
International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

1

An Approach to Query Processing in Homogenously

Distributed Spatial Databases

Monika Yadav
Student, Department of Computer Science,

 Banasthali Vidyapith, Tonk,
 Rajasthan, India

ABSTRACT
Query processing in distributed environment is basic need of

many organizations in order to process huge amount of data in

less amount of time. There are many approaches provided for

parallel query processing in distributed environment. This

paper presents the approach which does the parallel query

processing in 4 steps. Firstly query fragmentation is done by

using SQL parsing, then query redirection to the specified

servers containing remotely distributed databases ,then query

execution take place at both the servers and at last result of

both part of query transferred to Local server where it get

accumulated. Then result gets displayed on Geoserver.

Different fragmentation techniques are also discussed in order

to store fragmented data on distributed sites.

General Terms

Distributed Databases.

Keywords
Database Fragmentation, Query Execution, Query

Fragmentation and Query Redirection.

1. INTRODUCTION
This research paper aims at providing solution for parallel

query processing in homogenously distributed spatial

databases in order to achieve performance optimization.

Query fragmentation or partitioning, Query redirection, Query

execution on separate servers and then accumulation of result

on local server is main focus of this research paper.

There are many tools available in Postgresql (Spatial

database) for supporting distributed environment such as

Pgpool-I, Pgpool-II, PG-Cluster-I, PG-Cluster-II, Slony-I,

Sequoia. Approach used in this research paper does

revaluation of Pgpool-II-3.0.4, which provides parallel query

as one of its feature. Parallel query feature includes concurrent

query execution on multiple servers. But it will redirect the

same query to all the servers without query fragmentation [5]

[6] [7].

There are many approaches as well for parallel query

processing .One approach of parallel query processing

includes separation of local and remote references from query

according to qualification, then part of query execution on

local server and on remote server and then transferring of

some component from remote server to local server in order to

perform join take place [14].Some features are supported by

Postgresql (Spatial database) which are useful in parallel

processing. One such feature is Dblink [8], which comes in

particularly handy for querying remote PgServers and doing

bulk inserts by specifying the full credentials of the remote

server. Another feature is Systemdb which contains User

defined rules for data partitioning and merging of result via

Dblink.

2. DIFFERENT FRAGMENTATION

TECHNIQUES
Different fragmentation techniques like Horizontal, Vertical

and Mixed Fragmentation are available for non-spatial as well

as spatial databases. Two other types of fragmentation

technique Bounding Box wise and feature wise division is

described here for spatial databases.

One way of fragmenting spatial data horizontally is based on

predicate based division and vertically is based on selection

by column and other way of fragmenting spatial data is based

on use of affinity matrix and bond energy algorithm [2].

Likewise one way of fragmenting spatial data bounding box

wise and feature wise is based on use of affinity matrix and

bond energy algorithm[2] and other way of fragmenting

spatial data bounding box wise and feature wise is discussed

here.

2.1 Bounding Box wise Partition
For Bounding Box wise partition whole data get divided into

two polygons by midpoint arithmetic calculation and then

with the help of SQL query, intersection of each layer with

both polygons can be calculated.

2.1.1 Bounding Box description and midpoint

arithmetic calculation:
The bounding box is described by 4 numbers; the x-y

coordinates of the lower-left corner of the image, followed by

the x-y coordinates of the upper-right corner of the image.

Bounding Box of an entity is represented by BBox: BBox(x1

y1, x2 y2).By knowing Bounding Box of an entity, whole data

can be divided in two Polygons. Bounding Box can be divided

into two portions by midpoint arithmetic calculation of x1 and

x2. X3 is taken as midpoint of x1 and x2 and is calculating by

using equation [1].

𝑥3 =
𝑥1+𝑥2

2
 [1]

Polygon1=(x1 y1, x1 y2, x3 y2, x3 y1, x1 y1).

Polygon2=(x3 y1, x2 y1, x2 y2, x3 y2, x3 y1).

Figure 1 shows the partitioning of database into poly 1 and

poly 2. F1, F2, F3, F4, F5 represents the features or layers of

spatial database. Linear line across partition 1 and partition 2

represents boundary between two polygons.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

2

Fig 1: Partitioning of Bounding Box of spatial data

2.1.2 SQL queries for finding intersection of

layers with polygon:
After obtaining polygon1 and polygon2, intersection of each

Layer with both polygons can be determined. Layers

intersecting one Polygon are taken in one server and layers

intersecting other polygon are taken in another Server.

SQL Query for finding out whether one layer (e.g. Layer1)

intersecting Polygon1 and Storing result in a table (e.g.

Table1) for partition 1:

SELECT ST_Intersects (Layer1.the_geom,

ST_GeomFromText ('POLYGON ((x1 y1, x1 y2, x3 y2, x3

y1, x1 y1))‟, 4326)),* INTO schema.Table1 FROM

schema.Layer1;

SQL Query for finding out whether one layer (e.g. Layer1)

intersecting Polygon2 and Storing result in a table (e.g.

Table1) for partition 2:

SELECT ST_Intersects (Layer1.the_geom,

ST_GeomFromText ('POLYGON ((x3 y1, x2 y1, x2 y2, x3

y2, x3 y1))‟, 4326)),* INTO schema.Table2 FROM

schema.Layer1;

Likewise SQL queries can be performed for all features or all

layers which divide the whole data into two and the data

which lies on boundary get replicated on both the servers.

SQL query for finding out data that lies on boundary of two

Polygons:

SELECT count (*) FROM schema.Table1 as t1 JOIN

schema.Table2 as t2 ON t1.gid = t2.gid where

t1.st_intersects=t2.st_intersects;

In bounding box wise partition fragmentation of query is not

required because all table names remain same, only size of

tables differs. Therefore same query can be redirected to both

the servers and the processing takes place in parallel.

2.2 Feature wise partition
Feature wise partition can be done according to need of an

organization. One can store most frequently used features

together on one server in order to maximize performance and

minimize time to access and switching time.

One approach to feature wise partition can be that all utilities

get stored on one server and all other feature on another

server. For feature wise partition different table can be placed

on different servers because one table in PostgreSQL is

equivalent to one feature. In feature wise partition, query

fragmentation is required which is done by sql parsing.

3. GENERAL DESCRIPTION OF

CONCEPTS USED
Various concepts are utilized for designing of approach of

parallel query processing .Some important tools and concepts

are described in this research paper. One of them is Pgpool-II-

3.0.4 and other is Join Processing in Multi Database System

which are described here:

3.1 Pgpool-II-3.0.4
Pgpool-II-3.0.4 is an open source tool available for Parallel

Query Processing. Pgpool-II is a middleware that works

between PostgreSQL servers and a PostgreSQL database

client. [5]. Pgpool distributes the data on both the server and

then redirect same query on both the server and get the

combination of result via dblink.sql but it does not support

query fragmentation.

3.1.1 Feature of pgpool of our interest is Parallel

Query:

Using the parallel query function, data can be divided among

the multiple servers, so that a query can be executed on all the

servers concurrently to reduce the overall execution time.

Parallel query works the best when searching large-scale data

[6].

3.1.2 Tools for implementing parallel query by

Pgpool
PgpoolAdmin: The pgpool Administration Tool is

management interface for pgpool to monitor, start, stop

pgpool and change setting for pgpool. PgpoolAdmin-3.0.3 is

suitable for all pgpool-II-3.0 versions [7].

Systemdb: User defined rules for data partitioning and

merging of result via Dblink.

Dblink.sql: Its Sql file in

usr/local/postgresql/contrib.dblink.sql. It is used to query local

Postgresql and remote Postgresql [8]. But it lacks SQL

server‟s linked server approach or open query that allows for

synchronized join between linked servers/databases and is not

useful in cases where lots of data needs to with local data.

3.2 Join Processing in Multi Database

System [12]
In this approach user will input the query that will change into

modified query. Modified query will separate the Local and

remote references according to qualification. Then part of

query get executed on local server and part of query get

executed on HP-SQL remote server and then transferring of

some component from remote server to local server take place

because in order to perform join both relations involved in the

join need to be present at the same site before join operation

take place.

This idea of join processing in multi database system is taken

into consideration by taking both databases as postgreSQL-

8.4.

4. METHODOLOGY
Methodology for parallel query processing in homogenously

distributed spatial databases uses three instances of spatial

database i.e. Postgresql. Query gets fired from local database

to two other instances of remote databases and then

accumulative result from two remote databases get transferred

to local database and get displayed there on Geoserver.

Whole methodology for communication between three spatial

databases is divided into five parts i.e. Query fragmentation,

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

3

query redirection to remotely distributed databases, query

execution on remote databases, perform union after

transferring result to local database and displaying result on

Geoserver-2.0.

4.1 Query fragmentation
Query fragmentation includes division of query into two

partitions so that one part of query will goes to one server

and other part of query will goes to another server.

For Fragmentation of query concept of SQL Parsing is used.

SQL Parsing: Parsing of SQL statement is done by “String

Tokenizer” method in java and only Table name is parsed in

the query.

This scheme is applicable for feature wise fragmentation only

among all types of fragmentation methodologies. In all other

type of fragmentation techniques table name remains same on

both the servers, only size differs.

In horizontal fragmentation technique partition is done on the

basis of predicate. Tuples of a table which satisfy the

condition get stored in one partition and those which don‟t

satisfy the condition get stored in other fragment. In vertical

fragmentation techniques some set of columns of a table

which are commonly used together get stored together in one

fragment. In bounding box fragmentation technique

fragmentation is done on the basis of geometry or spatial

coordinates. In Feature wise fragmentation some set of

features gets stored in one fragment on the basis of query and

a single table is considered as one feature. Therefore only in

feature wise fragmentation different tables are present in

fragments which is the only fragmentation technique is used

in this research for fragments in remote databases.

4.2 Query Redirection to remotely

distributed databases:
Distributed Databases means two different servers in which

partitions of database are stored and from a third server let‟s

say Local Host Query get fired to both remote servers

containing partitioned data.

For Query redirection to distributed databases following

methodology is used:

4.2.1 LookUp Table Search:
After Query Fragmentation Tables name that query demands

is obtained. Then redirection query to that particular server on

which the data query asking for resides is done by LookUp

Table maintained at Local Host.

LookUp Table: It contains meta information i.e. which table is

stored on which server together with their Credential (Host,

Username, password, port) is maintained at Local Host.

4.2.2 Connection to servers by extracting

credentials from LookUp table:
Extraction of server name at Local host for both part of query

is done from LookUp table. Now establishment of connection

to specified servers by fetching parameter from LookUp table

results in query‟s parts redirection.

4.3 Query Execution on remote databases:
 A part of query gets executed on one server and another part

of Query gets executed on another Server. Result is obtained

in the form of result set .Let say Resultset1 and Resultset2.

4.4 Transferring result to Local database

and perform Union

4.4.1 Result set transfer:
Transferring of result-set from remote server is done with the

help of Local host server's Object by creating a table (which is

mentioned by User in Query) or executing the create SQL

query with the help of Statement object of Local host.

4.4.2 Performing Union Operation:
Two tables which contain result of user‟s query to server1 and

to server 2 is obtained. After this any Operation can be

applied which contains data from both tables or Join operation

can be performed. Then storage of final Result in 3rd table is

done. (Drop the table if already exists).

4.5 Displaying result on server
Finally the combined result from both the servers gets

populated on Geoserver.

For populating result Geoserver installation is done which

mainly includes Geoserver start-up, workspace creation and

store creation. As a result of this, PostGIS get connected to

Geoserver and layer from PostGIS storing combined result

from both the servers can be viewed as a map on Geoserver.

Figure 2 shows overall structure of query processing in

homogenously distributed spatial databases

Fig 2: Query processing in homogenously distributed

spatial databases.

Annotation used in Figure 2:

S1, S2, and S3: Represents site 1, site2 and site3 respectively.

Q1: one part of query.

Q2: Another part of query.

ExQ1: Execution of query Q1.

ExQ2: Execution of Query Q2.

RSQ1: Result Set of Query Q1.

RSQ2: Result Set of Query Q2.

In this approach, a query gets fired from S1 which gets further

partitioned into Q1 and Q2. Q1 and Q2 get transferred to S2

and S3 respectively and they get executed on their respective

servers. Then result set RSQ1 and RSQ2 get transferred to

S1as a result of query execution on both servers S2 and S3.

Finally result gets displaced on Geoserver.

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

4

5. EXPERIMENT AND RESULTS
For the experiment software requirement and platform

considered was Ubuntu 11.03, Postgresql 8.4, PostGIS 1.52

and Pgadmin III on all the servers.

Feature Wise Fragmentation technique is adopted for this

experiment. For feature wise partition 2010 TIGER/LINE

DATA [11] was considered. All utilities of database get stored

on one server and all other feature on another server. A

Feature is equivalent to a table in spatial database. Table 1

shows the Feature Wise Fragments of Tiger Data stored on

server 1 and server 2.

Table 1. Feature wise fragmentation of 2010 TIGER/ Line

Data

Features stored on server1 Features stored on server2

arealm linearwater

areawater pointlm

check primaryroads

counties prisecroads

facesah rails

facesmil roads

- states

Query fragmentation is done on the basis of table name

extraction from the query by SQL parsing. Queries get fired

from Local Host and then redirection of queries to servers is

done in accordance with feature present in query.

SQL Query on 2010 TIGER/LINE DATA taken for

experiment:

Select name10, statefp from tiger.states as s1, tiger.areawater

as s2 where s1.mtfcc10='G4000' and s2.mtfcc='H2030';

Features states and areawater of 2010 TIGER/LINE DATA

are on different servers. A query is fired from Local Host

having instance of PostgreSql which get parsed and table

names are extracted from the query. Therefore after Query

Fragmentation table name states and areawater are obtained.

Now separate query for server1 and server2 are query 1 and

query 2 respectively.

Query1= select name10 from tiger.states as s1 where

s1.mtfcc10=„G4000‟;

Query2= select statefp from tiger.areawater as s2 where

s2.mtfcc=„H2030‟;

Now Query Redirection is done and lookup table is searched

for redirection. By fetching credential from lookup table

entries, part of query having table name “states” is redirected

to server1 and another part of query containing table name

“areawater” is redirected to server2.

Then Query Execution takes place at both the server. Table 2

shows execution plan of query1 and query2.

Table 2. Execution Plan of Queries

Parameters Sequential scan on

areawater

Sequential scan on

states

Cost 0.00 – 37792.51 0.00-3.30

Rows 484603 104

Width 3 9

Actual Time 0.025- 1265.499 0.010-0.101

Actual Time

Rows

485571 104

Loops 1 1

Filter (mtfcc)::text =

'H2030'::text

(mtfcc10)::text =

'G4000'::text

By applying this approach execution of query on both the

servers done in parallel and then transferring of result set done

to third server. Therefore parallel execution reduces total run

time. Total run time for execution of queries in parallel was

693.697 ms excluding time taken for redirection of query on

both servers and transferring result back to main server.

Query redirection time and transferring result back can vary

depending on various factors like network traffic, network

speed, latency etc. which may affect the performance. Types

of queries fired on particular database also affect the

performance. Therefore fragmentation techniques based on

query information can be taken into consideration [2] for

storing fragments of data on different servers.

6. CONCLUSION
This approach can be used for benchmarking spatial

databases. Different types of benchmarking like functional,

performance and Database benchmarking can be done by

collecting results from application of this approach and

different types of fragmentation techniques and storage

methods can be considered for storing data at different sites.

It can also be used by many Organizations having large scale

of data distributed over different servers and by

implementation of Query Fragmentation and only transferring

of result set rather than whole data results in performance

gain. It will also solve overhead of data having only at one

site and it will also result in distribution of load on one server

only.

This research work is useful in many Organizations like E-

Governess, Municipal Corporation in order to fire query on

distributed Database (Postgresql-8.4) and in order achieve

optimization of performance. Further work can be done by

implementing the same approach considering heterogeneously

distributed spatial databases according to the need of

organization.

7. REFERENCES
[1] Stefano Ceri, Giuseppe Pelagatti, “Levels of Distributed

Transparency, Distributed Database Design,, Translation

of Global Query to Fragment Query,” in Distributed

Databases: Principles and Systems, pg-37-126.

[2] Monika Yadav, Neha Arora, “Fragmentation Techniques

for Distributed Storage of Spatial Data”, Proceedings of

IRF International Conference, 5th & 6th February 2014,

Pune India.

[3] PostGIS Reference, [Online] Available:

http://postgis.refractions.net/documentation/manual-

1.3/ch06.html

[4] Spatial Functions, [Online] Available:

http://postgis.refractions.net/docs/ST_Intersects.html

http://www.tatamcgrawhill.com/cgi-bin/same_author.pl?author=Stefano+Ceri
http://www.tatamcgrawhill.com/cgi-bin/same_author.pl?author=Giuseppe+Pelagatti+
http://postgis.refractions.net/documentation/manual-1.3/ch06.html
http://postgis.refractions.net/documentation/manual-1.3/ch06.html
http://postgis.refractions.net/docs/ST_Intersects.html#_blank

International Journal of Computer Applications (0975 – 8887)

Volume 140 – No.9, April 2016

5

[5] Features of pgpool, [Online]

Available:http://pgpool.projects.postgresql.org/

[6] Pgpool tutorial, [Online] Available:

http://pgpool.projects.postgresql.org/pgpool-

II/doc/tutorial-en.html.

[7] PgpoolAdmin features and installation, [Online]

Available: http://pgpool.projects.

postgresql.org/pgpoolAdmin/doc/en/install.html

[8] Dblink description, [Online] Available:

http://www.postgresonline.com/journal/archives/44-

Using-DbLink-to-access-other-PostgreSQL-Databases-

and-Servers.html

[9] Geoserver-2.1 User Manual, [Online]

Available:http://docs.geoserver.org/stable/en/user/

[10] Geoserver Information, [Online] Available:

http://workshops.opengeo.org/

[11] 2010 TIGER/Line Shapefiles Technical Documentation.

[Online] Available: http://catalog.data.gov/dataset/tiger-

line-shapefile-2010-series-information-file-for-the-2010-

census-block-state-based-shapefi.

[12] S.Bandhopadhyay, DataManagement (New Dimension

and Perspectives), Join Processing in multidatabase.

[13] P.Bernstein, N.Goodman, E.W ong, C.Reev and

J.Rothnie, Query Processing in a System for Distributed

Databases.

IJCATM : www.ijcaonline.org

http://pgpool.projects.postgresql.org/
http://pgpool.projects.postgresql.org/pgpool-II/doc/tutorial-en.html
http://pgpool.projects.postgresql.org/pgpool-II/doc/tutorial-en.html
http://www.postgresonline.com/journal/archives/44-Using-DbLink-to-access-other-PostgreSQL-Databases-and-Servers.html
http://www.postgresonline.com/journal/archives/44-Using-DbLink-to-access-other-PostgreSQL-Databases-and-Servers.html
http://www.postgresonline.com/journal/archives/44-Using-DbLink-to-access-other-PostgreSQL-Databases-and-Servers.html
http://docs.geoserver.org/stable/en/user/
http://workshops.opengeo.org/

