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ABSTRACT 

Deformable models provide a promising and vigorously 

researched model-based approach to computer-assisted medical 

image analysis. The widely recognized potency of deformable 

models stems from their ability to segment, match, and track 

images of anatomic structures by exploiting (bottom-up) 

constraints derived from the image data together with (top-down) 

a priori knowledge about the location, size, and shape of these 

structures. In this paper, a survey of deformable models and their 

latest extensions are presented.   
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1. INTRODUCTION 
The role of medical imaging has expanded beyond the simple 

visualization and inspection of anatomic structures. It has 

become a tool for surgical planning and simulation, intra-

operative navigation, radiotherapy planning, and for tracking the 

progress of disease. For example, ascertaining the detailed shape 

and organization of anatomic structures enables a surgeon 

preoperatively to plan an optimal approach to some target 

structure. In radiotherapy, medical imaging allows the delivery of 

a necrotic dose of radiation to a tumor with minimal collateral 

damage to healthy tissue. Although modern imaging devices 

provide exceptional views of internal anatomy, the use of 

computers to quantify and analyze the embedded structures with 

accuracy and efficiency is limited. The shortcomings typical of 

sampled data, such as sampling artifacts, spatial aliasing, and 

noise, may cause the boundaries of structures to be indistinct and 

disconnected. The challenge is to extract boundary elements 

belonging to the same structure and integrate these elements into 

a coherent and consistent model of the structure. As a result, 

these model-free techniques usually require considerable 

amounts of expert intervention.  

Deformable models, a promising and vigorously researched 

model-based approach to computer-assisted medical image 

analysis. The widely recognized potency of deformable models 

stems from their ability to segment, match, and track images of 

anatomic structures by exploiting (bottom-up) constraints derived 

from the image data together with (top-down) a priori knowledge 

about the location, size, and shape of these structures[1]. 

1.1 Definition and its Functioning 
Deformable models are curves or surfaces defined within an 

image domain that can move under the influence of internal 

forces, which are defined within the curve or surface itself, and 

external forces, which are computed from the image data. The 

internal forces are designed to keep the model smooth during the 

deformation. The external forces are defined to move the model 

toward an object boundary or other desired features within an 

image. By constraining extracted boundaries to be smooth and 

incorporating other priori information about the object shape, 

deformable models offer robustness to both image noise and 

boundary gaps and allow integrating boundary elements into a 

coherent and consistent mathematical description.  

The idea of deforming a template for extracting image features 

dates back to the work of Fischler and Elschlager’s spring-loaded 

templates [6] and Widrow’s rubber mask technique [7].The 

popularity of Deformable Models is largely due to the influential 

paper ―Snakes: Active Contours‖ by Kass, Witkin and 

Terzopoulous[3,61].The mathematical foundations of deformable 

models represent the confluence of geometry, physics, and 

approximation theory. Geometry serves to represent object shape, 

physics imposes constraints on how the shape may vary over 

space and time, and optimal approximation theory provides the 

formal underpinnings of mechanisms for fitting the models to 

measured data. The name ―deformable models‖ stems primarily 

from the use of elasticity theory at the physical level, generally 

within a Lagrangian dynamics setting [4]. The physical 

interpretation views deformable models as elastic bodies which 

respond naturally to applied forces and constraints. 

The energy grows monotonically as the model deforms away 

from a specified natural or ―rest shape‖ and often includes terms 

that constrain the smoothness or symmetry of the model. In the 

Lagrangian setting, the deformation energy gives rise to elastic 

forces internal to the model. Taking a physics-based view of 

classical optimal approximation, external potential energy 

functions are defined in terms of the data of interest to which the 

model is to be fitted. These potential energies give rise to 

external forces which deform the model such that it fits the data. 

1.2 Types of Representations 
There are basically two types of deformable models: parametric 

deformable models (cf. [3, 8–10]) and geometric deformable 

models (cf. [11–14]). Parametric deformable models represent 
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curves and surfaces explicitly in their parametric forms during 

deformation. This representation allows direct interaction with 

the model and can lead to a compact representation for fast real-

time implementation. Adaptation of the model topology, 

however, such as splitting or merging parts during the 

deformation, can be difficult using parametric models. Geometric 

deformable models, on the other hand, can handle topological 

changes naturally. These models, based on the theory of curve 

evolution [15–18] and the level set method [19, 20], represent 

curves and surfaces implicitly as a level set of a higher-

dimensional scalar function. Their parameterizations are 

computed only after complete deformation, thereby allowing 

topological adaptivity to be easily accommodated. Despite this 

fundamental difference, the underlying principles of both 

methods are very similar. We first describe two different types of 

formulations for parametric deformable models: an energy 

minimizing formulation and a dynamic force formulation. 

Although these two formulations lead to similar results, the first 

formulation has the advantage that its solution satisfies a 

minimum principle whereas the second formulation has the 

flexibility of allowing the use of more general types of external 

forces. We then present several commonly used external forces 

that can effectively attract deformable models toward the desired 

image features.  

2. PARAMETRIC DEFORMABLE MODEL 
Different types of formulation are: (a) Energy minimizing 

formulation (b) Dynamic force formulation. Both lead to same 

results, but the first formulation has the advantage that its 

solution satisfies a minimum principle whereas the second 

formulation has the flexibility of allowing the use of more 

general types of external forces. 

2.1 Energy minimizing Formulation 
The basic premise of the energy minimizing formulation of 

deformable contours is to find a parameterized curve that 

minimizes the weighted sum of internal energy and potential 

energy. The internal energy specifies the tension or the 

smoothness of the contour. The potential energy is defined over 

the image domain and typically possesses local minima at the 

image intensity edges occurring at object boundaries. Minimizing 

the total energy yields internal forces and potential forces. 

Internal forces hold the curve together (elasticity forces) and 

keep it from bending too much (bending forces). External forces 

attract the curve toward the desired object boundaries. To find 

the object boundary, parametric curves are initialized within the 

image domain, and are forced to move toward the potential 

energy minima under the influence of both these forces.  

To gain some insight about the physical behavior of deformable 

contours, we can view Eq. (4) as a force balance equation. 

Geometrically, a snake is a parametric contour embedded in the 

image plane
2),( yx . The contour is represented as 

Tsysxsv ))(),(()(  where x and y are the coordinate functions 

and s [0, 1] is the parametric domain. The shape of the contour 

subject to an image I (x, y) is dictated by the functional 

  ε(v) = S(v) + P(v)    (1) 

The functional can be viewed as a representation of the energy of 

the contour and the final shape of the contour corresponds to the 

minimum of this energy. The first term of the functional,  
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is the internal deformation energy. It characterizes the 

deformation of a stretchy, flexible contour. Two physical 

parameter functions dictate the simulated physical characteristics 

of the contour: w1(s) controls the ―tension‖ of the contour while 

w2(s) controls its ―rigidity‖. The second term in (1) couples the 

snake to the image. Traditionally,  
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 where P(x, y) denotes a scalar potential function defined on the 

image plane. To apply snakes to images, external potentials are 

designed whose local minima coincide with intensity extrema, 

edges, and other features of interest [60].  

The values of the non-negative functions w1(s) and w2(s) 

determine the extent to which the snake can stretch or bend at 

any point s on the snake. For example, increasing the magnitude 

of w1(s) increases the ―tension‖ and tends to eliminate 

extraneous loops and ripples by reducing the length of the snake. 

Increasing w2(s) increases the bending ―rigidity‖ of the snake and 

to make the snake smoother and less flexible. Setting the value 

of one or both of these functions to zero at a point s permits 

discontinuities in the contour at s. 
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which is 

 Fint(X) + Fpot(X) = 0   (5) 

where internal force is  
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and the potential force is   

)()( XPXFpot    (7) 

The internal force Fint discourages stretching and bending while 

the potential force Fpot pulls the contour toward the desired 

object boundaries. To find a solution to Eq. (4), the deformable 

contour is made dynamic by treating X(s) as a function of time as 

well as — i.e X(s, t). The partial derivative of X with respect to t 

is then set equal to the left-hand side of Eq. (4) as follows: 
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The coefficient γ is introduced to make the units on the left side 

consistent with the right side. When the solution X(s, t) 
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stabilizes, the left side vanishes and we achieve a solution of Eq. 

(4). We note that this approach of making the time derivative 

term vanish is equivalent to applying a gradient descent 

algorithm to find the local minimum of Eq. (1) [21]. Thus, the 

minimization is solved by placing an initial contour on the image 

domain and allowing it to deform according to Eq. (8). Figure 1 

shows an example of recovering the left ventricle wall using 

Gaussian potential forces. 

2.2  Dynamic force Formulation 
In the previous section, the deformable model was modeled as a 

static problem, and an artificial variable t was introduced to 

minimize the energy. It is sometimes more convenient, however, 

to formulate the deformable model directly from a dynamic 

problem using a force formulation. Such a formulation permits 

the use of more general types of external forces that are not 

potential forces, i.e., forces that cannot be written as the negative 

gradient of potential energy functions. According to Newton’s 

second law, the dynamics of a contour   X(s, t) must satisfy   

),()()( int2

2

XFXFXF
t

X
extdamp  (9) 

where μ is a coefficient that has a mass unit and  Fdamp is the 

damping (or viscous) force defined as   -γ ,/ tX with γ being the 

damping coefficient. In image segmentation, the mass coefficient 

μ in front of the inertial term is often set to zero since the inertial 

term may cause the contour to pass over the weak edges. The 

dynamics of the deformable contour without the inertial term 

becomes 

  ),()(int XFXF
t

X
ext    (10) 

The internal forces are the same as specified in Eq. (6). The 

external forces can be either potential forces or nonpotential 

forces. We note, however, nonpotential forces cannot be derived 

from the variational energy formulation of the previous section. 

An alternate variational principle does exist (see [22]); however, 

it is not physically intuitive.  

External forces are often expressed as the superposition of 

several different forces:   

),(...)()()( 21 XFXFXFXF Next  (11) 

Where N is the total number of external forces. This 

superposition formulation allows the external forces to be broken 

down into more manageable terms. For example, one might 

define the external forces to be composed of both Gaussian 

potential forces and pressure forces, which are described in the 

next section.  

2.3 Types of External Forces 

2.3.1 Multiscale Gaussian potential force 
When this force was introduced and used, the force could only 

attract the model toward the boundary when it is initialized 

nearby. Terzopoulous, Witkin and Kass proposed using Gaussian 

potential forces at different scales to broaden its attraction range 

while maintaining the model’s boundary localization accuracy. 

The basic idea is to first use a large value of σ is then reduced to 

create a potential energy function with a broad valley around the 

boundary. When the contour or snake reaches equilibrium, the 

value of σ is then reduced to allow tracking of the boundary at a 

finer scale. This scheme effectively extends the attraction range 

of the Gaussian potential force. Drawback of this approach is that 

there is no established theorem for how to schedule changes in σ. 

2.3.2 Pressure force 

The pressure force can either inflate or deflate the model. Hence 

it removes the requirement to initialize the model near the 

desired object boundary. Cohen suggested using another force 

together with Gaussian potential force. Models using pressure 

forces are also known as balloons. Defined as 

 

(a)      (b)        (c) 

 

(d)      (e)        (f) 

Figure 2: An example of pressure forces driven deformable 

contours. (a) Intensity CT image slice of the left ventricle. 

(b) Edge detected image. (c) Initial deformable contour. (d) 

- (f) Deformable contour moving toward the left ventricle 

boundary, driven by inflating pressure force.  

     

      (a)   (b) 

Figure 1: An example of recovering the left ventricle wall 

using Gaussian potential forces. (a) Gaussian potential 

forces and (b) the result of applying Gaussian potential 

forces to a deformable contour, with a circular initial 

contour in gray and the final deformed contour in white.  
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   ),()( XNwXF pp     (12) 

Where N(X) is the inward unit normal of the model at the point X 

and wp is a constant weighting parameter. The sign of wp 

determines whether to inflate or deflate the model and is 

typically chosen by the user. Recently, region information has 

been used to define with a spatial-varying sign based upon 

whether the model is inside or outside the desired object (see 

[23, 24]). The value wp of determines the strength of the pressure 

force. It must be carefully selected so that the pressure force is 

slightly smaller than the Gaussian potential force at significant 

edges, but large enough to pass through weak or spurious edges. 

When the model deforms, the pressure force keeps inflating or 

deflating the model until it is stopped by the Gaussian potential 

force. An example of using deformable contour with an inflating 

pressure force is shown in Figure 2. A disadvantage in using 

pressure forces is that they may cause the deformable model to 

cross itself and form loops (cf. [25]). 

2.3.3 Distance Potential Force 
Another approach for extending attraction range is to define the 

potential energy function using a distance map as proposed by 

Cohen and Cohen [26]. The value of the distance map at each 

pixel is obtained by calculating the distance between the pixel 

and the closest boundary point, based either on Euclidean 

distance [27] or Chamfer distance [28]. By defining the potential 

energy function based on the distance map, one can obtain a 

potential force field that has a large attraction range. Given a 

computed distance map d(x, y), one way of defining a 

corresponding potential energy, introduced in [26], is as follows: 

]),(exp[),( 2yxdwyxP dd   (13) 

  The corresponding potential force field is given by  ).,( yxPd  

2.3.4 Gradient Vector Flow 
The distance potential force is based on the principle that the 

model point should be attracted to the nearest edge points. This 

principle, however, can cause difficulties when deforming a 

contour or surface into boundary concavities [29]. A 2-D example 

is shown in Figure 3, where a U-shaped object and a close-up of 

its distance potential force field within the boundary concavity is 

depicted. Notice that at the concavity, distance potential forces 

point horizontally in opposite directions, thus preventing the 

contour from converging into the boundary concavity. To address 

this problem, Xu and Prince [2, 29] employed a vector diffusion 

equation that diffuses the gradient of an edge map in regions 

distant from the boundary, yielding a different force field called 

the gradient vector flow (GVF) field. The amount of diffusion 

adapts according to the strength of edges to avoid distorting 

object boundaries. A GVF field is defined as the equilibrium 

solution to the following vector partial differential equation: 

),)(()( 2 fvfhvfg
t

v
  (14) 

Where tvfyxv ,)0,,(  denotes the partial derivative of 

),,( tyxv with respect to t, 2  is the Laplacian operator (applied 

to each spatial component of v separately), and f is an edge map 

that has higher value at the desired object boundary and can be 

derived using any edge detector. The definition of the GVF field 

is valid for any dimension. Two examples of g(r) and  h(r) are 

2)/(exp)( krrg  

    ),(1)( rgrh  

Where k is a scalar and r is a dummy variable, or   )(rg  and 

h(r) = r2, where μ is a positive scalar. GVF has been shown to 

have a large attraction range and improved convergence for 

deforming contours into boundary concavities [15, 29]. An 

example of using a GVF force field is shown in Figure 4. 

2.3.5 Dynamic Distance Force 
An external force that is similar to distance potential force but 

does not possess the boundary concavity problem has been 

proposed [44, 45]. This approach derives an external force by 

computing a signed distance at each point on the deformable 

contour or surface. This signed distance is calculated by 

determining the closest boundary point or other image feature 

along the model’s normal direction. The distance values are 

recomputed each time the model is deformed. Several criteria 

can be used to define the desired boundary point to be searched. 

The most common one is to use image pixels that have a high 

image intensity gradient magnitude or edge points generated by 

an edge detector. A threshold is specified for the maximum 

search distance to avoid confusion with outliers and to reduce the 

 
(a)            (b)   (c) 

Figure 3: An example of distance potential force field. (a) A 

U-shaped object, a close-up of its (b) boundary concavity, and 

(c) the distance potential force field within the concavity. 
    

(a)                                                      (b) 

Figure 4: An example of gradient vector flow driven 

deformable model contours. (a) A gradient vector flow field 

and (b) the result of applying gradient vector flow force to a 

deformable contour, with the circular initial contour shown in 

gray and the final deformed contour in white.  
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computation time. The resulting force, which is called as the 

dynamic distance force, can attract deformable models to the 

desired image feature from a fairly long range limited only by the 

threshold.  

Given a point X on the contour or surface, its inward unit normal 

N(X), the computed signed distance D(X), and a specified 

distance threshold Dmax, a typical definition for the dynamic 

distance force is 

   )(
)(

)(
max

XN
D

XD
wXF DD    (15) 

The weakness of this method is that a relatively time-consuming 

one dimensional search along the normal direction must be 

performed each time the model deforms. Setting the search 

distance threshold lower can reduce the run time but has the 

undesirable side effect of decreasing the attraction range of the 

dynamic distance force.  

2.3.6 Interactive Force 
In many clinical situations, it is important to allow an operator to 

interact with the deformable model as it is deforming. This 

interaction improves the accuracy of the segmentation result 

when automated external forces fail to deform the model to the 

desired feature in certain regions. For example, the user may 

want to pull the model toward significant image features, or 

would like to constrain the model so that it must pass through a 

set of landmark points identified by an expert. De-formable 

models allow these kinds of user interactions to be conveniently 

modelled as additional force terms. 

Two kinds of commonly used interactive forces are spring forces 

and volcano forces, proposed by Kass et al. [3]. Spring forces are 

defined to be proportional to the distance between a point x on 

the model and a user-specified point p:  

  ).( XpwF ss     (16) 

Spring forces act to pull the model toward p. The further away 

the model is from p, the stronger the pulling force. The point x is 

selected by finding the closest point on the model to p using a 

heuristic search around a local neighbourhood of p. Volcano 

forces are designed to push the model away from a local region 

around a ―volcano‖ point p. For computational efficiency, the 

force is only computed in a neighbourhood N(p) as follows: 
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Where r = X – p. Note that the magnitude of the forces is limited 

near r = 0 to avoid numerical instability. Another possible 

definition for volcano forces is 
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 where σv is used to adjust the strength distribution of the 

volcano force.  

2.4 Numerical Implementation:  
Various numerical implementations of deformable models have 

been reported in the literature. For examples, the finite 

difference method [3], dynamic programming [8], and greedy 

algorithm [30] have been used to implement deformable 

contours, while finite difference methods [5] and finite element 

methods [10, 21, 31] have been used to implement deformable 

surfaces. The finite difference method requires only local 

operations and is efficient to compute. The finite element 

method, on the other hand, is more costly to compute but has the 

advantage of being well adapted to the irregular mesh 

representations of deformable surfaces.  

So far, we have formulated the deformable model as a continuous 

curve or surface. In practice, however, it is sometimes more 

straightforward to design the deformable models from a discrete 

point of view. Example of work in this area includes [32–37]. 

Parametric deformable models have been applied successfully in 

a wide range of applications; however, they have two main 

limitations. First, in situations where the initial model and the 

desired object boundary differ greatly in size and shape, the 

model must be reparameterized dynamically to faithfully recover 

the object boundary. Methods for reparameterization in 2D are 

usually straightforward and require moderate computational 

overhead. Reparameterization in 3D, however, requires 

complicated and computationally expensive methods. The second 

limitation with the parametric approach is that it has difficulty 

dealing with topological adaptation such as splitting or merging 

model parts, a useful property for recovering either multiple 

objects or an object with unknown topology. This difficulty is 

caused by the fact that a new parameterization must be 

constructed whenever the topology change occurs, which requires 

sophisticated schemes [38, 39]. 

3. GEOMETRIC DEFORMABLE MODEL 
Geometric deformable models, proposed independently by 

Caselles et al. [11] and Malladi et al. [12], provide an elegant 

solution to address the primary limitations of parametric 

deformable models. These models are based on curve evolution 

theory [15–18] and the level set method [19, 20]. In particular, 

curves and surfaces are evolved using only geometric measures, 

resulting in an evolution that is independent of the 

parameterization. As in parametric deformable models, the 

evolution is coupled with the image data to recover object 

boundaries. Since the evolution is independent of the 

parameterization, the evolving curves and surfaces can be 

represented implicitly as a level set of a higher-dimensional 

function. As a result, topology changes can be handled 

automatically.  

In this section, we first review the fundamental concepts in curve 

evolution theory and the level set method. We next present three 

types of geometric deformable models, and the difference being 

in the design of speed functions. We then show a mathematical 

relationship between a particular class of parametric and 

geometric models. Next, we describe a numerical 
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implementation of geometric deformable models proposed by 

Osher and Sethian [19]. Finally, at the end of this section we 

compare geometric deformable models with parametric 

deformable models. We note that although the geometric 

deformable models are presented in 2D, their formulation can be 

directly extended to 3D. A thorough treatment on evolving curves 

and surfaces using the level set representation can be found in 

[20]. 

3.1 Curve Evolution Theory 
The purpose of curve evolution theory is to study the deformation 

of curves using only geometric measures such as the unit normal 

and curvature as opposed to the quantities that depend on 

parameters such as the derivatives of an arbitrary parameterized 

curve. Let us consider a moving curve, X(s, t) = [X(s, t), Y(s, t)], 

where s is any parameterization and t is the time, and denote its 

inward unit normal as N and its curvature as κ, respectively. The 

evolution of the curve along its normal direction can be 

characterized by the following partial differential equation:  

,)( NV
t

X
      (18) 

where V(κ) is called the speed function, since it determines the 

speed of the curve evolution. We note that a curve moving in 

some arbitrary direction can always be reparameterized to have 

the same form as Eq. (18) [40].  The intuition behind this fact is 

that the tangent deformation affects only the curve’s 

parameterization, not its shape and geometry. The most 

extensively studied curve deformations in curve evolution theory 

are curvature deformation and constant deformation. Curvature 

deformation is given by the so-called geometric heat equation: 

,N
t

X
 where α is a positive constant. This equation will 

smooth a curve, eventually shrinking it to a circular point [41]. 

The use of the curvature deformation has an effect similar to the 

use of the elastic internal force in parametric deformable models. 

Constant deformation is given by ,0 NV
t

X
 where V0 is a 

coefficient determining the speed and direction of deformation. 

Constant deformation plays the same role as the pressure force in 

parametric deformable models. The properties of curvature 

deformation and constant deformation are complementary to each 

other. Curvature deformation removes singularities by smoothing 

the curve, while constant deformation can create singularities 

from an initially smooth curve. The basic idea of the geometric 

deformable model is to couple the speed of deformation (using 

curvature and/or constant deformation) with the image data, so 

that the evolution of the curve stops at object boundaries. The 

evolution is implemented using the level set method. Thus, most 

of the research in geometric deformable models has been focused 

in the design of speed functions. 

3.2 Level Set Method 
We now review the level set method for implementing curve 

evolution. The level set method is used to account for automatic 

topology adaptation, and it also provides the basis for a 

numerical scheme that is used by geometric deformable models. 

The level set method for evolving curves is due to Osher and 

Sethian [19, 42, 43]. In the level set method, the curve is 

represented implicitly as a level set of a 2D scalar function — 

referred to as the level set function — which is usually defined 

on the same domain as the image. The level set is defined as the 

set of points that have the same function value. Figure 5 shows 

an example of embedding a curve as a zero level set. It is worth 

noting that the level set function is different from the level sets 

of images, which are sometimes used for image enhancement 

[44]. The sole purpose of the level set function is to provide an 

implicit representation of the evolving curve. 

Instead of tracking a curve through time, the level set method 

evolves a curve by updating the level set function at fixed 

coordinates through time. This perspective is similar to that of a 

Euclidean formulation of motion as opposed to a Lagrangian 

formulation, which is analogous to the parametric deformable 

model. A useful property of this approach is that the level set 

function remains a valid function while the embedded curve can 

change its topology. This situation is depicted in Figure 6.  

We now derive the level set embedding of the curve evolution 

Eq. (18). Given a level set function ϕ(x, y, t) with the contour 

X(s, t) as its zero level set, we have  

ϕ[X (s. t), t] = 0.  

Differentiating the above equation with respect to t and using the 

chain rule, we obtain  

.0.
t

X

t
     (19) 

where denotes the gradient of ϕ. We assume that ϕ is 

negative inside the zero level set and positive outside. 

Accordingly, the inward unit normal to the level set curve is 

given by  .N  

Three issues need to be considered in order to implement 

geometric deformable contours: 

1. An initial function ϕ  (x, y, t) = 0 must be constructed such 

that its zero level set corresponds to the position of the initial 

contour. A common choice is to set ϕ  (x, y, 0) =D (x, y), 

where D (x, y), is the signed distance from each grid point to 

the zero level set. The computation of the signed distance for 

an arbitrary initial curve is expensive. Recently, Sethian and 

Malladi developed a method called the fast marching 

 

Figure 5: An example of embedding a curve as a level set. (a) 

A single curve. (b) The level set function where the curve is 

embedded as the zero level set (in black). (c) The height map 

of the level set function with its zero level set depicted in 

black. 
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method, which can construct the signed distance function in 

O (N log N), N where is the number of pixels. Certain 

situations may arise, however, where the distance may be 

computed much more efficiently. For example, when the zero 

level set can be described by the exterior boundary of the 

union of a collection of disks, the signed distance function 

can be computed in O (N) as 

),(min)(
,...,2,1

ii
Mi

rcxxD  

Where x = (x, y), M is the number of initial disks, ci and ri 

are the center and radius of each disk. 

2. Since the evolution equation is derived for the zero level set 

only, the speed function V (κ), in general, is not defined on 

other level sets. Hence, we need a method to extend the 

speed function V (κ) to all of the level sets. We note that the 

expressions for the unit normal and the curvature, however, 

hold for all level sets. Many approaches for such extensions 

have been developed (see [20] for a detailed discussion on 

this topic). However, the level set function that evolves using 

these extended speed functions can lose its property of being 

a signed distance function, causing inaccuracy in curvature 

and normal calculations. As a result, reinitialization of the 

level set function to a signed distance function is often 

required for these schemes. Recently, a method that does not 

suffer from this problem was proposed by Adalsteinsson and 

Sethian [45]. This method casts the speed extension problem 

as a boundary value problem, which can then be solved 

efficiently using the fast marching method. 

3. In the application of geometric contours, constant 

deformation is often used to account for large-scale 

deformation and narrow boundary indentation and protrusion 

recovery. Constant deformation, however, can cause the 

formation of sharp corners from an initial smooth zero level 

set. Once the corner is developed, it is not clear how to 

continue the deformation, since the definition of the normal 

direction becomes ambiguous. A natural way to continue the 

deformation is to impose the so-called entropy condition 

originally proposed in the area of interface propagation by 

Sethian [46]. 

4. VARIATIONS OR EXTENSIONS TO 

DEFORMABLE MODELS 
Numerous extensions have been proposed to the deformable 

models described in the previous sections, particularly to extend 

the parametric deformable models. These extensions address two 

major areas for improving standard deformable models. The first 

area is the incorporation of additional prior knowledge into the 

models. Use of prior knowledge in a deformable model can lead 

to more robust and accurate results. This is especially true in 

applications where a particular structure that requires delineation 

has similar shape across a large number of subjects. 

Incorporation of prior knowledge requires a training step that 

involves manual interaction to accumulate information on the 

variability of the object shape being delineated. This information 

is then used to constrain the actual deformation of the contour or 

surface to extract shapes consistent with the training data.  

The second area that has been addressed by various extensions of 

deformable models is in modeling global shape properties. 

Traditional parametric and geometric deformable models are 

local models — contours or surfaces are assumed to be locally 

smooth. Global properties such as orientation and size are not 

explicitly modeled. Modeling of global properties can provide 

greater robustness to initialization. Furthermore, global 

properties are important in object recognition and image 

interpretation applications because they can be characterized 

using only a few parameters. Note that although prior knowledge 

and global shape properties are distinct concepts, they are often 

used in conjunction with one another. Global properties tend to 

be much more stable than local properties. Therefore, if 

information about the global properties is known a priori, it can 

be used to greatly improve the performance of the deformable 

model.  In this section, we review several extensions of 

deformable models that use prior knowledge and/or global shape 

properties. We focus on revealing the fundamental principles of 

each extension and refer the reader to the cited literature for a 

full treatment of the topic.  

4.1 Deformable Fourier models 
In standard deformable models, a direct parameterization is 

typically utilized for representing curves and surfaces. Staib and 

Duncan [47] have proposed using a Fourier representation for 

parameterizing deformable contours and surfaces. A Fourier 

representation for a closed contour is expressed as 
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where a0, c0, a1, b1, c1, d1, … are Fourier coefficients. The 

Fourier coefficients of  X (s) are computed by 
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Coefficients of Y(s) are computed in analogous fashion. The 

advantages of the Fourier representation are that a compact 

representation of smooth shapes can be obtained by truncating 

the series and that a geometric description of the shape can be 

derived to characterize global shape properties. From Eq. (20), 

the coefficients a0 and c0 define the translation of the contour. 

Each subsequent term in the series expansion follows the 

parametric form of an ellipse. It is possible to map the 

coefficients to a parameter set that describes the object shape in 

terms of standard properties of ellipses [47]. Furthermore, like 

the Fourier coefficients, these parameters follow a scale ordering, 

where low index parameters describe global properties and 

higher indexed parameters describe more local deformations. 

 
Staib and Duncan apply a Bayesian approach to incorporating 

prior information into their model. A prior probability function is 

defined by first manually or semi-automatically delineating 

structures of the same class as the structure to be extracted. Next, 

these structures are parameterized using the Fourier coefficients, 

or using the converted parameter set based on ellipses. Mean and 
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variance statistics are finally computed for each of the 

parameters. 

Assuming independence between the parameters, the 

multivariate Gaussian prior probability function is given by 

2
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where ),...,,( 21 Npppp  is the parameter vector derived by 

truncating the Fourier coefficients, μi is the mean of the ith 

parameter in the training data, and  σi
2 is the variance. A 

posterior probability function is defined that balances the prior 

probability model and a data model, which measures the 

discrepancy between boundary features in the image and the 

deformable contour. In [47], a gradient ascent method was used 

to maximize the posterior probability function. More recently, a 

genetic algorithm was proposed in [48]. Figure 7 shows an 

example of using the deformable Fourier model to recover the 

corpus callosum of the human brain. 

4.2 Deformable models using modal analysis 
Another way to restrict the mostly unstructured motion 

associated with the standard deformable model is to use modal 

analysis (Pentland and Horowitz [49], Nastar and Ayache [53]). 

This approach is similar to the deformable Fourier model except 

that both the basis functions and the nominal values of their 

coefficients are derived from a template object shape.  

Deformable models based on modal analysis use the theory of 

finite elements [50]. An object is assumed to be represented by a 

finite set of elements whose positions are defined by the positions 

of n nodes, which are points in d -dimensional space. The node 

positions can be stacked into a vector X, which has length nd, 

and element interpolation characterizes the complete object 

shape on the continuum. If the object moves or deforms, its new 

position is given by X+U, where U is a vector of length   nd 

representing the collection of nodal displacements.  

The equation governing the object’s motion can be written as a 

collection of ordinary differential equations constraining the 

nodal displacements. This is compactly written as   

,
2

2

fKU
dt

dU
C

dt

Ud
M  

where M, C, and K are the mass, damping and stiffness matrices 

of the system and f is a nd-dimensional vector of external forces 

acting on the nodes. Both U and f are assumed to be functions of 

time. 

4.3 Deformable superquadrics 
Another extension of deformable models that has been used for 

incorporating local and global shape features is the deformable 

superquadric, proposed by Terzopoulos and Metaxas [31]. This 

is essentially a hybrid technique where a superquadric surface, 

which can be defined with a relatively small number of 

parameters, is allowed to deform locally for reconstructing the 

shape of an object. Although the fitting of global and local 

deformations is performed simultaneously, the global 

deformation is forced to account for as much of the object shape 

as possible. The estimated superquadric therefore captures the 

global shape characteristics and can readily be used in object 

recognition applications, while the local deformations capture the 

details of the object shape.  

Terzopoulos and Metaxas consider models that are closed 

surfaces, denoted by x (u), where the parametric coordinates 

 

Figure 7: Segmenting the corpus callosum from an MR 

midbrain sagittal image using a deformable Fourier model. 

Top left: MR image (146X106). Top right: positive magnitude 

of the Laplacian of the Gaussian (σ = 2.2). Bottom left: initial 

contour (six harmonics). Bottom right: final contour on the 

corpus callosum of the brain.  

 

(a)   (b)  

 
(c)    (d) 

Figure 9: An example of Active Shape Models. (a) An 

echocardiogram image. (b) The initial position of the heart 

chamber boundary model. The location of the model after (c) 

80 and (d) 200 iterations.  
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u=[u, v]. This surface can be expressed as  

  x(u) = c +Rp(u),    (22) 

    where c is a translation vector, and R is a rotation 

matrix. The vector function p(u) denotes the model shape 

irrespective of pose and can further be expressed as 

   p(u)= s(u) + d(u)    (23) 

where s(u) is a reference shape consisting of the low parameter 

global shape model, and d(u) is a displacement function 

consisting of the local deformations. The reference shapes in this 

case are superquadrics, which are an extension of standard 

quadric surfaces. These surfaces have been used in a variety of 

applications for computer graphics and computer vision, because 

of their ability to accommodate a large number of shapes with 

relatively few parameters. The kind of superquadric of interest 

here is the superellipsoid, which can be expressed implicitly as 

in [51]. 

4.4 Active shape models (ASMs) 
Active shape models (ASMs) proposed by Cootes et al. [52, 53] 

use a different approach to incorporate prior shape information. 

Their prior models are not based on the parameterization, but are 

instead based on a set of points defined at various features in the 

image. In the following, we summarize how the prior model is 

constructed and used to enhance the performance of a deformable 

model and how the ASM paradigm can be extended to 

incorporate prior information on the image intensity rather than 

on the shape alone.  

4.4.1 Construction of the ASM prior model 
The ASM prior model is constructed by first establishing a set of 

labeled point features, or landmarks, within the class of images 

to be processed [see Figs. 8(a) and (b)]. These points are 

manually selected on each of the images in the training set. Once 

selected, the set of points for each image is aligned to one 

another with respect to translation, rotation, and scaling. This is 

accomplished using an iterative algorithm based on the 

Procrustes method [54]. This linear alignment allows studying 

the object shape in a common coordinate frame, which we will 

refer to as the model space of the ASM. After the alignment, 

there is typically still a substantial amount of variability in the 

coordinates of each point. To compactly describe this variability 

as a prior model, Cootes and Taylor developed the Point 

Distribution Model (PDM), which we now describe. Given N 

aligned shapes Y1, Y2, YN in the model space, where   Yi = (xi0, 

yi0… xin-1, yin-1)
T is a 2n-dimensional vector describing the 

coordinates of the n points from the ith shape, the mean shape, 

Ȳ , is defined to be     Ȳ  .
1

1

N

i

iY
N

 

   (24)   

The covariance matrix, S, is computed by   
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The eigenvectors corresponding to the largest eigenvalues of the 

covariance matrix describe the most significant modes of 

variation. Because almost all of the variability in the model can 

be described using these eigenvectors, only m such eigenvectors 

are selected to characterize the entire variability of the training 

set. Note that in general m is significantly smaller than the 

number of points in the model. 

4.4.2 Model fitting procedure 
The key idea of ASMs is to constrain the behavior of deformable 

models using the PDM obtained as described in the previous 

section (cf. [53, 55, 56]). At each iteration, a standard 

deformation of the parametric deformable model is approximated 

by adjusting both the pose (translation, rotation, and scale) 

parameters and the shape parameters of the model instance. 

Thus, only deformations that produce shapes similar to those in 

the training set are allowed. The iteration stops when changes in 

both the pose and shape parameters are insignificant. Figure 9 

shows an example of using active shape models to extract the 

heart wall from an ultrasound image. 

Let us denote the position of the model instance at the beginning 

of a deformation step as X = (X0, Y0,…, Xn-1, Y n-1) 
T and the 

required deformation computed from both internal and external 

forces as a displacement vector dX  = (dX0, dY0,…, dXn-1, dYn-1)
T  . 

Then the position of the model instance, X, can be compactly 

represented by its pose and shape parameters, i.e., 

  Y =  Ȳ  + Pb, and 
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 X = M (s, θ) [Y] + Xc    (25) 

  where s is the scaling factor, θ is rotational angle, M 

(s, θ) [Y]   is a linear transformation that performs scaling and 

rotation on Y, and Xc = (Xc, Yc) is the center of the model 

instance. First, a global fit is performed by adjusting the pose 

parameters so that the generated model instance aligns best with 

the expected model instance X + dX. The proper pose parameter 

adjustments, ds, dθ, and d Xc, can be estimated efficiently using 

a standard least-squares approach (see [53] for details). 

4.5 Other models 
Additional extensions have also been proposed to use global 

shape information or prior shape information. For example, Ip 

and Shen [57] incorporated prior shape information by using an 

affine transformation to align a shape template with the 

deformable model and guide the model’s deformation to produce 

a shape consistent with the template.  

The deformable Fourier model, active shape model, and other 

extensions we discussed so far are all parametric deformable 

models. Guo and Vemuri[58] have proposed a framework for 

incorporating global shape prior information into geometric 

deformable models. Like the deformable superquadric, their 

hybrid geometric deformable model uses a combination of an 

underlying, low parameter, generator shape that is allowed to 

evolve. Their model thus retains the advantages of traditional 

geometric deformable models, such as topological adaptivity. 

External forces for deformable models are typically defined from 

edges in the image. Fritsch et al. [59] have developed a technique 

called deformable shape loci, which uses information on the 

medial loci or cores of the shapes to be extracted. The 

incorporation of cores provides greater robustness to image 

disturbances such as noise and blurring than purely edge-based 

models. This allows their model to be fairly robust to 

initialization as well as imaging artefacts. They also employed a 

probabilistic prior model for important shape features as well as 

for the spatial relationships between these features. 

5. CONCLUSION 
We have described the fundamental formulation of both 

parametric and geometric deformable models and shown that 

they can be used in recovering shape boundaries. We have also 

derived an explicit mathematical relationship between these two 

formulations that allows one to share the design of external 

forces and speed functions. This may lead to new, improved 

deformable models. Finally, we give a brief overview of several 

important extensions of de-formable models that use application-

specific prior knowledge and/or global shape properties to obtain 

more robust and accurate results. 

We expect that further improvements in deformable models will 

be made by the continued research in external force and speed 

function design, model representation, model training and 

learning, and model performance validation. Another challenging 

research direction is to develop deformable models that have a 

greater control in topology. For example, models that can both 

constrain or change topology depending on the requirements of 

an application would be extremely useful. Promising approaches 

have been proposed recently, such as the work by McInerney and 

Terzopoulos [39], who developed a hybrid method that maintains 

both implicit and explicit representation for a given model to 

allow more effective control of the topology. Finally, integrating 

deformable models with existing medical systems, such as 

surgical simulation, planning, and treatment systems, can further 

validate the application of deformable models in a clinical setting 

and may in turn stimulate the development of better deformable 

models. 
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