24
F2233 8.61
F2283 12.72

[17]
F2163 6.09
F2233 10.98
F2283 15.46
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