
International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

18

 Study of Selected Shifting based String Matching

Algorithms

G.L. Prajapati,
PhD

Dept. of Comp.
Engg.

IET-Devi Ahilya
University, Indore

Mohd. Sharique
Dept. of Comp.

Engg.
IET-Devi Ahilya

University, Indore

Piyush Nagani
Dept. of Comp.

Engg.
IET-Devi Ahilya

University, Indore

Adarsh V.
Dept. of Comp.

Engg.
IET-Devi Ahilya

University, Indore

ABSTRACT

This paper presents detailed comparisons and analysis of

shift-based exact string matching algorithms. The paper

proposes comparison among these algorithms on the basis of

execution time taken by the algorithms to completely match a

given pattern on a given text. The algorithms have been

analyzed on the following parameters: length of pattern,

length of text, and number of characters in the text. This study

will help in selecting the appropriate algorithm to be used in

solving a particular real-life problem.

General Terms

Pattern Matching, Algorithms, Theoretical Computer Science.

Keywords

String Matching, Exact String Matching, Shifting Based,

Execution Time, Performance Analysis.

1. INTRODUCTION

Without the use of string matching algorithms, the naïve

approach [13] to exactly match two strings would be to match

character by character i.e. brute force. However, the wider

domain applications of string matching would require

matching of copious data on which brute force will not prove

to be feasible and hence require more optimal solution i.e. the

string matching algorithms. String matching algorithms aim to

find one or all occurrences of the string within a larger group

of the text. String matching is further divided into two classes

exact and approximate string matching. In exact String

matching, pattern is fully compared with the selected text

window (STW) of text string and display the starting index

position. In approximate string matching, if some portion of

the pattern matched with STW then it displays the results.

This paper focuses on exact string matching algorithms.

Further, exact string matching algorithms can be: shifting-

based [13], automaton-based [13] or bit-parallel-processing

based [13]. We will carry out the study on shifting based

string matching algorithms. In such algorithms, optimization

is based on the number of shifts performed during the

execution and the length of each shift. Various applications of

string matching are: Computational Molecular Biology [6],

Voice Recognition [7], Intrusion detection in network [8],

Object Recognition [9], Sequence/Sub-sequence and Image

Detection, Plagiarism detection [10], Information security

[11], Screen scrapers, Digital libraries, Word processors and

natural language processing [12]. We will compare a set of

eight such algorithms among themselves on the basis of the

execution time on datasets of different types and pattern of

different lengths.

2. SET OF STRING MATCHING

ALGORITHMS UNDER ANALYSIS

2.1 Brute Force Algorithm (BF)
The brute force algorithm [13] starts with matching the first

character of the pattern with that of the text, shifting one

character forward at a time for the pattern as well as the text

until the entire pattern matches or a mismatch is found. In

case of a mismatch, we shift forward ahead by one character

of text and start matching it with the first character of the

pattern. When the complete pattern matches with the text, its

starting location is returned and it continues matching with the

next character.

2.2 Knuth Morris Pratt Algorithm (KMP)

The KMP string matching algorithm [3] uses degenerating

property (pattern having same sub-patterns appearing more

than once in the pattern) of the pattern and improves the worst

case complexity to O(n). The basic idea behind KMP

algorithm is: whenever it detects a mismatch (after some

matches), it already knows some of the characters in the text

(since they matched the pattern characters prior to the

mismatch) and uses this information to avoid matching the

characters that we know will anyway match.

2.3 Raita Algorithm
At each attempt Raita algorithm [4] first compares the last

character of the pattern with the rightmost text character of the

window, if match found, it compares the first character of the

pattern with the leftmost text character of the window, again if

match found, it compares the middle character of the pattern

with the middle text character of the window. And finally if

they match it actually compares the other characters from the

second to the last but one, possibly comparing again the

middle character. In case of any mismatch found above,

pattern is shifted by the pre-computed bad character value of

the last character of last character of the current text character

window.

2.4 Skip Search Algorithm
The preprocessing phase of the Skip Search algorithm [1] pre-

processes the pattern by computing the buckets for all distinct

characters in the pattern i.e. index of those characters in the

pattern. The search phase checks what is the kth symbol in the

text string, where k+1 is the length of the pattern. According

to this symbol, align every identical symbol in the pattern and

execute matching. If match found, return its location, else

shift the pattern by pattern length.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

19

2.5 Knuth Morris Pratt Skip Search

Algorithm (KMP Skip Search)
The preprocessing phase of KMP Skip Search algorithm [1]

computes the buckets for all characters of the alphabet, list

table, MP table and KMP table.

2.6 Alpha Skip Search Algorithm(ASKIP)
Alpha skip search algorithm [1] during the preprocessing

phase first determines the length of sub-string (L) in the

pattern and then find all sub-strings in the pattern whose

length matches that of the sub-string (L). The information

about where the sub-strings are located in the pattern is stored

in a trie. In the searching phase, it uses this information to

compare the text with the pattern.

2.7 Two Way Algorithm
The Two Way algorithm [3] conceptually divides the search

into two successive phases. The first phase consists in

matching the right part of pattern against the given text, the

letters of which are scanned from left to right. When a

mismatch is found during the first phase, there is no second

phase and the pattern is shifted to the right which brings the

critical position to the right of the letter of the text that caused

the mismatch else the second phase starts. The left part of the

pattern is matched against the text where it is scanned from

right to left. If a mismatch occurs here during the scanning,

the pattern is shifted a number of places equal to the period of

pattern. The resulting coinciding prefix is memorized in order

to possibly increase the length of the next shift.

2.8 Shift-Or Algorithm
The shift-or algorithm [5] for exact string matching works by

encoding the pattern to be matched in a bit matrix whose

dimensions are the length of a 32 bit by the length of the

alphabet. We then iterate through the characters of our text

where the bitwise operations are used for pattern matching.

3. ANALYSIS

3.1 Experiment Specifications

The tests were run on 2194.922 MHz CPU (CPU family 6,

Model 61, Stepping 4) with 4389.84 BogoMIPs. Number of

CPU(s) and socket is 1 having 1 Thread(s) per core and 1

Core(s) per socket. The algorithms were tested in presence of

32K L1d cache, 32K of L1i cache,256K of L2 cache, and

3072K of L3 cache. Byte Order of CPU used is Little Endian.

The computer was running Ubuntu 12.14 LTS. All programs

were written in C programming language with gcc compiler

4.8.4 producing x86_64 “64-bit” code. Memory mapped files

were used to remove the overhead of I/O operations using

Hypervisor vendor “KVM” with “Full” virtualization type.

3.2 Analysis Specification

The types of datasets used for the analysis of algorithms were:

genome, protein, english, and some random datasets rand2,

rand4, rand8, rand16, rand32, rand64 and rand128 consist of 2,

4, 8, 16, 32, 64, 128 distinct characters respectively of varying

length(s). Analysis is carried out on the basis of pattern length

i.e. keeping the text of constant length. The pattern length has

varied from 21 to 212 and 500 instance of each pattern length

was taken into account for each and every given text. To

understand the effect of character set on pattern, analysis is

carried out by explicitly restricting number of distinct

characters used to generate the pattern. The datasets used are:

genome, protein, random2 and random4. The above process is

repeated. Some algorithms preprocess the pattern before they

start matching. To normalize preprocessing time, pattern(s)

are generated before the text generation and study is carried

out on following datasets: english, genome, protein, random2,

random4, random8, random16, random32, random64 and

random128. Here, text length has been varied from pattern

length to 217 (131072) and 500 instance have been created for

each text length whereas pattern length has been varied from

20 (1) to 2112 (2048). This analysis report is based on: the

execution time taken by algorithms on all the above

mentioned text(s) and pattern(s) working with the above

mentioned datasets. All patterns and text were generated from

same file to cover the average case i.e. Some of the pattern(s)

and text(s) matches directly while some not.

4. RESULTS AND DISCUSSIONS
This analysis report is based on: the execution time taken by

algorithms on all the above mentioned text(s) and pattern(s)

working with the above mentioned datasets.The resultant

execution time is calculated as shown in Table 2 along with its

graphical representation in Figure 1. All patterns and text were

generated from same file to cover the average case i.e. Some

of the pattern(s) and text(s) matches directly while some not.

4.1 Pattern size based
Each cell(i , j) of the table 2 shows the best algorithm as per

the execution time on ith dataset and jth pattern size.

4.2 On the basis of character set used to

generate the pattern

Table 1 shows the algorithms which performed best when

character set for pattern is explicitly defined. The columns

represent the pattern sizes (j) and the rows represent the type

of pattern(i).

Table 1: Showing the best algorithm in each category

corresponding to character set for pattern

4.3 On The Basis Of Text Length W.R.T

Pattern Length
Table 4 shows the algorithms which performed best when

pattern is fixed and text is generated from the same file of

variable length such that we have 500 instance corresponding

to each text length. The columns represent the text length and

the rows represent the pattern length.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

20

Table 2: Showing the execution time of the algorithms on English corresponding to length of pattern

Figure 1. Graph showing execution time vs text length relation corresponding to Table 2

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

21

Table 3: Showing the best algorithm in each category corresponding to length of pattern

Table 4: Showing the best algorithm in Bible (The Holy Book) corresponding to given text and pattern length

4.3.1 Information obtained from Table 5:
Each cell (i,j) of the following table shows the algorithm that

performs best on genome dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.2 Information obtained from Table 6:
Each cell (i,j) of the following table shows the algorithm that

performs best on protein dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

22

Table 5: Showing the best algorithm in Genome corresponding to given text and pattern length

Table 6: Showing the best algorithm in protein corresponding to given text and pattern length

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

23

Table 7: Showing the best algorithm in rand2 (text containing 2 characters) corresponding to given text and pattern length

4.3.3 Information obtained from Table 7:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand2 dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.4 Information obtained from Table 8:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand4 dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.5 Information obtained from Table 9:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand8 dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.6 Information obtained from Table 10:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand16 dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.7 Information obtained from Table 11:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand32 dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.8 Information obtained from Table 12:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand64 dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

4.3.9 Information obtained from Table 13:
Each cell (i,j) of the following table shows the algorithm that

performs best on rand128dataset as per execution time taken for

matching only (excluding pre-processing time). The columns

represent text length (j) and the rows represent pattern length (i).

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

24

Table 8: Showing the best algorithm in rand4 (text containing 4 characters) corresponding to text and pattern length

Table 9: Showing the best algorithm in rand8 (text containing 8 characters) corresponding to text and pattern length

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

25

Table 10: Showing the best algorithm in rand16 (text containing 16 characters) corresponding to text and pattern length

Table 11: Showing the best algorithm in rand32 (text containing 32 characters) corresponding to text and pattern length

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

26

Table 12: Showing the best algorithm in rand64 (text containing 64 characters) corresponding to text and pattern length

Table 13: Showing the best algorithm in rand128 (text containing 128 characters) corresponding to text and pattern length

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

27

5 CONCLUSIONS
It can be seen from the aforementioned analysis that for

different dataset, text size and pattern size, all algorithms

under analysis perform differently i.e. certain algorithms

perform better as compared to others. Irrespective of the

datasets under consideration, for smaller text length (fixed

pattern size), brute force algorithm outperforms other

algorithms. For sufficiently large text and pattern size (fixed

pattern size), on datasets bible, protein, rand64 and rand 128,

raita algorithm performs better and on genome, rand2, rand4,

rand8 and rand16, Alpha Skip Algorithm performs better.

Although, it should be duly noted that Alpha Skip Algorithm

has very large pre-processing time as compared to other

algorithms. However, in case of repeated use of the same on

single pattern size, its effect is nullified as pre-processing time

is required only once and search time is repeatedly required.

The appropriate algorithm can be chosen as per the desired

problem domain using the performance analysis of exact

string matching algorithms presented in thujs research paper.

6 REFERENCES
[1] C. Charas, T. Lecroq and J. D. Pehoushek. 2005. A very

fast string matching algorithm for small alphabets and

long patterns, Lecture notes in Computer Scienc, Volume

1448, pp. 55-64.

[2] J. J. McConnell, Analysis of Algorithms,Canisius

College, pp 125-128.

[3] M. Crochemore and D. Perrin, 1991, Two Way String

Matching, Journal of the Association for Computing

Machinery, Vol. 38, No 3, pp.65I-675.

[4] T. Raita, 1992, Tuning the Boyer–Moore–Horspool

String, Searching Algorithm, Software Practice and

Experience, Vol 22(10),pp 879–884.

[5] R. Baeza-Yates and G. H. Gonnet, 1992, A New

Approach To Text Searching, Communication of the

ACM,Vol.35, No.10.

[6] James Lee Holloway, 1992, Algorithms for string

matching with applications in molecular biology, Oregon

State University Corvallis, OR, USA

[7] Luqman Gbadamosi, 2013, VOICE RECOGNITION

SYSTEM USING TEMPLATE MATCHING,

International Journal of Research in Computer Science

eISSN 2249-8265 Volume 3 Issue 5 (2013) pp. 13-17.

[8] Saurabh Tiwari and Deepak Motwani, 2014, Feasible

Study on Pattern Matching Algorithms based on

Intrusion Detection Systems. International Journal of

Computer Applications 96(20):13-17.

[9] Kavita Ahuja 1, Preeti Tuli 2, 2013,Object Recognition

by Template Matching Using Correlations and Phase

Angle Method, International Journal of Advanced

Research in Computer and Communication Engineering,

Vol. 2, Issue 3.

[10] Prabhudeva S, 2008, Plagiarism Detection by using

Karp-Rabin and String Matching Algorithm Together

Sonawane Kiran Shivaji Master of Engineering,

Computer Engineering, Ahmednagar, Maharashtra,

IJCSNS International Journal of Computer Sci 314 ence

and Network Security, VOL.8 No.10.

[11] Jamuna Bhandari and Anil Kumar, 2013, International

Journal of Computer Science Engineering (IJCSE), Vol.

2 No.05 .

[12] DavidM.Magerman,1994 ,NATURAL LANGUAGE

PARSING AS STATISTICAL PATTERN

RECOGNITION, of computer science and the

committee on graduate studies of stanford university in

partial fulfillment of the requirements for the degree of

doctor of philosophy.

[13] Koloud Al-Khamaiseh, 2014, A Survey of String

Matching Algorithms Int. Journal of Engineering

Research and Applications www.ijera.com ISSN: 2248-

9622, Vol. 4, Issue 7(Version 2), pp.144-156.

IJCATM : www.ijcaonline.org

