
International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

44

 Identifying Overloaded Servers and Managing Dynamic

Placement of Virtual machines in Cloud

Lamisha Rawshan
MS Student

Institute Information
Technology,

University of Dhaka

Jobaer Islam Khan
Software Engineer
The Jaxara IT LTD,

Dhaka-1212, Bangladesh

Asif Imran
Lecturer

Institute of Information
Technology,

University of Dhaka

ABSTRACT

Cloud computing is becoming one of the most popular

commercial infrastructure due to its little maintenance

expense and on demand resource utilization. Cloud computing

possesses many kinds of technical challenges such as fault

tolerance, reliability, availability, integrity etc. due to its

complex and distributed nature. But the main problem related

to all those is overload incurred by Virtual Machines (VM).

So, load balancing is one of the most significant issues that

can help to gain rapid performance of cloud infrastructure.

This research proposes algorithms for detecting failed servers

due to overloaded VMs. The failure detection algorithm

checks server status after a predefined time interval. This

algorithm gives proactive technique to deal with overloaded

VMs. When any failure in the server is found, the resource

balancing algorithm migrates its VMs to an adequate healthy

Physical Machine (PM). To distribute workload evenly, the

resource utilization skew is measured. This VM to PM

mapping is done in a way that every PM will do almost equal

amount of work.

General Terms

Cloud computing

Keywords

Cloud Computing, Resource management, Skewness, Virtual

machine migration, Overload Detection.

1. INTRODUCTION
Cloud computing is an internet based computing that handles

applications by sharing computing resources instead of local

machines’. National Institute of Standards and Technology

(NIST) defines cloud computing as a model that enables

ubiquitous and useful network access to a shared group of

computing resources based on their demand [1]. This group of

shared resources can be allocated or released with little

management effort or service provider interaction. According

to IBM, cloud computing delivers computing resources based

on user demand from data centers over the internet using pay-

for-use basis. Cloud technology can improve resource

utilization and reduce cost in many organizations [2]. It

becomes important to guarantee that computing resources are

properly utilized to meet application requirements [3].

Cloud is a group of physical machines pretending to be one

computing environment [4].User see cloud as an illusion of

unlimited computing resources [5]. But the main challenge is

to manage the variability and heterogeneity of application

requirement [6]. VMs shares the resources of PMs among

several users to maximize the use of resources. The mapping

of these PMs to VMs is very important to gain better

performance of cloud computing [7]. This mapping is

completely unknown to the users. They have no knowledge

about the location of the PMs from where their VM is

running. It is one of the main responsibilities of the cloud

provider to meet the resource demand of users. The capability

of PM must satisfy the resource demand of VMs running in it.

Otherwise, the PMs will degrade its performance due to

overloaded VMs [8].

In this research we present a methodology for detecting and

avoiding possible failures due to overloaded VMs. Difference

of average input rate and processing work rate for a certain

period of time is used as the basis for measuring the load of

users in a certain VM. When any overloaded server is

detected, remapping from PMs to VMs is done in a way that

the resource utilization skew of physical machine must be

minimized. Skew is the measure of uneven resource

utilization of physical machines. The proposed framework

emphasizes on the remapping of physical machines to virtual

machines when any overloaded PM is detected. This

framework measures the difference between processing work

rate and input rate of user to detect failure. Other researches

[9], [10] have also measured processing rate, but they

consider a block of streaming data. The proposed framework

redistributes VM when overloaded VM is found, but existing

research [9], [10] add fine or coarse grain of CPU adjustment.

The proposed model aims to detect failures from VMs of

servers and to redistribute overloaded VMs to meet the

resource demand in the cloud computing environment.

Unevenly distributed load can cause degradation of overall

performance in cloud computing. The proposed system also

aims to give an almost equal amount of load in all physical

machines. Failure detection leads to finding overload by VMs.

It detects overload by comparing input jobs with processing

jobs in a predefined time interval. More specifically, two main

objectives of this research are-

1. Identification of slow servers running in the cloud to

improve overall performance of application and

meet user demand successfully.

2. Minimize resource utilization skew of PMs to

reduce uneven resource distribution.

Empirical investigation of this method is performed in Ubuntu

14.04 Operating System(OS) and Openstack Juno cloud.

MySQL database server will store historic data, recent usage

data and servers capacity in different metrics that will be

retrieved by fail detection, skew detection and resource

balancing algorithms.

The remaining part of the document contains the following

sections. Section 2 identifies related studies based on overload

detection and dynamic allocation of virtual machines. Section

3 represents the architecture of the failure identification

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

45

component and mapping from VMs to PMs. Section 4 gives a

detail description of proposed methodology and listed

notations needed for algorithms. Section 5 formulates

empirical results from the algorithms and analysis

performance of this methodology. The last section that is

section 6 concludes the research.

2. RELATED RESEARCHES
This section highlights recent works that are performed to

detect failures and self-adaptation of cloud computing. An

inaccurate resource allocation can cause insufficient use of

resource, higher cost and low performance [11]. These

researches have discussed about the significance of proper

mapping from PM to VM.

A time based framework that monitors cloud for real time

feedback is discussed in [12]. This framework gives self-

healing mechanism when any failure is detected. The monitor

collects cloud component behavior in binary output file and

store in MySQL database. After a certain time monitor reads

the database and detect the occurrence of undesirable

activities. Then necessary actions are taken according to

prespecified configuration. In this present research self-

healing is ensured in a way that resource utilization skew must

be minimized.

A high available middleware is used to tolerance fault in

cloud based architecture [13]. It runs a deterministic algorithm

that allocates replicated node when any failed node is found.

It collects resource uses data from slave nodes. The algorithm

sends notification to the system when resource usage of a

node exceeds its predefined threshold. Then, this node is

added to a queue Nexceed. The nodes of this queue are sorted in

ascending order. This research replaces faulty nodes with

additional nodes. But our present research migrates

overloaded virtual machines to another physical machine.

Vijayakumar et al. [9] have presented a model to allocate

resources dynamically for data streaming applications. The

main objective of their research is to careful allocation of

resources to avoid both over provision and the under

provision. They detect buffer overflow by comparing time

interval between receiving two blocks of streaming data and

processing of one block of that data. When any overflow

occurs their model increase amount of CPU based on

requirement. They define a fixed amount of CPU percentage

for multiplicative increase and additive decrease of CPU.

They evaluate their model in both static and dynamic

environments. They use a fixed amount of CPU addition

which is costly.

Wang et al. [14] have proposed a fail detection model for web

applications running in the cloud. Their proposed method is

based on the assumption that sudden increase and decrease of

workload can change behavior of tradition web applications.

The method of this paper characterizes customers’ workload

from their access behavior vector and volume vector. One of

their objective was to group users with similar workload to

recognize access behavior pattern as they have similar access

behavior matrix and resource demand. They use an online

clustering method for recognizing access behavior pattern of

users from the collected vectors. Canonical Correlation

Analysis (CCA) is used between workload of users and

performance matrix of application to detect failure. Fault

detection accuracy of this model fully depends on the

clustering method.

Sampaio et al. [5] targets to improve cloud infrastructure

power efficiency using dynamic algorithms which map

physical machines to virtual machines. They use a proactive

fault tolerance technique to identify failures in systems. This

model contains a cluster coordinator to manage cloud users’

submitted job. Each submitted job is seen as a set of

independent job and a time limit that is the deadline is added

to each job. Cluster coordinator decides which VM will be

mapped to which PM.

Sadeka et al. [15] have proposed a method that will predict

future resource demand and resource provision strategy in

cloud computing. They uses historical data and recent

resource uses to predict future throughput with machine

learning algorithms. They evaluate their proposed model with

mean Absolute Percentage Error, Root Mean Squared error

etc.

Aameek et al.have presented agile data center with integrated

and virtualization technology [16]. Their research doesn't add

even distribution of workload.

Rayhan et at. have proposed a resource provisioning scheme

for cloud computing with distributed decision maker [17].

Individual physical machines take their own resource

provisioning decision. Multi Attribute Utility Theory is used

for VM allocation and migration. VM allocation and

migration decision is affected by many attribute like resource

availability, network bandwidth, network cost, Service Level

Objectives (SLO) violation. In this scheme, nodes are

organized using unstructured P2P architecture to avoid single

point of failure threat. Every physical machine collects

information from its neighbored with a constant distance.

Load balancing algorithms are used to balance load on the

whole system in order to meet the objectives and to generate

improved results [18]. Some of the challenges of load

balancing are- virtual machines migration, stored data

management, energy management etc. [19]. Mauro et al. give

algorithms for dynamic load management and reallocation of

virtual machines in cloud [11]. They focus on three main steps

of virtual machine migration process- when to migrate

distributed virtual machines, which virtual machine is suitable

for migration, the process to reallocate virtual machines to

physical machines. Their proposed algorithm is based on four

phases. The first phase is a selection of the sender host by

using Cumulative Sum (CUSUM) algorithm. The second

phase is the selection of guest host to decide which of the

guest should migrate. The third phase is a selection of receiver

host to migrate the guest host. The last phase is assignment of

the guest host.

Su-Ching et al. have introduced a load balancing framework

with a two-level scheduling algorithm [20]. This algorithm

uses a mixed of opportunistic load balancing and load balance

min-min algorithms. Here, an agent collects information and

store data. This data are compared with a predefined

threshold.

All these works give algorithms for detecting faulty processes

and provisioning resource based on clients demand.

Maximum of them adds resources to an existing resource or

replicate faulty resource with new one. On the other hand our

algorithm output resource reallocation map to migrate failed

VMs to another PM that are capable to continue normal work.

This migration will be done in a way that all PM will do

almost equal amount of work.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

46

Fig 1: Architecture of proposed system

3. SYSTEM ARCHITECTURE
This section provides a detail description of the proposed

architecture. The architecture is a hybrid cloud environment

which contains both centralize and distributed resources. It

contains a set of homogeneous physical machines, P= {PM1,

PM2,…., PMN}. Each PMs can allocate many Virtual

Machines (VM). Virtual machine instances are created based

on users demand. These machines contain a mix of database

servers, web servers, mail servers etc. Local Statistics (LS)

collects logs of individual machine. The architecture is

depicted in Figure 1.

The proposed system contains two main parts- Failure

Detector (FD) and Resource Balancer (RB) that amalgamates

some other entity. This model contains a Monitor (M). M

collects log from local statistics of individual machines after a

certain period. The resource balancer remap VMs to PMs

when any failure is found. The entities of this architecture are

described in this section.

 Monitor (M) - Every PM runs a hypervisor, which

supports multiple applications. M collects each

machines statistics from LS and store collected data

in information schema after a small time interval. It

passes collected information to fail detector.

 Failure Detection (FD) - FD determines the chances

of failure by using metadata of information schema.

FD becomes alive after a time period t and detects

the overloaded servers.

 Resource Balancer (RB) - FD passes information of

overloaded server RB. It calculates skew for every

PM and sort in decreasing order. RB select PM that

have low skew and needed space for overloaded

VM. It outputs new map of VMs to PMs. This new

map indicate which VM will be migrated to which

PM.

4. PROPOSED METHODOLOGY
This section describes the algorithm for detecting failure and

necessary self-healing to recover from failed condition. The

(a) (b)

Fig 2: Flow charts for load detection and resource

allocation

algorithm maintains a timer, 𝑆𝑝𝑎𝑟𝑒𝑇𝑖𝑚𝑒 after which it

becomes alive to collect data. It collects Input Rate, Output

Rate, 𝑀𝑎𝑥𝑀𝑒𝑚𝑉𝑒𝑐𝑡𝑜𝑟, and 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟

over a specified interval. The 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 algorithm

detects overloaded server by comparing the average input rate

and processing rate of that server in the cloud. To reduce the

effect of failure, self-adaptation mechanism is needed. Self-

adaptation consists of 𝑆𝑘𝑒𝑤𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 and

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑝𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 algorithms. Flow chats of load

detection and resource allocation is depicted in figure 2. The

𝑆𝑘𝑒𝑤𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 algorithm detects the percentage of

unevenness of resource utilization among the PMs. It also

detects resource utilization skew of servers within a PM by

combining resources utilization of its VM. If skew is

presented

Fig 3: Algorithm for failure detection

1: 𝑖𝑛𝑝𝑢𝑡= N, MaxMemVector,

ResourceUtilizationVector

2: 𝑂𝑢𝑡𝑝𝑢𝑡= OverloadedPMsIDVector

3: procedure FAILURE DETECTION

4: for 𝑖 ←1 to 𝑁 do

5: 𝑚 ← 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑖𝑡 𝑃𝑀𝑠

6: for 𝑗 ←1 to 𝑚 do

7: 𝐴𝑣𝑔𝐼𝑛𝑝𝑢𝑡

← 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑗𝑡 𝑉𝑀 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

8: 𝐴𝑣𝑔𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 ←

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑗𝑡 𝑉𝑀 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

9: if 𝐴𝑣𝑔𝑃𝑒𝑛𝑑𝑖𝑛𝑔 > 𝐴𝑣𝑔𝐼𝑛𝑝𝑢𝑡 then

10: 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑𝑃𝑀𝑠𝐼𝐷𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝑖
11: end if

12: end for

13: return 𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑𝑃𝑀𝑠𝐼𝐷𝑉𝑒𝑐𝑡𝑜𝑟

14: end for

15: end procedure

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

47

Fig 4: Algorithm for skew detection

in the cloud, overloaded server will be redistributed among

nodes with minimum skew. If skew is not present that is

memory consumption is uniform across nodes, deallocation of

unnecessary applications will be happened to fulfill

requirement of overloaded servers. 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑝𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

uses the skew value of PMs and generate a resource map to

reallocate VMs to PMs.

4.1 Notation and Preliminaries
This subsection presents needed symbols for describing

algorithms. Let,

𝑆𝑝𝑎𝑟𝑒𝑇𝑖𝑚𝑒= A time factor after which the monitor becomes

alive.

𝐼𝑛𝑝𝑢𝑡𝑅𝑎𝑡𝑒= Input rate of a VM instance in the 𝑆𝑝𝑎𝑟𝑒𝑇𝑖𝑚𝑒.

𝑂𝑢𝑡𝑝𝑢𝑡𝑅𝑎𝑡𝑒=Processing rate of a VM instance in the

𝑆𝑝𝑎𝑟𝑒𝑇𝑖𝑚𝑒.

𝐿𝑜𝑐𝑎𝑙𝐿𝑜𝑎𝑑= Cumulative memory in use by all VM instance

of a node.

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑀𝑒𝑚𝑜𝑟𝑦= Maximum memory of a node.

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑐𝑡𝑜𝑟= Vector which contains a list

of memory consumption of all nodes. <𝐿𝑜𝑐𝑎𝑙𝐿𝑜𝑎𝑑1,

𝐿𝑜𝑐𝑎𝑙𝐿𝑜𝑎𝑑2, 𝐿𝑜𝑐𝑎𝑙𝐿𝑜𝑎𝑑3,……., 𝐿𝑜𝑐𝑎𝑙𝐿𝑜𝑎𝑑𝑁>, where the

total number of nodes is N.

𝑀𝑎𝑥𝑀𝑒𝑚𝑉𝑒𝑐𝑡𝑜𝑟= Vector which contains a list of

MaxMemVector of all nodes. <𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑀𝑒𝑚𝑜𝑟𝑦1,

Fig 5: Algorithm for resource allocation

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑀𝑒𝑚𝑜𝑟𝑦2,𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑀𝑒𝑚𝑜𝑟𝑦3,...,

𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑀𝑒𝑚𝑜𝑟𝑦𝑀>, where the total number of nodes is

M.

𝑁= Number of Physical Machine

4.2 Failure Detection
This research uses active monitoring load balancer to detect

overload. The challenges to develop this kind of algorithm is

to estimation and comparison of load, system stability and

performance etc. [21]. Failure Detection algorithm takes 3

inputs- Number of physical machine in whole cloud,

𝑀𝑎𝑥𝑀𝑒𝑚𝑉𝑒𝑐𝑡𝑜𝑟 and ResourceUtilizationVector. It

calculates the average arrival rate of input data of a server and

(a)

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑖 𝑗 ,
𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑𝑃𝑀𝑠𝐼𝐷𝑉𝑒𝑐𝑡𝑜𝑟)

1: 𝑖𝑛𝑝𝑢𝑡= 𝑆𝑘𝑒𝑤[𝑁], ResourceUtilizationVector,

OverloadedPMsIDVector

2: 𝑂𝑢𝑡𝑝𝑢𝑡= 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝

3: procedure RESOURCEALLOCATION

4: for 𝑖 ←1 to 𝑁 do

5: 𝑚 ← 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑖𝑡 𝑃𝑀𝑠

6: for 𝑗 ←1 to 𝑚 do

7: 𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝐷 ← 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑠𝑒(𝑆𝑘𝑒𝑤[𝑖],

8: 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 ←

 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑝[𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝐷][𝑗]

9: end for

10: end for

11: return 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝
12: end procedure

1: 𝑖𝑛𝑝𝑢𝑡= N, ResourceUtilizationVector

2: 𝑂𝑢𝑡𝑝𝑢𝑡= 𝑆𝑘𝑒𝑤[𝑁]

3: procedure SKEWDETECTION

4: for 𝑖 ←1 to 𝑁 do

5: 𝑚 ← 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑀𝑠 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑜𝑛 𝑖𝑡 𝑃𝑀𝑠

6: for 𝑗 ←1 to 𝑚 do

7: 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ←
 (𝑈𝑖−𝑈𝑎𝑣𝑔)2

𝑁

𝑗 =𝑁
1

8: end for

9: 𝑆 ←
𝐷

𝑈𝑎𝑣𝑔

10: 𝑆𝑘𝑒𝑤[𝑖] ← 𝑆

11: end for

12: return 𝑆𝑘𝑒𝑤[𝑁]
12: end procedure

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

48

(b)

(c)

Fig 6: Migration of load using skewness

the average processing rate of data. It compares these two

values. If the average arrival rate of input is greater than the

average processing rate of that input in a specific server, it

means that data is arriving much faster than the current node

capability. If the average processing rate of data is greater

than the normal processing rate, resource deallocation is

possible from this server. Algorithm 1 is given in figure 3.

4.3 Self-Adaptation

Fig 7: Resource Utilization of cloud

Fig 8: CPU utilization

4.3.1 Skew Detection
When any overloaded server is detected self-adaptation

algorithm tries to allocate needed space immediately. One

common property of cloud computing that can cause low

resource distribution detection of skew is more or less evenly

distribution of resources. So it is necessary to distribute

resources in such a way that all servers of a node will

consume approximately similar amount of memory. In order

to prevent unevenness of little skew and enough space will be

chosen for migration of an overloaded server. Equation (1)

and (2) contain formulas for detecting skew of physical

machines.

Deviation, 𝐷 =
 (𝑈𝑖−𝑈𝑎𝑣𝑔)2

𝑁
𝑖=𝑁
1 (1)

𝑈𝑖 , indicates memory uses of 𝑖𝑡server in the spare time. N is

the total number of resources running in a PM. The value of 𝐷

will generate deviation from the average used recourse in a

server. At last PM will generate the skew of the server. From

the value of PM resource redistribution decision will be made.

Skew, 𝑆 =
𝐷

𝑈𝑎𝑣𝑔
 (2)

This algorithm is presented in Figure 4. The 𝑆𝑘𝑒𝑤𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

algorithm takes 2 inputs- Number of physical machines and

Resource utilization metrics. By using equation 1 and 2 it

determines the deviation from average usage for every server.

It calculates Skew for every PM.

4.3.2 Resource Allocation
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑀𝑎𝑝𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 algorithm (Figure 5) determines

which PM can continue normal work flow of overloaded

servers. The input of this algorithm is -Skew array of all PMs,

overloaded servers and resource utilization details. It sort this

Skew list in decreasing order. The main purpose is to choose a

PM with low skew and enough space for migrating

overloaded server.

5. RESULT
This research has used OpenStack to check the performance

of the proposed algorithm. OpenStack provides a platform for

managing large amount of virtual machines. It is an open

system so open-source tools can be easily applied here. The

implementation contains real life software running on the

virtual instance of OpenStack. Here VM instances are used as

resource. Migration of load from overloaded PMs is given in

Figure 6. The algorithm is applied to a dashboard. The whole

system is monitored using the dashboard after a time interval

for detecting any failures due to overloaded VMs. Resource

utilization skew is measured using the formula discussed

above. VMs are distributed in way that skew will be

minimized. The usage summary of overall cloud is depicted in

Figure 7. Figure 8 represents the CPU utilization of cloud.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

49

6. CONCLUSION
This paper have proposed a methodology to detect overloaded

servers which are running in multiple PMs. When any

overloaded server is found, it dynamically maps VMs to PMs.

The main goal of this work is to avoid failures due to overload

by users, which implies to increase performance of a hybrid

cloud computing infrastructure. To achieve this goal, three

algorithms are developed- Failure Detection, Skew Detection

and Resource Allocation. These algorithms give overloaded

servers enough resources to continue their running task

without any interruption. Resource are distributed in a way

that resource utilization skew of every physical machine will

be minimized. Which improves overall working efficiency of

the cloud.

7. ACKNOWLEDGMENTS
A sincere thanks go to the reviewers of this paper for their

valuable review.

8. REFERENCES
[1] P. Mell and T. Grance, “The NIST definition of cloud

computing,” 2011.

[2] Imran, Asif, Alim Ul Gias, and Kazi Sakib. "An

empirical investigation of cost-resource optimization for

running real-life applications in open source cloud." High

Performance Computing and Simulation (HPCS), 2012

International Conference on. IEEE, 2012.

[3] Beloglazov, Anton, and Rajkumar Buyya. "Managing

overloaded hosts for dynamic consolidation of virtual

machines in cloud data centers under quality of service

constraints." Parallel and Distributed Systems, IEEE

Transactions on 24.7 (2013): 1366-1379.

[4] Barrett, Diane. "Security Architecture and Forensic

Awareness in Virtualized Environments." Cybercrime

and Cloud Forensics: Applications for Investigation

Processes: Applications for Investigation Processes

(2012): 129.

[5] Sampaio, Altino M., and Jorge G. Barbosa. "Dynamic

power-and failure-aware cloud resources allocation for

sets of independent tasks." Cloud Engineering (IC2E),

2013 IEEE International Conference on. IEEE, 2013.

[6] Gong, Zhenhuan, et al. "Siglm: Signature-driven load

management for cloud computing infrastructures."

Quality of Service, 2009. IWQoS. 17th International

Workshop on. IEEE, 2009.

[7] Kim, Hongjae, et al. "A Novel Adaptive Virtual Machine

Deployment Algorithm for Cloud Computing."

proceedings of International Conference on Information

Science and Industrial Applications (ISI 2012),

Philippines. 2012.

[8] Prathima, S., and Shaik Shasha Ali. "Dynamic Resource

Allocation using Virtual Machines for Cloud Computing

Environment."

[9] Vijayakumar, Smita, Qian Zhu, and Gagan Agrawal.

"Dynamic resource provisioning for data streaming

applications in a cloud environment." Cloud Computing

Technology and Science (CloudCom), 2010 IEEE Second

International Conference on. IEEE, 2010.

[10] Cao, Junwei, and Wen Zhang. "Dynamic Controlling of

Data Streaming Applications for Cloud Computing."

[11] Arias, Michael, et al. "A Framework for Recommending

Resource Allocation based on Process Mining."

[12] Rawshan, Lamisha, Kazi Sakib, and Asif Imran. "Time-

Waved Monitoring and Emergent Self Adaption of

Software Components in Open Source Cloud."

Proceedings of the The International Conference on

Engineering & MIS 2015. ACM, 2015.

[13] Imran, Ali, et al. "Cloud-Niagara: A high availability and

low overhead fault tolerance middleware for the cloud."

Computer and Information Technology (ICCIT), 2013

16th International Conference on. IEEE, 2014.

[14] Wang, Tao, et al. "Fault detection for cloud computing

systems with correlation analysis." Integrated Network

Management (IM), 2015 IFIP/IEEE International

Symposium on. IEEE, 2015.

[15] Islam, Sadeka, et al. "Empirical prediction models for

adaptive resource provisioning in the cloud." Future

Generation Computer Systems 28.1 (2012): 155-162.

[16] Singh, Aameek, Madhukar Korupolu, and Dushmanta

Mohapatra. "Server-storage virtualization: integration

and load balancing in data centers." Proceedings of the

2008 ACM/IEEE conference on Supercomputing. IEEE

Press, 2008.

[17] Rahman, Raziur, et al. "A peer to peer resource

provisioning scheme for cloud computing environment

using multi attribute utility theory." Innovative

Computing Technology (INTECH), 2013 Third

International Conference on. IEEE, 2013.

[18] Khiyaita, A., et al. "Load balancing cloud computing:

state of art." Network Security and Systems (JNS2), 2012

National Days of. IEEE, 2012.

[19] Rashmi, K. S., V. Suma, and M. Vaidehi. "Enhanced

load balancing approach to avoid deadlocks in cloud."

arXiv preprint arXiv:1209.6470 (2012).

[20] Wang, Shu-Ching, et al. "Towards a load balancing in a

three-level cloud computing network." Computer Science

and Information Technology (ICCSIT), 2010 3rd IEEE

International Conference on. Vol. 1. IEEE, 2010.

[21] Bhaskar, R., S. R. Deepu, and B. S. Shylaja. "Dynamic

allocation method for efficient load balancing in virtual

machines for cloud computing environment." Advanced

Computing 3.5 (2012): 53.

IJCATM : www.ijcaonline.org

