
International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

20

Reliability Aware Task Scheduling In Wireless

Hetrogeneous Systems

Sonali T. Bodkhe
G.H. Raisoni Academy of Engineering &

Technology, Nagpur, India.
 Ph.D Scholar at SGB Amravati University

 Anjali R. Mahajan, PhD
HOD, Department of Information Technology,

Government Polytechnic
, Nagpur, India.

ABSTRACT

A distributed operating system is one that looks to its user like

an ordinary centralized operating system, but runs on

multiple, independent nodes. A distributed operating system

should:

 control resource allocation to allow their use in the

most effective way;

 provide the user with a convenient virtual computer

that serves as a high-level programming

environment;

 hide the distribution of the resources;

 provide mechanisms for protecting system resources

against access by unauthorized users.

The main purpose of this research is to explore and use the

idle resources and to share the wireless distributed system

fairly among the processes. Reliability is taken into account to

achieve the goal of scheduling. The comparison study, based

on both randomly generated graphs and the graphs of some

real applications, shows that proposed scheduling algorithm

can achieve reliable task scheduling and improves system

reliability significantly. For experimental performance study,

a real world application as well as synthetic workloads have

been considered. It can be stated that shortening scheduling

times improves performance of the system. Hence if

scheduling algorithms are applied in parallel to reduce

scheduling times, the performance of the heterogeneous

clusters will be further enhanced.

General Terms

Distributed Computing, reliable task scheduling.

Keywords

 Dynamic scheduling, heterogeneous systems, performance,
evaluation, processor utilization, reliability, schedulability.

1. INTRODUCTION
In heterogeneous cluster computing systems, processor

failures and network failures are a common occurrence and

can have a negative effect on the applications running on such

systems. If failures have to be taken into account effectively,

then a reliable scheduling algorithm needs to be employed.

However, most of the existing scheduling algorithms for

heterogeneous systems consider only common features like

scheduling length, and hence do not effectively satisfy the

reliability requirements of any task. The problem becomes

more prominent in wireless distributed systems where in spite

of consideration of various factors, reliability cannot be

assured. Therefore a WDS is proposed where some of the

parameters of a static distributed system will be considered

since scheduling itself is a NP complete problem.

Also reliable scheduling and increase in performance of

system cannot be assured at the same time. When it comes to

WDS, task scheduling with heterogeneous systems further

becomes complex since number of other parameters related to

wireless systems have to be taken into account. To present a

more realistic and precise scheduling result,

scheduling and dispatching times have also been included into

the proposed scheduling approach Heterogeneous systems are

dependable computing platforms. Many times heterogeneous

distributed computing (HDC) systems can achieve higher

performance with lesser cost than single super-systems due to

resource optimization.

However, in these systems, processors and networks are not

free from failure and thus may increase the criticality of the

running applications. To deal with such failures, a reliable

scheduling algorithm is required. Unfortunately, most

scheduling algorithms for scheduling tasks in HDC systems

do not sufficiently consider inter-dependent reliability

requirements of tasks. Fig. 1 shows a hierarchical structure of

task scheduling classifications in distributed systems.

With the use of directed acyclic graph (DAG) a reliability-

based scheduling algorithm for tasks is proposed, which can

achieve a better reliability for applications. A comparative

study using both- randomly generated graphs and the graphs

of a few real applications, it can be shown that proposed

scheduling algorithm gives a better performance over the

existing scheduling algorithms in terms of make-span,

scheduling length ratio, and reliability[1]. A hierarchical

structure of how task scheduling can be classified in

distributed systems is shown in Fig.1. At the topmost level,

local and global scheduling have been distinguished. Thus

local scheduling consists of assigning of processor time of a

single processor to multiple processes whereas global

scheduling consists of deciding where to execute a process.

Therefore local scheduling is left to the local operating system

of the processor to which the process is actually allocated.

This gives the processors (nodes) increased authority and

reduces the responsibility (resulting overhead) of the global

scheduling strategy. However it doesn’t mean that global

scheduling is the job of a single central authority, but rather

that the problems of local and global scheduling can be

considered as separate issues, and (at least logically) separate

mechanisms are required to solve each. The second level in

the hierarchy (below global scheduling) provides a choice

between static scheduling and dynamic scheduling. This

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

21

Figure 1: Hierarchical Structure Of Task Scheduling Classifications In Distributed Systems

division is based on the time of making scheduling decisions.

Each stochastic task is characterized by its deadline and its

time cost distribution, which is represented in terms of mean

and variance. Here, static scheduling means assigning of

processes to processors before compilation (compile time)

whereas dynamic scheduling includes assigning of processes

to a processor during execution (run time), and thus can be

reassigned while they are running. The other difference is that

for static scheduling, decisions are made based only on

information regarding the processes and the static system

while a dynamic scheduler also takes into account the current

state of the system [34].

Wireless Distributed Systems (WDS) are heterogeneous

computing systems consisting of a varied set of machines,

varied set of communication protocols and programming

environments. They offer a range of capabilities in terms of

architecture for different execution requirements. One of the

challenging areas in such systems is the task scheduling

problem that deals with the distribution of a set of limited

resources to different tasks to optimize certain performance

criterions, like the completion time, communication delay, etc

[7][32].

2. RELATED WORK
Heterogeneous distributed systems have become widely used

for scientific and commercial applications. They are a cluster

of normal machines, programmable digital machines, and

application oriented ICs [26]. A heterogeneous distributed

system involves a number of heterogeneous modules which

communicate with each other to solve a problem [27]. The

applications running in such systems consist of multiple

subtasks that have varied execution requirements. These

subtasks need to be ordered for execution and assigned to the

various machines in the DS in such a way that the overall

execution time is reduced [14].

Nowadays, distributed systems are also being employed in

real-time applications, where the systems depend not only on

results of computation, but also on the instant at which these

results are available. The results of missing deadlines of hard

real-time systems may be disastrous, though such

consequences for soft real-time systems are comparatively

less risky. Some of the hard real-time applications include

aircraft control, radar for tracking missiles, and medical

electronics, railway crossings, etc. On-line transaction

processing systems are soft real-time applications. When it

comes to real-time applications, reliability plays an important

role and is one of the most important issues. With growing

needs of creating reliable real-time applications along with the

added advantage of high-speed networks and high-

performance machines, wireless distributed systems are being

increasingly used for many real-time applications in which the

output of the systems depend not only on the results of a

computation but also on the time at which these results are

produced.

A systematic execution of applications in such environments

requires good scheduling strategies that take into account both

logical and architectural features to achieve a good

assignment of tasks to processors so as to maximize some

performance criterion.

Also most of the jobs executed in many real-time systems are

critical in nature and therefore high reliability becomes a

compulsory requirement of these systems, and the case is

especially true for hard real-time applications.

Scheduling plays an important role in obtaining high

reliability and performance in distributed computing.

Moreover, a task may have different execution times for

different inputs. The objective of scheduling is to map tasks

onto machines and order their execution so that task

precedence requisites are satisfied with a minimum schedule

length. Apart from this aim, dynamic scheduling also provides

high reliability for non-preemptive, a-periodic, real-time jobs

without any additional hardware cost. Here, a framework has

been developed that is useful for simulated as well as real-

time scheduling by which the jobs are scheduled dynamically,

as and when they arrive in a distributed system. In this

framework, an identified machine, called scheduler, is made

responsible for initiating tasks for execution. The proposed

methodology also takes into account the dispatching and

scheduling times in addition to reliability costs. Most

scheduling algorithms neglect these parameters when dealing

with real-time computing. This approach is used in the

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

22

simulation studies to make real-time jobs more predictable

and reliable, and the scheduling more realistic.

A lot of scheduling algorithms have been applied earlier in the

literature to support real-time scheduling. RT scheduling

algorithms are classified into two categories: static or off-line

scheduling [1][12][16][18][20][22][25] and dynamic or real

time scheduling [10][13][15][17][24][29]. Palis addressed

task-scheduling problems with the context of reservation-

based real-time systems that guarantee quality of service. The

real-time tasks considered in Palis’s scheduling framework

are preemptive tasks [17], while here it is assumed in

proposed scheduling model that real-time tasks are non-

preemptive. Various algorithms mentioned in [16][29] were

designed for independent real-time tasks. However the

algorithms like those described in [12][20][22], could not

schedule tasks with precedence constraints, whereas proposed

algorithm which represents tasks by directed acyclic graphs

(DAG) can do so. The first testing of the algorithm has been

done on non-real-time DAGs and will further be extended it

with real-time DAGs to study the real-time scheduling of

tasks [18]. However, most of the real-time scheduling

algorithms have considered homogeneous systems as the base

for implementation, making them unsuitable for use in

heterogeneous systems.

In the literature, almost all parallel jobs have been represented

by Directed Acyclic Graphs [2][7][12]. Wu et al. in his work,

proposed a runtime parallel incremental DAG scheduling

approach whereas Cosnard et al. presented a parameterized

DAG scheduling algorithm, which first extracts symbolic

linear clusters and then assigns these task clusters to various

machines [7]. In distributed computing, a typical fork-join

paradigm model [23] is used where the main program runs on

one processor and spawns a number of tasks from time-to-

time. Sahni and Vairaktarakis used this paradigm and

developed efficient heuristics to obtain reduced finish time

schedules [23]. However the scheduling algorithms here were

also designed for homogeneous systems only.

Task scheduling in wireless distributed systems with

heterogeneous machines has a number of challenges. To name

a few, load balancing resource management [8] and reliable

scheduling [3][6][31]. Scheduling with heterogeneous systems

has been referred in many papers [4][6][11][21][28][30]. It

can be found that minimizing the earlier task's completion

time further leads to a minimal start time of the next task

[14][30]. Topcuoglu et al. in his work referred two efficient as

well as low-complexity heuristics for DAGs: the

heterogeneous Earliest-Finish-Time (HEFT) algorithm and

the other one, the Critical-Path-on-a-Machine (CPOP)

algorithm [30]. Özgüner proposed a matching and scheduling

framework [9] whereas Maheswaran and Siegel designed a

real-time matching and scheduling algorithm for

heterogeneous system [14]. Beaumont worked with a static

scheduling algorithm but for heterogeneous workstations.

In order that reliability of different resources be also given

importance in a system while making scheduling decisions,

Ozguner introduced two cost functions that were included into

a matching and scheduling algorithm for tasks with

precedence constraints [6]. Unfortunately, all the scheduling

algorithms assumed that tasks are non-real-time. Hence non-

real-time scheduling algorithms are inefficient in scheduling

real-time jobs efficiently, because they are not designed to be

capable enough to meet the predictability requirement of real-

time jobs.

A lot of work has been done in real-time computing with

heterogeneous systems [8][22][24][31]. Tracy et al.

considered RT scheduling in distributed systems [31]. Huh,

Welch, Shirazi et al. designed an approach for dynamic

resource management in real-time heterogeneous systems [8].

Ranaweera and Agrawal worked on scheduling scheme to

reduce the number of pipeline stages [22]. Though the above

algorithms considered both the real-time and heterogeneous

systems issues into consideration, they did not focus on the

issue of reliability. The uncertain nature of the task execution

times and data transfer rates is also neglected by most

traditional scheduling heuristics. Here, real-time scheduling

has been proposed in heterogeneous distributed systems, to

minimize the reliability cost of the systems. The scheduling

algorithms developed in [18] were static in nature, whereas in

[this paper], the algorithms were dynamic.

Considerations for scheduling and dispatching times have

been ignored by most dynamic algorithms whether they

belong to non-real-time or real-time scheduling. To have

reliable real-time scheduling results more precise, scheduling

and dispatching times need to be incorporated in scheduling

algorithms.

In this paper, only few of the parameters have been focused

that are necessary for reliable scheduling for real-time

systems. Further development in the work will focus on

communication link failure and available processor power as

the main parameters for reliable scheduling in wireless

distributed systems. Hence, a variety of scheduling strategies

with reference to non-real-time applications have not been

discussed

3. PROPOSED SYSTEM AND R-

MODEL
Here a generalized system model for parallel applications

running on a heterogeneous distributed system is discribed.

The various parameters that affect the reliability cost in the

reliability model are also discussed in this paper. Computation

time, communication delay, etc. are also important for reliable

scheduling of real-time applications in wireless heterogeneous

systems.

A. System Model

The following figure-fig. 2 shows the scheduler model

commonly used in scheduling processes. The model is similar

to the one described in [10][11][15][28], wherein a global

scheduler works in association with a Resource Manager.

The tasks are randomly generated using a graph representation

language. A schedule queue (SQ) for arriving jobs is

maintained by the scheduler According to the dependency of

tasks in a job, Directed Acyclic Graphs are constructed.

Depending on the precedence constraints of jobs, they are

accordingly sorted. The scheduler schedules real-time tasks of

each job in SQ and places an accepted job in a dispatch queue

(DQ). Using the information conveyed through these DAGs,

the tasks are scheduled onto different processors. Thus from

the dispatch queue, tasks of each accepted job are transmitted

to designated machines, also called processing elements

(PEs), for execution. Assuming there are n tasks and m

processors an n*m matrix is generated showing the execution

costs of available tasks on the m processors.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

23

Figure 2: Basic Task Scheduling Model

The scheduler runs in parallel with processors and is not

responsible for execution of tasks. Each scheduler maintains

its own local queue (LQ) where real-time tasks are transmitted

from Dispatch Queue. If all the tasks of an incoming job can

be scheduled and completed within deadlines , then the job is

considered as acceptable else, the job is rejected.

With distributed scheduling, jobs arrive continuously at each

local scheduler and this scheduler produces schedules in

parallel with other schedulers. The centralized scheduling

scheme however has better approach as compared to

distributed scheme. The implementation of a centralized

scheduling model is simple and easier than that of a

distributed scheduling model. Reliability requires fault

tolerance which can be easily provided by the use of a backup

scheduler that executes in parallel with the main scheduler.

The backup scheduler works independently for identification

of schedulable jobs but does not dispatch them to the

processors until a failure of the primary scheduler is detected.

The disadvantage of using dedicated schedulers is that they

remain unutilized, but if when the scheduler is used as a

scheduler and processor both, then a prediction mechanism

will be required to identify the idle slot of the scheduler.

Therefore, the centralized scheduler has been used as the

scheduler model.

A real-time job is represented by a directed acyclic graph

(DAG) G = {V, E}, where V = {v1 , v2 ,...,vn } indicates a set of

real-time tasks, and E represents a set of directed edges with

weights. The weights indicate the amount of data transmitted

among real-time tasks through the edge connecting them. If eij

=(vi vj)Є E, then eij denotes a message transmitted from task vi

to vj , and |eij | is the amount of data transmitted between these

tasks.

In the proposed model, all tasks arrive from a task generator

through a general task queue (Q) and get fed into a central

processor called the system processor or the scheduler from

where they are distributed to the dispatch queues, Q1,Q2

,.....,Qm , for all of the available processors in the system for

execution, as shown in Figure 1.The wireless heterogeneous

system is represented by a set P = {p1 , p2 ,..., pm } of

machines, where p is a processor with its own memory.

Machines in the wireless distributed system communicate

with each other through message passing and are

interconnected by a high-speed network. The communication

delay between two tasks assigned to the same machine is

assumed to be zero [19][20] [30].

B. Reliability Model

The underlying model for computing reliability of WDS is
similar as the one defined in [18][19][27], that presumes that
permanent failures occur according to a Poisson probability
distribution and that the failures are mutually independent. Let
X be an m by n binary matrix corresponding to a schedule,
where n tasks of a job are assigned to m processors in the
system. The entry for element x equals 1 if and only if v has
been assigned to p j else x ij = 0.

Machine failures during an idle time, are not considered since
machine’s failure during an idle period can be overcome by
replacing the failed machine with a spare unit, in proposed
reliability model[18][27]. However power required for
computation of a task with a wireless distributed system is
required to be taken into account [9]. The reliability cost of a
task ti on pj is a product of pj 's failure rate λj and ti's execution
time on pj . Thus, the total reliability cost of an individual
machine is the summation of the reliability costs of all tasks
assigned to that machine. Given a vector of failure rates Λ=
(λ1, λ2 , …, λm), a specific schedule X, and a job J, the
reliability cost of the distributed system is defined as below,

To achieve better overall reliability, scheduling a task with
larger execution time to a more reliable machine is a better
choice. However , scheduling in WDS is a NP hard problem
and no defined solutions exist to solve it. The methods that
have been used can be divided into 2 categories: exact
algorithms and approximation algorithms. The exact
algorithms commonly use the branch and bound technique
and are applicable to small-sized problems. On the other hand,
the approximation algorithms derive sub-optimal task
allocations within reasonable times. Heuristic and Genetic
algorithms (GAs) have also been adopted for solving
problems and obtained promising results. GAs (Goldberg,
1989) belongs to a branch of computational intelligence called
metaheuristic. The other fact is that exact algorithms search
for optimal solutions and are thus computationally intensive,
while metaheuristic algorithms giving near-optimal solutions
within reasonable times are more suitable for real-time
applications [33].

 P1

P2

Pm

Dispatch

Queue(DQ)

Local Queue(LQ)

Dispatch

Queue(DQ)

Global

Scheduler

Parallel

RT jobs

Schedule

Queue(SQ)

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

24

4. EXPERIMENTS & RESULTS
It is assumed that all of these tasks are synchronous, i.e. their

first request arrives simultaneously at the time zero. The

scheduler will run in parallel with the applications processors,

scheduling the new ready tasks, from the task queue (Q), and

periodically updating the dispatch queues. This organization

ensures that the processors will always find some tasks in the

dispatch queues [33][34][35] when they finished their current

tasks. The objective of proposed work is to present a simple

heuristic scheduling algorithm which accounts for maximizing

both the reliability of the application and yielding the required

probability for each task in this application to meet its

deadline, at the same time. This algorithm exploits parallelism

in tasks whenever needed to satisfy the required objectives

and improve the previous results.[36].

A. Algorithm:

{

Till there are tasks in the queue

Send them one by one to the central processor or scheduler

Processor=1

While scheduler not empty

{

Check for each processor in the system

 While (processor load !=max && there is enough processing

power)

{

Assign task to the processor break

}

Processor = processor +1

If processor= max then processor =1

}

One processor is the master processor or scheduler. Following
are few of the parameters that were tested for reliability

a. Computation time: time required by each task to

execute on each processor.

b. Communication failure rate: the failure rate

between two processors during communication.

c. Communication delay: the time required to transfer

data between two tasks of two different processors.

d. Intertask communication on same processor is

assumed to be zero.

e. Failure rate: probability that the processor will fail.

f. Weighted matrix: amount of data transferred

between various communicating tasks.

The graph for CPU utilization is shown in fig. 3.

The task graph considered is shown in fig. 4 and values for

various parameters related to computing are as follows

Failure Rate Matrix:

0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

Figure 3: CPU utilization

Figure 4. Task graph considered for scheduling

Communication Delay Matrix:

0.000006 0.000003 0.000002

0.000002 0.000005 0.000002

0.000002 0.000003 0.000003

Computation Time Matrix :

0.000000 0.000000 0.000002

0.000002 0.000003 0.000000

0.000000 0.000000 0.000006

0.000003 0.000002 0.000002

 0.000005 0.000002 0.000002

Failure Rate Array:

0.000000 0.000000 0.000000

Weighted Matrix

-0.000 1.000 0.000 0.000 0.000

-0.000 0.000 1.000 0.000 0.000

-0.000 0.000 0.000 3.000 0.000

-0.000 0.000 0.000 0.000 6.000

-0.000 0.000 0.000 0.000 0.000

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

25

5. CONCLUSION
In this paper, a methodology has been proposed, which

maximizes the wireless distributed system reliability for the

purpose of successful execution of a task. The scheduler takes

care to schedule the tasks onto the appropriate processor so

that the task is also completed and there is no overloading of

processors. Testing is being carried out for maximizing

reliability of scheduling tasks. Once it is done, reliability of

real time tasks will also be taken care of for the wireless

distributed systems.

6. REFERENCES
[1] T. F. Abdelzaher and K.G. Shin, “Combined Task

and Message Scheduling in Distributed Real-Time

Systems,” IEEE Trans. Parallel and Distributed Systems,

Vol. 10, No. 11, Nov. 1999.

[2] I. D. Baev, W.M. Meleis, A. Eichenberger, “Lower

bounds on precedence-constrained scheduling for

parallel machines,” Proc. the 29th Int’l Conf. Parallel

Processing, pp.549-553, 2000.

[3] O. Beaumont, V. Boudet and Y. Robert, “A Realistic

Model and an Efficient Heuristic for Scheduling with

Heterogeneous Processors,” Proc. 11th Heterogeneous

Compting Workshop, 2002.

[4] O. Beaumont, A. Legrand, and Y. Robert, ENS Lyon, L.

Carter and J. Ferrante, “Bandwidth-Centric Allocation of

Independent Tasks on Heterogeneous Platforms”,

Proc. Int’l Parallel and Distributed Processing

Symp., 2002.

[5] M. Cosnard, E. Jeannot and T. Yang, “SLC: Symbolic

Scheduling for Executing Parameterized Task Graphs on

Multimachines,” Proc. 28th Int’l Conf. Parallel

Processing, Fukushima, Japan, 1999.

[6] A. Doğan, F. Özgüner, “Reliable matching and

scheduling of precedence-constrained tasks in

heterogeneous distributed computing,” Proc. Int’l Conf.

Parallel Processing, pp. 307-314, 2000.

[7] Xiao Qin , Hong Jiang , “A Dynamic and Reliability-

Driven Scheduling Algorithm for Parallel Real-time

Jobs on Heterogeneous Clusters” at Department of

Computer Science, New Mexico Institute of Mining and

Technology.

[8] E.N. Huh, L.R. Welch, B.A. Shirazi and C.D.

Cavanaugh,“Heterogeneous Resource Management for

Dynamic Real-Time Systems,” Proc. 9th Heterogeneous

Computing Workshop, pp. 287-296, 2000.

[9] M. Iverson and F. Özgüner, “Dynamic, Competitive

Scheduling of Multiple DAGs in a Distributed

Heterogeneous environment,” Proc. the 7th

Heterogeneous Computing Workshop, pp.70-78, 1998.

[10] V. Kalogeraki, P.M. Melliar-Smith, L.E. Moser,

“Dynamic scheduling for soft real-time distributed object

systems,” Proc. IEEE Int’l Symp. Object-Oriented Real-

Time Distributed Computing, pp.114-116, 2000.

[11] D. Kebbal, E.G Talbi, and J.M Geib, “Building and

scheduling parallel adaptive applications in

heterogeneous environments,” Proc. IEEE Int’l

Workshop Cluster Computing, pp.195-201, 1999.

[12] Y. K. Kwok and I. Ahmad, “FASTEST: A Practical

Low-Complexity Algorithm for Compile-Time

Assignment of Parallel Programs to Multiprocessors,”

IEEE Trans. Parallel and Distributed Systems, Vol.10,

No. 2, pp. 147-159, Feb. 1999.

[13] T. Lundqvist and P. Stenstrom, “Timing anomalies in

dynamically scheduled micromachines,” Proc. IEEE

Real-Time Systems Symp., pp.12-21, 1999.

[14] M. Maheswaran and H.J. Siegel, “A Dynamic Matching

and Scheduling Algorithm for Heterogeneous Computing

Systems,” Proc. the 7th Heterogeneous Computing

Workshop, pp.57-69, 1998.

[15] G. Manimaran and C.S.R Murthy, “An Efficient

Dynamic Scheduling Algorithm for Multimachine Real-

Time Systems,” IEEE Trans. Parallel and Distributed

System, Vol. 9, No. 3, pp. 312-315, 1998.

[16] J.C. Palencia, and H.M. Gonzalez, “Schedulability

analysis for tasks with static and dynamic offsets,” Proc.

IEEE Real-Time Systems Symp., pp.26-37, 1998.

[17] A. Palis, “Online Real-Time Job Scheduling with Rate of

Progress Guarantees," Proc. 6th Int’l Symp. Parallel

Architectures, Algorithms, and Networks, Manila,

Philippines, pp. 65-70, 2002.

[18] X. Qin, H. Jiang, C.S. Xie, and Z.F. Han, “Reliability-

driven scheduling for real-time tasks with precedence

constraints in heterogeneous distribute systems,” Proc.

Int’l Conf. Parallel and Distributed Computing and

Systems 2000.

[19] X. Qin and H. Jiang, “Dynamic, Reliability-driven

Scheduling of Parallel Real-time Jobs in Heterogeneous

Systems,” Proc. Int’l Conf.Parallel Processing, Valencia,

Spain, pp.113-122, 2001.

[20] X. Qin, H. Jiang, D. R. Swanson, "An Efficient Fault-

tolerant Scheduling Algorithm for Real-time Tasks with

Precedence Constraints in Heterogeneous Systems,"

Proc. Int’l Conf. Parallel Processing,Vancouver, Canada,

pp. 360-368, 2002.

[21] Radulescu, A.J.C van Gemund, “Fast and effective task

scheduling in heterogeneous systems,” Proc. Euromicro

Conf. Real-Time Systems, pp.229-238, 2000.

[22] S. Ranaweera, D.P. Agrawal, “Scheduling of Periodic

Time Critical Applications for Pipelined Execution on

Heterogeneous systems,” Proc. Int’l Conf. Parallel

Processing, pp. 131 –138, 2001.

[23] S. Sahni and G. Vairaktarakis, “Scheduling for

distributed computing,”Proc. IEEE Workshop Future

Trends of Distributed Computing Systems, pp. 284-289,

1997.

[24] R.M. Santos, J. Santos, and J. Orozco, “Scheduling

heterogeneous multimedia servers: different QoS for

hard, soft and non real-time clients,” Proc. Euromicro

Conf. Real-Time Systems, pp.247-253, 2000.

[25] Shirazi, H.Y. Youn, and D. Lorts, "Evaluation of Static

Scheduling Heuristics for Real-Time Multiprocessing,"

Parallel Processing Letters, Vol. 5, No. 4, pp. 599-610,

1995.

[26] G.C.Sih and E.A.Lee, “A Compile-Time Scheduling

heuristic for Interconnection-Constrained Heter-

ogeneous Machine Architectures,” IEEE Trans. Parallel

and Distributed Systems, 4(2), pp.175-187, 1993.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.8, April 2016

26

[27] S. Srinivasan, and N.K. Jha, “Safty and Reliability

Driven Task Allocation in Distributed Systems,” IEEE

Trans. Parallel and Distributed Systems, 10(3), pp. 238-

251, 1999.

[28] X.Y. Tang, S.T. Chanson, “Optimizing static job

scheduling in a network of heterogeneous computers,”

Proc. Int’l Conf. Parallel Processing, pp. 373-382, 2000.

[29] M.E. Thomadakis and Jyh-Charn Liu, “On the efficient

scheduling of non-periodic tasks in hard real-time

systems,” Proc. IEEE Real-Time Systems Symp.,

pp.148-151, 1999.

[30] H. Topcuoglu, S. Hariri and M.Y.Wu, “Task Scheduling

Algorithms for Heterogeneous Machines,” Proc.

Heterogeneous Computing Workshop, pp3-14, 1999.

[31] D. B. Tracy, Noemix, H.J. Siegel and A. Maciejewski,

“Static Mapping Heuristics for Tasks with Dependencies,

Priorities, Deadlines, and Multiple Versions in

Heterogeneous Environments,” Proc. Int’l Parallel and

Distributed Processing Symp., 2002.

[32] Ms. Sonali T. Bodkhe, Dr. Anjali R. Mahajan, “A

Proposed Methodology For Task Scheduling In Wireless

Distributed Systems.”Proc. International Conference on

Advances in Computing and Information Technology, pp

7-12,ICACIT 2014

[33] Peng-Yeng Yin *, Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te

Wang , “Task allocation for maximizing reliability of a

distributed system using hybrid particle swarm

optimization” in The Journal of Systems and

Software(2007) pages-724–735.

[34] He, Zili Shao, Bin Xiao, Qingfeng Zhuge, Edwin Sha,

“Reliability Driven Task Scheduling for Heterogeneous

Systems”.

[35] S.Sarathambekai*, K.Umamaheswari, “ Task Scheduling

in Distributed Systems using Discrete Particle Swarm

Optimization” in International Journal of Advanced

Research in Computer Science and Software

Engineering, Volume 4, Issue 2, February 2014

[36] Ehab Y. Abdel Maksoud, “Performance and Reliability-

Driven Scheduling Approach for Efficient Execution of

Parallelizable Stochastic Tasks in Heterogeneous

Computing Systems” in Int. J. Open Problems Compt.

Math., Vol. 3, No. 2, June 2010

IJCATM : www.ijcaonline.org

