
IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

89

Segmentation of Abnormal Region from Endoscopic
Images using Intelligent Scissors

Ravindra S. Hegadi
Department of Computer Science

Karnatak University
Dharwad, India

Shailaja S. Halli
Department of Computer Science

Karnatak University
Dharwad, India

Arpana Kop
Department of Computer Science

Karnatak University
Dharwad, India

ABSTRACT

The commonly found abnormalities in endoscopic images are
cancer tumors, ulcers, bleeding due to internal injuries, etc.

Several methods of segmentation are employed in recent past for
proper segmentation of such images. Intelligent scissors is one of
the tools for segmentation. Here the segmentation of endoscopic
images is presented using the intelligent scissors. This method is
used to segment the tumor, abnormal regions and cancerous
growth in the human esophagus. Several methods implemented in
the recent past have yielded good results. But this method is
simpler. Here a seed point is selected then the cost matrix is

constructed which gives the costs of the neighbouring points.
Using Dijkstra‟s algorithm, the nearest point falling in the same
region is selected. The proposed method has shown encouraging
results in segmenting the abnormal parts from esophegal
endoscopic images.

General Terms

Image processing, medical image analysis.

Keywords

Intelligent Scissors, Endoscopy, Segmentation, Optimal Path.

1. INTRODUCTION
Intelligent Scissors allow objects within digital images to be
extracted quickly and accurately using simple gesture motions
with a mouse. When the gestured mouse position comes in
proximity to an object edge, a live-wire boundary “snaps” to, and
wraps around the object of interest. , digital image segmentation

tool called “Intelligent Scissors” which allows rapid object
extraction from arbitrarily complex backgrounds. Intelligent
Scissors formulates boundary finding as an unconstrained graph
search [1] in which the boundary is represented as an optimal path
within the graph.

Live-wire boundary detection formulates boundary detection as an
optimal path search in a weighted graph. Optimal graph searching
provides mathematically piece-wise optimal boundaries while
greatly reducing sensitivity to local noise or other intervening

structures. Robustness is further enhanced with on-the-fly training
which causes the boundary to adhere to the specific type of edge
currently being followed, rather than simply the strongest edge in
the neighbourhood. Boundary cooling automatically freezes
unchanging segments and automates input of additional seed
points. Cooling also allows the user to be much more free with the
gesture path, thereby increasing the efficiency and finesse with
which boundaries can be extracted.

Among the global boundary based techniques, graph searching
and dynamic programming are popular techniques used to find the

globally “optimal” boundaries based on some local cost criteria
[2, 3, 4, 5 and 6]. They formulate the boundary finding problem as
a directed graph or cost functional to which an optimal solution is
sought. Montanari [7] was perhaps the first to apply a global
optimization algorithm to boundary detection in images. He
proposes “a technique for recognizing systems of lines” based on

dynamic programming to minimize a heuristic “figure of merit” or
cost function and develops a figure of merit for low curvature
lines based on image intensity, path curvature and path length.
The algorithm detects a line (with local variations) in an artificial
image even when the line is hardly visible due to noise.

Ballard and Sklansky [8] extend Montanari‟s algorithm by using
gradient magnitude, gradient direction and a closure measure in
their evaluation function. They use dynamic programming with

directed searching to detect circular tumours in chest radiographs.
Chien and Fu [9] argue that Ballard and Sklansky‟s decision
function is “too specifically designed for one type of application”
and develop a more general “criterion” function which has both
local (e.g., gradient) and global (e.g., curvature) components.
They minimize the criterion function using a modified decision
tree search and apply their technique to determine cardiac
boundaries in chest x-rays. Martelli [10] shows that any

optimization problem using dynamic programming can be
formulated as a shortest or minimum cost path graph search. He
applies Nilsson‟s [11] A* heuristic graph search algorithm to the
boundary detection problem where the heuristic is used to prune
the search and thereby reduce computation. His technique
successfully identifies multiple touching objects and occluded
boundaries in artificial images with Gaussian noise.

Udupa [12] formulates optimal two-dimensional boundary finding

as a graph search using dynamic programming. Like Martelli [10],
he formulates the image grid as a directed graph where pixel
corners are nodes and the cracks between pixels are directed arcs.
Based on Udupa‟s formulation, and in collaboration with him,
Morse et al. [13, 14] present a boundary finding algorithm which
computes a piece-wise optimal boundary given multiple input
control points. Rather than specify constraints and heuristics for a
specific problem, this method utilizes a probabilistic “likelihood”
function.

 Snakes, active contours, and thin plate models are another global
boundary based segmentation techniques that have received a
great deal of attention [15, 16, 17, 18, 19, 20, and 21]. Active
contours are initialized manually with a rough approximation to a
boundary of interest and then allowed to iterate over the contour
to determine the boundary that minimizes energy functional. Kass,
Witkin, and Terzopoulos [19, 20] introduced a global minimum
energy contour called “snakes” or active contours. Given an initial

approximation to a desired contour, a snake locates the closest

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

90

minimum energy contour by iteratively minimizing an energy
functional which Geiger et al. [18] apply dynamic programming
to detect deformable contours. They use a noniterative technique
that searches for the optimal contour within a large
neighbourhood around the initial contour. They utilize a multi-

scale technique to achieve greater processing efficiency while
sacrificing guaranteed optimality. The methods discussed thus far
follow a pattern of user input--whether through defining a figure
of merit, a decision function, a 2-D template, or an initial active
contour, etc. to initialize the algorithm, followed by contour
selection based on the input, for the graph searching techniques,
or contour refinement of the input, for active contour techniques.
If the resulting contour is not satisfactory, this may in turn be

followed by one or more iterations of user input (to adjust
parameters, change the figure of merit, input a new initial active
contour, locally modify an existing contour or energy landscape,
etc.) and reapplication of the algorithm.

The interactive optimal path selection algorithm, or live-wire
technique, was developed as a general image segmentation tool
which takes advantage of the multiple optimal paths generated by
graph searching techniques. The live-wire technique was

developed to overcome the limitations of [13, 14]. Although
[13,14] use dynamic programming to compute unrestricted
optimal paths from every grid point in the image to every other
grid point, it still suffers from the same iterative, non-interactive
style as previous graph searching boundary finding methods in
that the user inputs a series of control points which are then
connected with piece-wise optimal segments into a single contour.
There is no immediate feedback to indicate where or how far apart

to place the seed points on the boundary. Consequently, multiple
iterations, requiring input of multiple control points is typical with
this technique.

2. INTELLIGENT SCISSORS
The underlying mechanism for Intelligent Scissors is the “live-
wire” path selection tool. The live-wire tool allows the user to

interactively select the desired optimal path from the entire
collection of optimal paths (one for each pixel in the image)
generated from a specified seed point. The optimal path from each
pixel is determined at interactive speeds by computing an optimal
spanning tree of the image using an efficient implementation of
Dijkstra‟s graph searching algorithm. The basic idea is to
formulate the image as a weighted graph where pixels represent
nodes with directed, weighted edges connecting each pixel with

its 8 adjacent neighbours.

2.1 Local Costs
The local cost function is given by

)()()(

),()()(),(

qfqfqf

qpfqfqfqpl

ooIIPP

DDGGzz
 (1)

where each ω is the weight of the corresponding feature function.
Empirically (and by default), weights of ωZ = 0.3, ωG =

0.3, 1.0D , ωP = 0.1, ωI = 0.1, and ωO = 0.1 seem to work well

in a wide range of images. However, these weights can be easily
adjusted.

If p and q are two neighbouring pixels in the image then l (p, q)
represents the local cost on the directed link (or edge) from p to q.
The local cost function is a weighted sum of component cost
functions on each of the following image features:

Table 1: Image features

Image Feature Formulation

Laplacian Zero-Crossing fZ

Gradient Magnitude fG

Gradient Direction fD

Edge Pixel Value fP

“Inside” Pixel Value fI

“Outside” pixel value fO.

The Laplacian zero-crossing, fZ, and the two gradient features, fG
and fD, have static cost functions. Static costs can be computed
without any a priori information about image content. The
gradient magnitude, fG, and the three pixel value components, fP,
fI, and fO, (“inside” and “outside” features are introduced in [22,
23] have dynamic cost functions. (Note that fG is the only cost
feature that has both static and dynamic components.). Since a
meaningful static cost function for fP, fI, and fO could not be

formulated, they have meaning only after training. As a result, if
training is turned off or if no training data is available, the weights
for fP, fI, and fO are zero. The Laplacian zero-crossing, fZ, and the
gradient magnitude, fG, are edge operators employing image
convolution with multi-scale kernels. This allows the cost
functions for these features to adapt to a variety of image types by
automatically selecting, on a pixel by pixel basis, the kernel width
that best matches the line-spread function of the imaging

hardware used to obtain the current image [26, 27].

2.1.1 Laplacian Zero-Crossing (fZ)
The primary purpose of the multi-scale Laplacian zero-crossing
component, fZ, is for edge localization [26, 28]. As mentioned,

multiple kernel widths are used each corresponding to a different
standard deviation for the 2-D Gaussian distribution. The kernels
are normalized such that the sums of their positive elements (or
weights) are equal. This is done so that comparisons can be made
between the results of convolutions with different kernel sizes.
The standard deviations used to compute Laplacian kernels vary
from 1/3 of a pixel (producing a 5x5 kernel) to 2 pixels (giving a
15x15 kernel) in increments of 1/3 of a pixel. The kernels are

large enough to include all kernel elements which are nonzero
when represented as 16 bit fixed-point values. Multiple kernel
sizes are used because smaller kernels are more sensitive to fine
detail while larger kernels suppress noise. By default, kernel sizes
of 5x5 and 9x9 are used and seem to work well in a variety of
images. However, for low contrast, low SNR images, larger
kernel sizes can be easily used. The Laplacian zero-crossing is
used to create a binary local cost feature. If a pixel is on a zero-

crossing then the component cost for all links to that pixel is low;
otherwise it is high. However, a discrete Laplacian image
produces very few, if any, actual zero valued pixels. Rather, a
zero-crossing is represented by two neighbouring pixels with
opposite sign. Of the two pixels, the one that is closest to zero is
chosen to represent the zero-crossing. Thus, fZ is 0 for Laplacian
image pixels that are either zero or closer to zero than any
neighbour with an opposite sign; otherwise, fZ is 1. The four

horizontal/vertical neighbours of a pixel constitute the
neighbourhood used to determine the zero-crossing. This creates a
single pixel wide cost “canyon” and results in boundaries
“snapping” to and localizing object edges. Since multiple kernels

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

91

can be used in the formulation of fZ, then each binary cost feature
resulting from a given kernel width (or standard deviation) has a
weight which contributes to the component feature cost. That is,
the zero-crossing cost feature is the weighted sum of the binary
zero-crossing maps computed for each kernel size used where the

sum of the kernel weights is unity. (Default values are 0.45 for the
5x5 kernel and 0.55 for the 9x9 kernel).

2.1.2 Multi Scale Gradient Magnitude (fG)
Since the Laplacian zero-crossing creates a binary feature, fZ does
not distinguish between a “strong” or high gradient edge and a
“weak” or low gradient edge. Gradient magnitude, however, is
directly proportional to the image gradient. The gradient
magnitude is computed by approximating the partial derivatives of
the image in x and y using derivative of Gaussian kernels of
various scales. This gives the horizontal, Ix, and the vertical, Iy,
partial gradient magnitudes of the image. An image‟s gradient

magnitude G can then be approximated by

 .22
yx IIG (2)

ever, the static gradient magnitude cost feature needs to be low for
strong edges (high gradients). and high for weak edges (low
gradients). Thus, the static cost feature is computed by subtracting
the gradient magnitude image from its own maximum and then
dividing the result by the maximum gradient (to scale the
maximum cost to 1 prior to multiplying by the feature weight ωG).
The resulting static feature cost function is

)max(

1
)max(

)max(

G

G

G

GG
fG

 (3)

Where G’= G - min (G) for G computed above, giving an inverse
linear ramp function. As with the Laplacian zero-crossing,

multiple kernel sizes are used to compute the gradient magnitude
feature cost. Also, each kernel is normalized such that the sum of
positive kernel values is equal for all kernel widths. This is done
for the same reason as for the Laplacian kernels: so direct
comparisons can be made between the results obtained from
different kernel sizes. Unlike the results of the multiple Laplacian
kernels, the multiple gradient magnitude kernel results are not
simply combined in a weighted linear fashion. Instead, the result

for the kernel that “best” approximates the natural spatial scale of
each particular edge, on a pixel by pixel basis, is used. Best match
is estimated in one of two ways. First, the kernel size giving the
largest gradient magnitude at a pixel is the kernel size used at that
pixel, or second, the Laplacian kernel producing the steepest slope
at the zero-crossing corresponds to the best gradient magnitude
kernel size for that point. By default, the second technique, based
on the Laplacian kernel, is used to determine the best kernel size,

but the first method can be specified (for low contrast, low SNR
images where the zero-crossing information is noisy and
unreliable).

2.1.3 Gradient Direction (fD)
The gradient direction or orientation adds a smoothness constraint
to the boundary by associating a relatively high cost for sharp
changes in boundary direction. The gradient direction is simply
the direction of the unit vector defined by Ix and Iy. Therefore,
letting D(p) be a unit vector of the gradient direction at a point p
and defining D'(p) as the unit vector perpendicular (rotated

90°clockwise) to D(p) (i.e., for)](),([)(pIpIpD yx ,

)](),([)(pIpIpD yx , then the formulation of the gradient

direction feature cost is

),(cos),(cos
3

2
),(qpdaqpdaqpf ppD (4)

Where dp (p, q) = D (p) L (p, q) (5)

 dq (p, q) = L (p, q) D (p)

are dot products and

0)()(;

0)()(;1
),(

pqpDifqp

pqpDifpq

qp
qpL (6)

Is the normalized bidirectional link or unit edge vector between
pixels p and q and simply computes the direction of the link
between p and q such that the difference between p and the
direction of the link is minimized.

 Links are horizontal, vertical, or diagonal (relative to the position
of q in p‟s neighbourhood) and point such that the dot product of
D'(p) and L(p, q) is positive (i.e., the angle between D'(p) and the

link ≤π⁄2), as noted in (6) above. Figure 4 gives three example

computations of fD. The main purpose of including the
neighbourhood link direction is to associate a high cost with an

edge between two neighbouring pixels that have similar gradient
directions but are perpendicular, or near perpendicular, to the link
between them.

Pixel Value Features (fP, fI, fO): the pixel value feature costs only
have meaning after training. Edge pixel values are simply the
scaled source image pixel values directly beneath the portion of
the object boundary used for training. Since typical gray-scale
image pixel values range from 0 to 255, then the edge pixel value
for a pixel p is given by the scaling function

)(
255

1
)(pIpf P (7)

Where I(p) is the pixel value of the source image at p. The

“inside” and “outside” pixel values [22, 23] are also taken (and
scaled) directly from the source image, but they are sampled at
some offset from the defined object boundary. More specifically,
the inside pixel value for a given point or pixel p is sampled a
distance k from pin the gradient direction and the outside pixel
value is sampled an equal distance in the opposite direction. Thus,
the formulation for the inside pixel value, fI(p), and the outside
pixel value, fO(p), for a given pixel p is

))((
255

1
)(pDkpIpf I (8)

and))((
255

1
)(pDkpIpf O (9)

where D(p) is the unit vector of the gradient direction, and k is
either a constant distance value (as determined by the user) or
corresponds to a distance 1 pixel larger than half of the optimal
kernel width at pixel p. the value can be taken as the closest pixel

(default) or bilinearly interpolated from each of the four
surrounding pixels.

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

92

2.1.4 Colour
Both the Laplacian zero-crossing and the gradient magnitude are
computed by processing each of the three colour bands (in RGB
colour space) independently and combining the results by
maximizing over the three respective outputs to produce a single
valued local cost image for each feature. Since the Laplacian zero-
crossing is a binary feature, a bitwise OR operator achieves the
same result as does computing the maximum of the three outputs.

The pixel value features, fP, fI, and fO, are currently computed by
taking the brightness (in the HSB colour space) of the
corresponding pixel. The gradient direction computation is
unchanged for colour images.

2.1.5 On-the-Fly Training
Often, an object boundary may not consist of “strong” edge
features. For example, Figure 1(a) shows a CT scan of the heart
where the boundary of the left ventricle (labelled) has a low
gradient magnitude--especially when compared to the much
higher gradient magnitude (right of the ventricle) of the heart‟s
nearby outer boundary. As a result, when trying to track the right
boundary of the ventricle, the optimal boundary “snaps” to the

lower cost outer heart boundary rather than follow the desired
higher cost ventricle boundary. Further, since the ventricle
boundary‟s gradient magnitude is relatively low (corresponding to

a relatively high static feature cost) then the short, high local cost
path that cuts across the upper-left corner of the ventricle
produces a cumulative lower cost than the desired longer, slightly
lower local cost path around the corner. Both of these problems
are resolved when the gradient magnitude feature cost function is

determined dynamically from a sample of the desired boundary
(static training as applied to boundary finding is introduced in
[25].

Training allows dynamic adaptation of certain cost feature
functions based on a sample boundary segment. Training is
performed dynamically as part of the boundary segmentation
process. Trained features are updated interactively as an object
boundary is being defined. This eliminates a separate training

phase and allows the trained feature cost functions to adapt within
the object being segmented as well as between objects in the
image. Figure 1(d) demonstrates how training was effective in
isolating the weaker left ventricle edge to completely define the
ventricle‟s boundary with a single short training segment. To
facilitate sampling of edge characteristics, feature value images
are precomputed for all trainable features: the three pixel value
features, fP, fI, and fO, and the gradient magnitude feature, f'G

(where f‟G = G′⁄max G′is simply the scaled gradient magnitude).

During training, sampled pixel values from these precomputed
feature images are used as indices into the corresponding feature
histograms. As such, feature value images are computed by
simply scaling and rounding fP, fI, fO, and f'G respectively. Letting
IP, II, IO, and IG be the feature value images corresponding to the
feature cost functions fP, fI, fO, and f'G, respectively, then

5.0)1(

5.0)1(

5.0)1(

5.0)1(

GGG

OOO

III

PPP

fnI

fnI

fnI

fnI

 (10)

compute the feature value images where nP, nI, nO = 256 and nG =
1024 are the respective histogram domains (i.e., number of entries
or bins). These feature images are sampled to both create dynamic
histograms (which are then scaled, weighted, and inverted to
create cost maps) and as indices into the dynamic feature cost
maps when computing link costs. Selection of a “good” boundary

segment for training is made interactively using the live-wire tool.
To allow training to adapt to gradual (or smooth) changes in edge
characteristics, the trained feature cost functions are based only on
the most recent or closest portion of the current defined object
boundary. A training length or maximum sample size t, specifies
how many of the most recent boundary pixels are used to generate
the training statistics.

A monotonically decreasing weight function, w, determines the
contribution from each of the closest t pixels. The training

algorithm samples the precomputed feature value images along
the closest t pixels of the edge segment and increments the
boundary feature histogram element by the corresponding pixel
weight to generate a histogram for each feature involved in
training. The training length is typically short (32 to 64 pixels) to
allow it to adapt to gradual changes. However, short training
segments often result in noisy sampled distributions. Convolving
the boundary feature histograms with a 1-D Gaussian helps reduce

the effects of noise.

Figure 1: (a) CT scan of the heart. (b) Untrained live-wire

segment (cuts across corner of left ventricle). (c) Short

boundary segment and untrained live-wire segment (snaps

to the stronger gradient of the outer heart wall). (d) Live-

wire segments (including closing segment) trained on

selected boundary segment. Notice that the short training

segment is all that is needed to completely define the left

ventricle boundary.

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

93

After sampling and smoothing, each feature histogram is then
scaled and inverted to create the feature cost map. A maximum
local link cost, M, specifies the largest integer cost possible
through summation of feature cost components. Each scaled
feature‟s maximum link cost is the product of the feature‟s weight

factor, ω, and the maximum link cost value, M. These maximum
feature cost values are used as scaling factors when converting the
sampled histograms into feature cost maps. Thus, letting hG
represent the sampled and smoothed gradient magnitude
histogram, the dynamic gradient magnitude cost map, mG, is
computed by inverting hG, scaling and rounding as follows:

5.0
)max(

15.0
)max(

)max(

G

G
GG

G

GG
G

h

h
MM

h

hh
m (11)

where the division by max(hG) scales the histogram between 0 and
1 for further scaling by MG. The same equation is used for the
other dynamic feature cost maps, mP, mI, and mO, with appropriate

substitutions of hP, hI, and hO for hG and MP, MI, and MO for MG.

Notice that no restriction was placed on the size of the minimum
sample size s in relation to t; thus, if s > t then the inverse linear
ramp is always present, though not dominant, in the cost map.
Notice further that if ts = 0 (i.e., no training data is available), then
m'G simply produces the unadjusted static gradient magnitude cost
function (an inverse linear ramp). Thus, m'G computes both the
static and dynamic gradient magnitude cost functions.

2.1.6 Static Neighbourhood Link Cost
Since training is not available on the Laplacian zero-crossing and
gradient direction features, these costs are precomputed and
combined into a static neighbourhood cost map, thereby avoiding

expensive cost computations within the interactive live-wire
environment. These combined costs are computed for every link
by summing the scaled, rounded local static cost functions. Given
a point, p, and any neighbouring point, q, the static link cost map,
lS, is

5.0),(5.0)(),(qpfMqfMqpl DDZZS (13)

where MZ and MD are the maximum Laplacian zero-crossing and
gradient orientation link cost (similar to MP, MI, MO and MG
defined for Eq. (11)). Since there are 8 neighbours for each
pixel, the precomputed static link map, lS, requires 8N cost values
for N image pixels.

2.1.7 Final Local Link Cost
Finally, to compensate for differing distances to a pixel‟s
neighbours, gradient magnitude costs are weighted by Euclidean
distance. The local gradient magnitude costs to horizontal and

vertical neighbours are scaled by 1 ⁄ 2 and to diagonal

neighbours by 1. Thus, the weighting function wN for a neighbour
q of a pixel p is

0),(0),(;
2

1

0),(0),(;1

),(
qpLqpLif

qpLqpLif

qpw
yx

yx

N (14)

where Lx and Ly are horizontal and vertical components of the
bidirectional link vector L defined in Eq. (6).

the local cost function, l, is a weighted summation of feature cost
functions (fZ, fD, fG, etc.) and ranges from 0 to 1. However, we

create an updated local cost function, l ,́ with an integer range
between 0 and M -1 (inclusive) which incorporates training, the
precomputed static link map, lS, and the Euclidean distance
weighting function. The resulting, updated local cost function, l',
for a neighbour q of a pixel p is

))(())(())((

))((),(),(),(

qImqImqIm

qImqpwqplqpl

OOIIPP

GGNs
 (15)

where ls is the static link cost in Eq. (13), wN is the neighbourhood
weighting function in Eq. (14), each m (or m'G) is the
corresponding feature‟s mapping function generated through
training as defined in Eq. (11) (or Eq. (12)), and each I is the
precomputed feature value image for the corresponding feature
(Eq. (10)).

3. UNRESTRICTED GRAPH SEARCH
Our graph formulation is pixel based rather than crack based and
we utilize a more efficient optimal graph search algorithm based
on Dijkstra‟s [1] algorithm. The extensions to the previous
optimal graph search boundary finding methods can be given in
3ways:

1) It imposes no sampling or searching constraints.

2) The active list is sorted with a specialized O(N) bucket
sort (where N is number of pixels processed in image).

3) No a priori goal nodes/pixels are specified.

First, with the exception of [13,14,12], many of the previous
boundary finding techniques that utilize graph searching or
dynamic programming impose searching and/or sampling
constraints to reduce the problem size and/or enforce specific
boundary properties. This paper imposes no such constraints,

thereby providing object boundaries with greater degrees of
freedom and generality. Second, this paper uses discrete local
costs within a range. This permits the use of a specialized bin sort
algorithm that inserts points into a sorted list (called the active
list) in constant time. Finally, since the live-wire tool determines a
goal pixel after the fact, the graph search algorithm must compute
the optimal path to all pixels since any one of them may
subsequently be chosen but this is the key to the interactive nature

of the live-wire tool.

The graph search algorithm is initialized by placing a start or seed
point, s, with a cumulative cost of 0, on an otherwise empty list, L
(called the active list). A point, p, is placed on the active list in
sorted order based on its total or cumulative cost, g (p). All other
points in the image are (effectively) initialized with infinite cost.
After initialization, the graph search then iteratively generates a
minimum cost spanning tree of the image, based on the local cost

function, l'. In each iteration, the point or pixel p with the
minimum cumulative cost (i.e., the point at the start of the sorted
list) is removed from L and “expanded” by computing the total
cost to each of p‟s unexpanded neighbours. For each neighbour q
of p, the cumulative cost to q is the sum of the total cost to p plus
the local link cost from p to q - that is, gtmp = g(p)+ l'(p, q). If the
newly computed total cost to q is less than the previous cost (i.e.,
if gtmp < g(q) then g(q) is assigned the new, lower cumulative cost

and an optimal path pointer is set from q back to p. After
computing the cumulative cost to p‟s unexpanded neighbours and
setting any necessary optimal path pointers, p is marked as
expanded and the process repeats until all the image pixels have
been expanded.

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

94

The active list is implemented as an array of sublists where the
array size is the range of discrete local costs, M. Each sublist
corresponds to points with equal cumulative path cost. As such,
the order of points within a sublist is not important and can be
arbitrary. Consequently, the sublists are singly linked list

implementations of stacks. Let L(i)↓q denote that a point q with
cumulative path cost c is added to the active list in sorted order by
pushing q onto the stack at list array index i = c mod M. If M is a
constant power of 2, the modulo operation can be replaced with a
faster bitwise AND operation resulting in i = c AND (M -1). Thus,
adding a point to the active list requires one bitwise AND
operation to compute the stack index, the corresponding array
indexing operation, and then two pointer assignments to push the
point on the stack.

Let N(p) be the set of pixels neighbouring p and e(p) be a Boolean
mapping function indicating that a point p has been expanded.
Further, let ptr(q) be the optimal path pointer for the point q, then
the unrestricted graph search algorithm is as follows:

Algorithm:
 Input: s, l(p, q)
 Data Structures:

 L, N(p), e(p), g(p)
 Output:
 ptr
 Algorithm:

 g(s)=0; L(0) s

 While L do begin

 p min(L);

 e(p)=TRUE;

 for each q N(p) such that not e(q) do begin

 gtmp= g(p)+l‟(p,q);

 if q L and gtmp<g(q) then begin

 i=g(q) and (M-1); q L(i);

 end

 if q L then begin

 g(q) =gtmp;
 ptr (q)=p;
 i=g(q) AND (M-1);

 L(i) q;

 end
 end

end

This algorithm is implemented twice with different computations
for the local link cost l'(p, q). The local link cost l'(p, q) does not
change from the previous definition if training is applied. When
training is not active, the local link cost function is

))((),(),(),(qImqpwqplqpl GGNS (16)

where the gradient magnitude mapping function is simply
computing the static inverse linear ramp. Using Eq. (16) when
training is off provides better computational efficiency in the
interactive live-wire environment. Removing the next minimum
cumulative cost point from the sorted list is denoted by p←min(L)
and involves searching the array of sublists for the first sublist

with at least one point on it. The search begins at the index
corresponding to the cumulative cost of the last expanded point
and proceeds incrementally, wrapping around to 0 when the end
of the array is reached, until it finds a non-empty stack index.
Specifically, if c is the cumulative cost of the last expanded point,
then removing the next minimum cumulative cost point p from L
is given by

c=c-1;

repeat

c=c+1;

 i=c AND (M-1);

 until L(i)

 p L(i);

where p↑L(i) denotes popping the point p off of the stack at index
i on the list. Obviously, removing the minimum cost point from
the sorted list cannot be done in constant time. In the worst case
(assuming that L is not empty), the search would require M -1
iterations to find the next point. However, assuming that a point is
added to the list at any index with equal probability, the analogy

of a snow plow during a storm can be applied for demonstration.
If a plow is clearing a circular path repeatedly during a snow
storm, the part of the path with the deepest snow is always just in
front of the plow. Likewise, the active points currently on the
sorted list should generally be most concentrated at indexes just
above the index for the cumulative cost c of the last point
expanded. Notice that since the active list is sorted, when a new,
lower cumulative cost is computed for a point already on the list,

then that point must be removed from the list and added with the
lower cost. q←L(i) denotes removing the point q from the stack at
index i. Like adding a point to the sorted list, this operation is
performed in constant time. Pointers for every pixel keep track of
the location of each point on the active list. The stack index for
the point is also already known (by keeping the cumulative cost
for each pixel). Since the order of points on a sublist is not
important, the data for the point being removed is overwritten

with the data from the head of the sublist (or top of stack) and the
stack is then popped, thereby preventing the need to search for
and reassign pointers in the single linked list implementation of
the stack.

Figure 2 demonstrates how the graph search algorithm creates a
minimum cumulative cost path map (with corresponding optimal
path pointers). Figure 2(a) is the initial local cost map with the
seed point circled. For simplicity of demonstration the local costs
in this example are pixel based rather than link based and can be
thought of as representing the gradient magnitude cost feature.
Figure 2(b) shows a portion of the cumulative cost and pointer
map after expanding the seed point (with a cumulative cost of
zero). Notice how the diagonal local costs have been scaled by

Euclidean distance (consistent with the gradient magnitude cost
feature described previously). Weighting by Euclidean distance
demonstrates how the cumulative costs to points currently on the
active list (bold numbers) can change if even lower cumulative
costs are computed from as yet unexpanded neighbours. This is
demonstrated in Figure 2(c) where two points have now been
expanded--the seed point and the next lowest cumulative cost
point. Notice how the points diagonal to the seed point have

changed cumulative cost and direction pointers. The Euclidean
weighting between the seed and diagonal points makes them more
expensive than horizontal or vertical paths. Figures 2 (d-f) show
the cumulative cost/direction pointer map at various stages of
completion. Note how the algorithm produces a “wavefront” of
active points and that the wave front grows out faster in areas of
lower costs.

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

95

4. EXPERIMENTAL RESULTS
Endoscopic images containing abnormal regions such as tumor

growths, cancer regions are obtained from physicians. These
images are subjected to segmentation using the proposed
intelligence scissors method. The figures below show the
experimental results obtained using the Intelligent Scissor
function on the endoscopic images of the Esophagus. The
abnormal region is segmented, thereby highlighting the region of
disorder. The proposed method could successfully segment the
region of interest.

5. CONCLUSION
This paper has presented an interactive image segmentation tool
based on an unrestricted graph search. The major contributions of
this work are the addition of the Laplacian zero-crossing binary
feature cost that improves edge localization for optimal boundary

segments. Due to the ability to add and remove nodes to and from

the active list in constant time, this algorithm is less
computationally expensive than traditional graph searching/

dynamic programming based boundary finding approaches. The
improved computational speed makes interaction possible during
optimal path generation, allowing for interactive selection of the
desired optimal boundary segment via the live-wire segmentation
tool. Cooling helps reduce the need for user input and thereby
facilitates and improves the live-wire‟s interactivity. On-the-fly
training is unique from traditional training algorithms that have
been applied to boundary definition and allows for training

information to be updated and used dynamically as part of the
normal boundary definition process. It is important to note that the
last three contributions are realized only through the second
contribution: the ability to generate all the optimal paths at
interactive speeds.

In conclusion, when compared to tedious manual tracing, the
Intelligent Scissors segmentation tool provides a quicker, more
accurate, and more reproducible general purpose tool for defining

Figure 2: (a) Initial local cost matrix (b) seed point

expanded (c) two points expanded (d) five points expanded

(e) 47 points expanded (f) finished cumulative cost and path
matrix with two of many paths.

Figure 3: Showing the boundary of the segmented abnormal
region of the growth in esophageal region.

IJCA Special Issue on “Recent Trends in Image Processing and Pattern Recognition”
RTIPPR, 2010.

96

object boundaries within images. As such, Intelligent Scissors
can, and has been, applied to medical image volume
segmentation, digital image composition, general colour and
grayscale image segmentation, and line extraction from scanned
document.

6. REFERENCES
[1] E. W. Dijkstra, “A Note on Two Problems in Connexion

with Graphs,” Numerische Mathematik,Vol. 1, pp. 269-270,
1959.

[2] D. H. Ballard and J. Sklansky, “Tumor Detection in
Radiographs”, Computers and Biomedical Research, Vol. 6,
No. 4, pp. 299-321, Aug. 1973

[3] J. D. Cappelletti and A. Rosenfeld, “Three-Dimensional
Boundary Following,” Computer Vision, Graphics, and
Image Processing, Vol. 48, No. 1, pp. 80-92, Oct. 1989.

[4] Y. P. Chien and K. S. Fu, “A Decision Function Method for
Boundary Detection” Computer Graphics and Image
Processing, Vol. 3, No. 2, pp. 125-140, June 1974.

[5] A. Martelli, “An Application of Heuristic Search Methods to
Edge and Contour Detection,” Communications of the ACM,
Vol. 19, No. 2, pp. 73-83, Feb. 1976.

[6] B. S. Morse, W. A. Barrett, J. K. Udupa, and R. P. Burton,
Trainable Optimal Boundary Finding Using Two-
Dimensional Dynamic Programming. Technical Report No.

MIPG180, Department of Radiology, University of
Pennsylvania, Philadelphia, PA, March 1991.

[7] U. Montanari, “On the Optimal Detection of Curves in Noisy
Pictures,” Communication of the ACM, Vol. 14, No. 5, pp.
335-345, May 1971.

[8] D. H. Ballard and J. Sklansky, “Tumor Detection in
Radiographs”, Computers and Biomedical Research, Vol. 6,
No. 4, pp. 299-321, Aug. 1973

[9] Y. P. Chien and K. S. Fu, “A Decision Function Method for
Boundary Detection” Computer Graphics and Image
Processing, Vol. 3, No. 2, pp. 125-140, June 1974.

[10] A. Martelli, “An Application of Heuristic Search Methods to
Edge and Contour Detection,” Communications of the ACM,
Vol. 19, No. 2, pp. 73-83, Feb. 1976.

[11] N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto,
CA: Tioga, 1980.

[12] J. K. Udupa, Personal communication to W. A. Barrett
regarding two-dimensional boundary detection using
dynamic programming with graph searching. 1989.

[13] B. S. Morse, Trainable Automated Boundary Tracking Using
Two-Dimensional Graph Searching with Dynamic
Programming. Master‟s Thesis, Department of Computer
Science, Brigham Young University, Provo, UT, Aug. 1990.

[14] B. S. Morse, W. A. Barrett, J. K. Udupa, and R. P. Burton,
Trainable Optimal Boundary Finding Using Two-
Dimensional Dynamic Programming. Technical Report No.
MIPG180, Department of Radiology, University of
Pennsylvania, Philadelphia, PA, March 1991.

[15] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using
Dynamic Programming for Solving Variational Problems in

Vision,” IEEE Transactions on Pattern Analysis and Machine
Intelligence,Vol. 12, No. 9, pp. 855-866, Sept. 1990.

[16] L. D. Cohen and R. Kimmel, “Global Minimum for Active
Contour Models: A Minimum Path Approach,” in
Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR „96), San
Francisco, CA, June 1996.

[17] D. Daneels, et al., “Interactive Outlining: An Improved
Approach Using Active Contours,” in SPIE Proceedings
Storage and Retrieval for Image and Video Databases, Vol.
1908, pp. 226-233, San Jose, CA, Feb. 1993.

[18] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic
Programming for Detecting, Tracking, and Matching

Deformable Contours,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 17, No. 3, pp. 294-
302, Mar. 1995 (Correction in PAMI, Vol. 18, No. 5, pg.
575, May 1996)

[19] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
Contour Models,” in Proceedings of the First International
Conference on Computer Vision, pp. 259-268, London,
England, June 1987.

[20] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
Contour Models,” International Journal of Computer Vision,
Vol. 1, No. 4, pp. 321-331, Jan. 1988.

[21] D. J. Williams and M. Shah, “A Fast Algorithm for Active
Contours and Curvature Estimation,” CVGIP: Image
Understanding, Vol. 55, No. 1, pp. 14-26, Jan. 1992

[22] A. X. Falcão, J. K. Udupa, S. Samarasekera, and B. E.
Hirsch, “User-Steered Image Boundary Segmentation,” in
Proceedings of the SPIE--Medical Imaging 1996: Image
Processing, Vol. 2710, pp. 278-288, Newport Beach, CA,
Feb. 1996.

[23] J. K. Udupa, S. Samarasekera, and W. A. Barrett, “Boundary
Detection via Dynamic Programming,” in Proceedings of the

[24] SPIE: Visualization in Biomedical Computing 92, Vol. 1808,
pp. 33-39, Chapel Hill, NC, Oct. 1992.

[25] W. A. Barrett, P. D. Clayton, and H. R. Warner,
“Determination of Left Vetricular Contours: A Probabilistic
Algorithm Derived from Angiographic Images,” Computers
and Biomedical Research, Vol. 13, No. 6, pp. 522-548, Dec.
1980.

[26] M. M. Fleck, “Multiple Widths Yield Reliable Finite
Differences,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 14, No. 4, pp. 412-429, April
1992.

[27] H. Jeong and C. I. Kim, “Adaptive Determination of Filter

Scales for Edge Detection.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 14, No. 5, pp. 579-
585, May 1992.

[28] D. Marr and E. Hildreth, “Theory of Edge Detection,”
Proceedings of the Royal Society of London--Series B:
Biological Sciences, Vol. 207, No. 1167, pp. 187-217, Feb.
29, 1980.

