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ABSTRACT 

The commonly found abnormalities in endoscopic images are 
cancer tumors, ulcers, bleeding due to internal injuries, etc. 

Several methods of segmentation are employed in recent past for 
proper segmentation of such images. Intelligent scissors is one of 
the tools for segmentation. Here the segmentation of endoscopic 
images is presented using the intelligent scissors. This method is 
used to segment the tumor, abnormal regions and cancerous 
growth in the human esophagus. Several methods implemented in 
the recent past have yielded good results. But this method is 
simpler. Here a seed point is selected then the cost matrix is 

constructed which gives the costs of the neighbouring points. 
Using Dijkstra‟s algorithm, the nearest point falling in the same 
region is selected. The proposed method has shown encouraging 
results in segmenting the abnormal parts from esophegal 
endoscopic images. 
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1. INTRODUCTION 
Intelligent Scissors allow objects within digital images to be 
extracted quickly and accurately using simple gesture motions 
with a mouse. When the gestured mouse position comes in 
proximity to an object edge, a live-wire boundary “snaps” to, and 
wraps around the object of interest.  , digital image segmentation 

tool called “Intelligent Scissors” which allows rapid object 
extraction from arbitrarily complex backgrounds. Intelligent 
Scissors formulates boundary finding as an unconstrained graph 
search [1] in which the boundary is represented as an optimal path 
within the graph.  

Live-wire boundary detection formulates boundary detection as an 
optimal path search in a weighted graph. Optimal graph searching 
provides mathematically piece-wise optimal boundaries while 
greatly reducing sensitivity to local noise or other intervening 

structures. Robustness is further enhanced with on-the-fly training 
which causes the boundary to adhere to the specific type of edge 
currently being followed, rather than simply the strongest edge in 
the neighbourhood. Boundary cooling automatically freezes 
unchanging segments and automates input of additional seed 
points. Cooling also allows the user to be much more free with the 
gesture path, thereby increasing the efficiency and finesse with 
which boundaries can be extracted. 

Among the global boundary based techniques, graph searching 
and dynamic programming are popular techniques used to find the 

globally “optimal” boundaries based on some local cost criteria 
[2, 3, 4, 5 and 6]. They formulate the boundary finding problem as 
a directed graph or cost functional to which an optimal solution is 
sought. Montanari [7] was perhaps the first to apply a global 
optimization algorithm to boundary detection in images. He 
proposes “a technique for recognizing systems of lines” based on 

dynamic programming to minimize a heuristic “figure of merit” or 
cost function and develops a figure of merit for low curvature 
lines based on image intensity, path curvature and path length. 
The algorithm detects a line (with local variations) in an artificial 
image even when the line is hardly visible due to noise.  

Ballard and Sklansky [8] extend Montanari‟s algorithm by using 
gradient magnitude, gradient direction and a closure measure in 
their evaluation function. They use dynamic programming with 

directed searching to detect circular tumours in chest radiographs. 
Chien and Fu [9] argue that Ballard and Sklansky‟s decision 
function is “too specifically designed for one type of application” 
and develop a more general “criterion” function which has both 
local (e.g., gradient) and global (e.g., curvature) components. 
They minimize the criterion function using a modified decision 
tree search and apply their technique to determine cardiac 
boundaries in chest x-rays. Martelli [10] shows that any 

optimization problem using dynamic programming can be 
formulated as a shortest or minimum cost path graph search. He 
applies Nilsson‟s [11] A* heuristic graph search algorithm to the 
boundary detection problem where the heuristic is used to prune 
the search and thereby reduce computation. His technique 
successfully identifies multiple touching objects and occluded 
boundaries in artificial images with Gaussian noise. 

Udupa [12] formulates optimal two-dimensional boundary finding 

as a graph search using dynamic programming. Like Martelli [10], 
he formulates the image grid as a directed graph where pixel 
corners are nodes and the cracks between pixels are directed arcs. 
Based on Udupa‟s formulation, and in collaboration with him, 
Morse et al. [13, 14] present a boundary finding algorithm which 
computes a piece-wise optimal boundary given multiple input 
control points. Rather than specify constraints and heuristics for a 
specific problem, this method utilizes a probabilistic “likelihood” 
function. 

 Snakes, active contours, and thin plate models are another global 
boundary based segmentation techniques that have received a 
great deal of attention [15, 16, 17, 18, 19, 20, and 21]. Active 
contours are initialized manually with a rough approximation to a 
boundary of interest and then allowed to iterate over the contour 
to determine the boundary that minimizes energy functional. Kass, 
Witkin, and Terzopoulos [19, 20] introduced a global minimum 
energy contour called “snakes” or active contours. Given an initial 

approximation to a desired contour, a snake locates the closest 
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minimum energy contour by iteratively minimizing an energy 
functional which Geiger et al. [18] apply dynamic programming 
to detect deformable contours. They use a noniterative technique 
that searches for the optimal contour within a large 
neighbourhood around the initial contour. They utilize a multi-

scale technique to achieve greater processing efficiency while 
sacrificing guaranteed optimality. The methods discussed thus far 
follow a pattern of user input--whether through defining a figure 
of merit, a decision function, a 2-D template, or an initial active 
contour, etc. to initialize the algorithm, followed by contour 
selection based on the input, for the graph searching techniques, 
or contour refinement of the input, for active contour techniques. 
If the resulting contour is not satisfactory, this may in turn be 

followed by one or more iterations of user input (to adjust 
parameters, change the figure of merit, input a new initial active 
contour, locally modify an existing contour or energy landscape, 
etc.) and reapplication of the algorithm. 

The interactive optimal path selection algorithm, or live-wire 
technique, was developed as a general image segmentation tool 
which takes advantage of the multiple optimal paths generated by 
graph searching techniques. The live-wire technique was 

developed to overcome the limitations of [13, 14]. Although 
[13,14] use dynamic programming to compute unrestricted 
optimal paths from every grid point in the image to every other 
grid point, it still suffers from the same iterative, non-interactive 
style as previous graph searching boundary finding methods in 
that the user inputs a series of control points which are then 
connected with piece-wise optimal segments into a single contour. 
There is no immediate feedback to indicate where or how far apart 

to place the seed points on the boundary. Consequently, multiple 
iterations, requiring input of multiple control points is typical with 
this technique. 

2. INTELLIGENT SCISSORS 
The underlying mechanism for Intelligent Scissors is the “live-
wire” path selection tool. The live-wire tool allows the user to 

interactively select the desired optimal path from the entire 
collection of optimal paths (one for each pixel in the image) 
generated from a specified seed point. The optimal path from each 
pixel is determined at interactive speeds by computing an optimal 
spanning tree of the image using an efficient implementation of 
Dijkstra‟s graph searching algorithm. The basic idea is to 
formulate the image as a weighted graph where pixels represent 
nodes with directed, weighted edges connecting each pixel with 

its 8 adjacent neighbours.  

2.1 Local Costs  
The local cost function is given by 
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where each ω is the weight of the corresponding feature function. 
Empirically (and by default), weights of ωZ = 0.3, ωG = 

0.3, 1.0D , ωP = 0.1, ωI = 0.1, and ωO = 0.1 seem to work well 

in a wide range of images. However, these weights can be easily 
adjusted. 

If p and q are two neighbouring pixels in the image then l (p, q) 
represents the local cost on the directed link (or edge) from p to q. 
The local cost function is a weighted sum of component cost 
functions on each of the following image features: 

Table 1: Image features 

Image Feature Formulation  

Laplacian Zero-Crossing     fZ  

Gradient Magnitude    fG  

Gradient Direction    fD   

Edge Pixel Value    fP   

“Inside” Pixel Value    fI 

“Outside” pixel value    fO. 

The Laplacian zero-crossing, fZ, and the two gradient features, fG 
and fD, have static cost functions. Static costs can be computed 
without any a priori information about image content. The 
gradient magnitude, fG, and the three pixel value components, fP, 
fI, and fO, (“inside” and “outside” features are introduced in [22, 
23] have dynamic cost functions. (Note that fG is the only cost 
feature that has both static and dynamic components.). Since a 
meaningful static cost function for fP, fI, and fO could not be 

formulated, they have meaning only after training. As a result, if 
training is turned off or if no training data is available, the weights 
for fP, fI, and fO are zero. The Laplacian zero-crossing, fZ, and the 
gradient magnitude, fG, are edge operators employing image 
convolution with multi-scale kernels. This allows the cost 
functions for these features to adapt to a variety of image types by 
automatically selecting, on a pixel by pixel basis, the kernel width 
that best matches the line-spread function of the imaging 

hardware used to obtain the current image [26, 27]. 

2.1.1 Laplacian Zero-Crossing (fZ) 
The primary purpose of the multi-scale Laplacian zero-crossing 
component, fZ, is for edge localization [26, 28]. As mentioned, 

multiple kernel widths are used each corresponding to a different 
standard deviation for the 2-D Gaussian distribution. The kernels 
are normalized such that the sums of their positive elements (or 
weights) are equal. This is done so that comparisons can be made 
between the results of convolutions with different kernel sizes. 
The standard deviations used to compute Laplacian kernels vary 
from 1/3 of a pixel (producing a 5x5 kernel) to 2 pixels (giving a 
15x15 kernel) in increments of 1/3 of a pixel. The kernels are 

large enough to include all kernel elements which are nonzero 
when represented as 16 bit fixed-point values. Multiple kernel 
sizes are used because smaller kernels are more sensitive to fine 
detail while larger kernels suppress noise. By default, kernel sizes 
of 5x5 and 9x9 are used and seem to work well in a variety of 
images. However, for low contrast, low SNR images, larger 
kernel sizes can be easily used. The Laplacian zero-crossing is 
used to create a binary local cost feature. If a pixel is on a zero-

crossing then the component cost for all links to that pixel is low; 
otherwise it is high. However, a discrete Laplacian image 
produces very few, if any, actual zero valued pixels. Rather, a 
zero-crossing is represented by two neighbouring pixels with 
opposite sign. Of the two pixels, the one that is closest to zero is 
chosen to represent the zero-crossing. Thus, fZ is 0 for Laplacian 
image pixels that are either zero or closer to zero than any 
neighbour with an opposite sign; otherwise, fZ is 1. The four 

horizontal/vertical neighbours of a pixel constitute the 
neighbourhood used to determine the zero-crossing. This creates a 
single pixel wide cost “canyon” and results in boundaries 
“snapping” to and localizing object edges. Since multiple kernels 
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can be used in the formulation of fZ, then each binary cost feature 
resulting from a given kernel width (or standard deviation) has a 
weight which contributes to the component feature cost. That is, 
the zero-crossing cost feature is the weighted sum of the binary 
zero-crossing maps computed for each kernel size used where the 

sum of the kernel weights is unity. (Default values are 0.45 for the 
5x5 kernel and 0.55 for the 9x9 kernel). 

2.1.2 Multi Scale Gradient Magnitude (fG) 
Since the Laplacian zero-crossing creates a binary feature, fZ does 
not distinguish between a “strong” or high gradient edge and a 
“weak” or low gradient edge. Gradient magnitude, however, is 
directly proportional to the image gradient. The gradient 
magnitude is computed by approximating the partial derivatives of 
the image in x and y using derivative of Gaussian kernels of 
various scales. This gives the horizontal, Ix, and the vertical, Iy, 
partial gradient magnitudes of the image. An image‟s gradient 

magnitude G can then be approximated by 

   .22
yx IIG     (2) 

ever, the static gradient magnitude cost feature needs to be low for 
strong edges (high gradients). and high for weak edges (low 
gradients). Thus, the static cost feature is computed by subtracting 
the gradient magnitude image from its own maximum and then 
dividing the result by the maximum gradient (to scale the 
maximum cost to 1 prior to multiplying by the feature weight ωG). 
The resulting static feature cost function is  
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Where G’= G - min (G) for G computed above, giving an inverse 
linear ramp function. As with the Laplacian zero-crossing, 

multiple kernel sizes are used to compute the gradient magnitude 
feature cost. Also, each kernel is normalized such that the sum of 
positive kernel values is equal for all kernel widths. This is done 
for the same reason as for the Laplacian kernels: so direct 
comparisons can be made between the results obtained from 
different kernel sizes. Unlike the results of the multiple Laplacian 
kernels, the multiple gradient magnitude kernel results are not 
simply combined in a weighted linear fashion. Instead, the result 

for the kernel that “best” approximates the natural spatial scale of 
each particular edge, on a pixel by pixel basis, is used. Best match 
is estimated in one of two ways. First, the kernel size giving the 
largest gradient magnitude at a pixel is the kernel size used at that 
pixel, or second, the Laplacian kernel producing the steepest slope 
at the zero-crossing corresponds to the best gradient magnitude 
kernel size for that point. By default, the second technique, based 
on the Laplacian kernel, is used to determine the best kernel size, 

but the first method can be specified (for low contrast, low SNR 
images where the zero-crossing information is noisy and 
unreliable). 

2.1.3 Gradient Direction (fD) 
The gradient direction or orientation adds a smoothness constraint 
to the boundary by associating a relatively high cost for sharp 
changes in boundary direction. The gradient direction is simply 
the direction of the unit vector defined by Ix and Iy. Therefore, 
letting D(p) be a unit vector of the gradient direction at a point p 
and defining D'(p) as the unit vector perpendicular (rotated 

90°clockwise) to D(p) (i.e., for )](),([)( pIpIpD yx , 

)](),([)( pIpIpD yx , then the formulation of the gradient 

direction feature cost is 
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Where  dp (p, q) = D (p)  L (p, q)   (5) 

 dq (p, q) = L (p, q)  D (p)  

are dot products and  
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Is the normalized bidirectional link or unit edge vector between 
pixels p and q and simply computes the direction of the link 
between p and q such that the difference between p and the 
direction of the link is minimized. 

 Links are horizontal, vertical, or diagonal (relative to the position 
of q in p‟s neighbourhood) and point such that the dot product of 
D'(p) and L(p, q) is positive (i.e., the angle between D'(p) and the 

link ≤π⁄2), as noted in (6) above. Figure 4 gives three example 

computations of fD. The main purpose of including the 
neighbourhood link direction is to associate a high cost with an 

edge between two neighbouring pixels that have similar gradient 
directions but are perpendicular, or near perpendicular, to the link 
between them. 

Pixel Value Features (fP, fI, fO): the pixel value feature costs only 
have meaning after training. Edge pixel values are simply the 
scaled source image pixel values directly beneath the portion of 
the object boundary used for training. Since typical gray-scale 
image pixel values range from 0 to 255, then the edge pixel value 
for a pixel p is given by the scaling function   

 )(
255

1
)( pIpf P     (7)  

Where I(p) is the pixel value of the source image at p. The 

“inside” and “outside” pixel values [22, 23] are also taken (and 
scaled) directly from the source image, but they are sampled at 
some offset from the defined object boundary. More specifically, 
the inside pixel value for a given point or pixel p is sampled a 
distance k from pin the gradient direction and the outside pixel 
value is sampled an equal distance in the opposite direction. Thus, 
the formulation for the inside pixel value, fI(p), and the outside 
pixel value, fO(p), for a given pixel p is 

       ))((
255

1
)( pDkpIpf I    (8)  

and  ))((
255

1
)( pDkpIpf O    (9) 

where D(p) is the unit vector of the gradient direction, and k is 
either a constant distance value (as determined by the user) or 
corresponds to a distance 1 pixel larger than half of the optimal 
kernel width at pixel p. the value can be taken as the closest pixel 

(default) or bilinearly interpolated from each of the four 
surrounding pixels. 
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2.1.4 Colour 
Both the Laplacian zero-crossing and the gradient magnitude are 
computed by processing each of the three colour bands (in RGB 
colour space) independently and combining the results by 
maximizing over the three respective outputs to produce a single 
valued local cost image for each feature. Since the Laplacian zero-
crossing is a binary feature, a bitwise OR operator achieves the 
same result as does computing the maximum of the three outputs. 

The pixel value features, fP, fI, and fO, are currently computed by 
taking the brightness (in the HSB colour space) of the 
corresponding pixel. The gradient direction computation is 
unchanged for colour images. 

2.1.5 On-the-Fly Training 
Often, an object boundary may not consist of “strong” edge 
features. For example, Figure 1(a) shows a CT scan of the heart 
where the boundary of the left ventricle (labelled) has a low 
gradient magnitude--especially when compared to the much 
higher gradient magnitude (right of the ventricle) of the heart‟s 
nearby outer boundary. As a result, when trying to track the right 
boundary of the ventricle, the optimal boundary “snaps” to the 

lower cost outer heart boundary rather than follow the desired 
higher cost ventricle boundary. Further, since the ventricle 
boundary‟s gradient magnitude is relatively low (corresponding to 

a relatively high static feature cost) then the short, high local cost 
path that cuts across the upper-left corner of the ventricle 
produces a cumulative lower cost than the desired longer, slightly 
lower local cost path around the corner. Both of these problems 
are resolved when the gradient magnitude feature cost function is 

determined dynamically from a sample of the desired boundary 
(static training as applied to boundary finding is introduced in 
[25]. 

Training allows dynamic adaptation of certain cost feature 
functions based on a sample boundary segment. Training is 
performed dynamically as part of the boundary segmentation 
process. Trained features are updated interactively as an object 
boundary is being defined. This eliminates a separate training 

phase and allows the trained feature cost functions to adapt within 
the object being segmented as well as between objects in the 
image. Figure 1(d) demonstrates how training was effective in 
isolating the weaker left ventricle edge to completely define the 
ventricle‟s boundary with a single short training segment. To 
facilitate sampling of edge characteristics, feature value images 
are precomputed for all trainable features: the three pixel value 
features, fP, fI, and fO, and the gradient magnitude feature, f'G 

(where f‟G = G′⁄max G′is simply the scaled gradient magnitude). 

During training, sampled pixel values from these precomputed 
feature images are used as indices into the corresponding feature 
histograms. As such, feature value images are computed by 
simply scaling and rounding fP, fI, fO, and f'G respectively. Letting 
IP, II, IO, and IG be the feature value images corresponding to the 
feature cost functions fP, fI, fO, and f'G, respectively, then  
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compute the feature value images where nP, nI, nO = 256 and nG = 
1024 are the respective histogram domains (i.e., number of entries 
or bins). These feature images are sampled to both create dynamic 
histograms (which are then scaled, weighted, and inverted to 
create cost maps) and as indices into the dynamic feature cost 
maps when computing link costs. Selection of a “good” boundary 

segment for training is made interactively using the live-wire tool. 
To allow training to adapt to gradual (or smooth) changes in edge 
characteristics, the trained feature cost functions are based only on 
the most recent or closest portion of the current defined object 
boundary. A training length or maximum sample size t, specifies 
how many of the most recent boundary pixels are used to generate 
the training statistics. 

A monotonically decreasing weight function, w, determines the 
contribution from each of the closest t pixels. The training 

algorithm samples the precomputed feature value images along 
the closest t pixels of the edge segment and increments the 
boundary feature histogram element by the corresponding pixel 
weight to generate a histogram for each feature involved in 
training. The training length is typically short (32 to 64 pixels) to 
allow it to adapt to gradual changes. However, short training 
segments often result in noisy sampled distributions. Convolving 
the boundary feature histograms with a 1-D Gaussian helps reduce 

the effects of noise.  

 

Figure 1:  (a) CT scan of the heart. (b) Untrained live-wire 

segment (cuts across corner of left ventricle). (c) Short 

boundary segment and untrained live-wire segment (snaps 

to the stronger gradient of the outer heart wall). (d) Live-

wire segments (including closing segment) trained on 

selected boundary segment. Notice that the short training 

segment is all that is needed to completely define the left 

ventricle boundary. 
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After sampling and smoothing, each feature histogram is then 
scaled and inverted to create the feature cost map. A maximum 
local link cost, M, specifies the largest integer cost possible 
through summation of feature cost components. Each scaled 
feature‟s maximum link cost is the product of the feature‟s weight 

factor, ω, and the maximum link cost value, M. These maximum 
feature cost values are used as scaling factors when converting the 
sampled histograms into feature cost maps. Thus, letting hG 
represent the sampled and smoothed gradient magnitude 
histogram, the dynamic gradient magnitude cost map, mG, is 
computed by inverting hG, scaling and rounding as follows:  

5.0
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where the division by max(hG) scales the histogram between 0 and 
1 for further scaling by MG. The same equation is used for the 
other dynamic feature cost maps, mP, mI, and mO, with appropriate 

substitutions of hP, hI, and hO for hG and MP, MI, and MO for MG.  

Notice that no restriction was placed on the size of the minimum 
sample size s in relation to t; thus, if s > t then the inverse linear 
ramp is always present, though not dominant, in the cost map. 
Notice further that if ts = 0 (i.e., no training data is available), then 
m'G simply produces the unadjusted static gradient magnitude cost 
function (an inverse linear ramp). Thus, m'G computes both the 
static and dynamic gradient magnitude cost functions.  

2.1.6 Static Neighbourhood  Link Cost 
Since training is not available on the Laplacian zero-crossing and 
gradient direction features, these costs are precomputed and 
combined into a static neighbourhood cost map, thereby avoiding 

expensive cost computations within the interactive live-wire 
environment. These combined costs are computed for every link 
by summing the scaled, rounded local static cost functions. Given 
a point, p, and any neighbouring point, q, the static link cost map, 
lS, is 

5.0),(5.0)(),( qpfMqfMqpl DDZZS  (13) 

where MZ and MD are the maximum Laplacian zero-crossing and 
gradient orientation link cost (similar to MP, MI, MO and MG 
defined for Eq. (11)). Since  there are 8 neighbours for each 
pixel, the precomputed static link map, lS, requires 8N cost values 
for N image pixels. 

2.1.7 Final Local Link Cost 
Finally, to compensate for differing distances to a pixel‟s 
neighbours, gradient magnitude costs are weighted by Euclidean 
distance. The local gradient magnitude costs to horizontal and 

vertical neighbours are scaled by 1 ⁄ 2  and to diagonal 

neighbours by 1. Thus, the weighting function wN for a neighbour 
q of a pixel p is 
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where Lx and Ly are horizontal and vertical components of the 
bidirectional link vector L defined in Eq. (6).   

the local cost function, l, is a weighted summation of feature cost 
functions (fZ, fD, fG, etc.) and ranges from 0 to 1. However, we 

create an updated local cost function, l ,́ with an integer range 
between 0 and M -1 (inclusive) which incorporates training, the 
precomputed static link map, lS, and the Euclidean distance 
weighting function. The resulting, updated local cost function, l', 
for a neighbour q of a pixel p is 
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where ls is the static link cost in Eq. (13), wN is the neighbourhood 
weighting function in Eq. (14), each m (or m'G) is the 
corresponding feature‟s mapping function generated through 
training as defined in Eq. (11) (or Eq. (12)), and each I is the 
precomputed feature value image for the corresponding feature 
(Eq. (10)). 

3. UNRESTRICTED GRAPH SEARCH 
Our graph formulation is pixel based rather than crack based and 
we utilize a more efficient optimal graph search algorithm based 
on Dijkstra‟s [1] algorithm. The extensions to the previous 
optimal graph search boundary finding methods can be given in 
3ways: 

1) It imposes no sampling or searching constraints. 

2) The active list is sorted with a specialized O(N) bucket 
sort (where N is number of pixels processed in image). 

3) No a priori goal nodes/pixels are specified. 

First, with the exception of [13,14,12], many of the previous 
boundary finding techniques that utilize graph searching or 
dynamic programming impose searching and/or sampling 
constraints to reduce the problem size and/or enforce specific 
boundary properties. This paper imposes no such constraints, 

thereby providing object boundaries with greater degrees of 
freedom and generality. Second, this paper uses discrete local 
costs within a range. This permits the use of a specialized bin sort 
algorithm that inserts points into a sorted list (called the active 
list) in constant time. Finally, since the live-wire tool determines a 
goal pixel after the fact, the graph search algorithm must compute 
the optimal path to all pixels since any one of them may 
subsequently be chosen but this is the key to the interactive nature 

of the live-wire tool. 

The graph search algorithm is initialized by placing a start or seed 
point, s, with a cumulative cost of 0, on an otherwise empty list, L 
(called the active list). A point, p, is placed on the active list in 
sorted order based on its total or cumulative cost, g (p). All other 
points in the image are (effectively) initialized with infinite cost. 
After initialization, the graph search then iteratively generates a 
minimum cost spanning tree of the image, based on the local cost 

function, l'. In each iteration, the point or pixel p with the 
minimum cumulative cost (i.e., the point at the start of the sorted 
list) is removed from L and “expanded” by computing the total 
cost to each of p‟s unexpanded neighbours. For each neighbour q 
of p, the cumulative cost to q is the sum of the total cost to p plus 
the local link cost from p to q - that is, gtmp = g(p)+ l'(p, q). If the 
newly computed total cost to q is less than the previous cost (i.e., 
if gtmp < g(q) then g(q) is assigned the new, lower cumulative cost 

and an optimal path pointer is set from q back to p. After 
computing the cumulative cost to p‟s unexpanded neighbours and 
setting any necessary optimal path pointers, p is marked as 
expanded and the process repeats until all the image pixels have 
been expanded. 
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The active list is implemented as an array of sublists where the 
array size is the range of discrete local costs, M. Each sublist 
corresponds to points with equal cumulative path cost. As such, 
the order of points within a sublist is not important and can be 
arbitrary. Consequently, the sublists are singly linked list 

implementations of stacks. Let L(i)↓q denote that a point q with 
cumulative path cost c is added to the active list in sorted order by 
pushing q onto the stack at list array index i = c mod M. If M is a 
constant power of 2, the modulo operation can be replaced with a 
faster bitwise AND operation resulting in i = c AND (M -1). Thus, 
adding a point to the active list requires one bitwise AND 
operation to compute the stack index, the corresponding array 
indexing operation, and then two pointer assignments to push the 
point on the stack. 

Let N(p) be the set of pixels neighbouring p and e(p) be a Boolean 
mapping function indicating that a point p has been expanded. 
Further, let ptr(q) be the optimal path pointer for the point q, then 
the unrestricted graph search algorithm is as follows: 

Algorithm: 
 Input: s, l(p, q) 
 Data Structures: 

  L, N(p), e(p), g(p) 
 Output: 
  ptr 
 Algorithm: 

  g(s)=0;  L(0) s 

  While L    do begin 

   p min(L); 

   e(p)=TRUE; 

  for each q N(p) such that not e(q) do begin 

  gtmp= g(p)+l‟(p,q); 

  if q L and gtmp<g(q) then begin 

   i=g(q) and (M-1); q  L(i); 

  end 

  if q L then begin 

   g(q) =gtmp; 
   ptr (q)=p; 
   i=g(q) AND (M-1); 

   L(i) q; 

  end 
 end 

end 

This algorithm is implemented twice with different computations 
for the local link cost l'(p, q). The local link cost l'(p, q) does not 
change from the previous definition if training is applied. When 
training is not active, the local link cost function is 

))((),(),(),( qImqpwqplqpl GGNS  (16) 

where the gradient magnitude mapping function is simply 
computing the static inverse linear ramp. Using Eq. (16) when 
training is off provides better computational efficiency in the 
interactive live-wire environment. Removing the next minimum 
cumulative cost point from the sorted list is denoted by p←min(L) 
and involves searching the array of sublists for the first sublist 

with at least one point on it. The search begins at the index 
corresponding to the cumulative cost of the last expanded point 
and proceeds incrementally, wrapping around to 0 when the end 
of the array is reached, until it finds a non-empty stack index. 
Specifically, if c is the cumulative cost of the last expanded point, 
then removing the next minimum cumulative cost point p from L 
is given by 

c=c-1; 

repeat 

c=c+1; 

 i=c AND (M-1); 

 until L(i)   

 p L(i); 

where p↑L(i) denotes popping the point p off of the stack at index 
i on the list. Obviously, removing the minimum cost point from 
the sorted list cannot be done in constant time. In the worst case 
(assuming that L is not empty), the search would require M -1 
iterations to find the next point. However, assuming that a point is 
added to the list at any index with equal probability, the analogy 

of a snow plow during a storm can be applied for demonstration. 
If a plow is clearing a circular path repeatedly during a snow 
storm, the part of the path with the deepest snow is always just in 
front of the plow. Likewise, the active points currently on the 
sorted list should generally be most concentrated at indexes just 
above the index for the cumulative cost c of the last point 
expanded. Notice that since the active list is sorted, when a new, 
lower cumulative cost is computed for a point already on the list, 

then that point must be removed from the list and added with the 
lower cost. q←L(i) denotes removing the point q from the stack at 
index i. Like adding a point to the sorted list, this operation is 
performed in constant time. Pointers for every pixel keep track of 
the location of each point on the active list. The stack index for 
the point is also already known (by keeping the cumulative cost 
for each pixel). Since the order of points on a sublist is not 
important, the data for the point being removed is overwritten 

with the data from the head of the sublist (or top of stack) and the 
stack is then popped, thereby preventing the need to search for 
and reassign pointers in the single linked list implementation of 
the stack. 

Figure 2 demonstrates how the graph search algorithm creates a 
minimum cumulative cost path map (with corresponding optimal 
path pointers). Figure 2(a) is the initial local cost map with the 
seed point circled. For simplicity of demonstration the local costs 
in this example are pixel based rather than link based and can be 
thought of as representing the gradient magnitude cost feature. 
Figure 2(b) shows a portion of the cumulative cost and pointer 
map after expanding the seed point (with a cumulative cost of 
zero). Notice how the diagonal local costs have been scaled by 

Euclidean distance (consistent with the gradient magnitude cost 
feature described previously). Weighting by Euclidean distance 
demonstrates how the cumulative costs to points currently on the 
active list (bold numbers) can change if even lower cumulative 
costs are computed from as yet unexpanded neighbours. This is 
demonstrated in Figure 2(c) where two points have now been 
expanded--the seed point and the next lowest cumulative cost 
point. Notice how the points diagonal to the seed point have 

changed cumulative cost and direction pointers. The Euclidean 
weighting between the seed and diagonal points makes them more 
expensive than horizontal or vertical paths. Figures 2 (d-f) show 
the cumulative cost/direction pointer map at various stages of 
completion. Note how the algorithm produces a “wavefront” of 
active points and that the wave front grows out faster in areas of 
lower costs. 
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4. EXPERIMENTAL RESULTS 
Endoscopic images containing abnormal regions such as tumor 

growths, cancer regions are obtained from physicians. These 
images are subjected to segmentation using the proposed 
intelligence scissors method. The figures below show the 
experimental results obtained using the Intelligent Scissor 
function on the endoscopic images of the Esophagus. The 
abnormal region is segmented, thereby highlighting the region of 
disorder. The proposed method could successfully segment the 
region of interest. 

5. CONCLUSION 
This paper has presented an interactive image segmentation tool 
based on an unrestricted graph search. The major contributions of 
this work are the addition of the Laplacian zero-crossing binary 
feature cost that improves edge localization for optimal boundary 

segments. Due to the ability to add and remove nodes to and from 

the active list in constant time, this algorithm is less 
computationally expensive than traditional graph searching/ 

dynamic programming based boundary finding approaches. The 
improved computational speed makes interaction possible during 
optimal path generation, allowing for interactive selection of the 
desired optimal boundary segment via the live-wire segmentation 
tool. Cooling helps reduce the need for user input and thereby 
facilitates and improves the live-wire‟s interactivity. On-the-fly 
training is unique from traditional training algorithms that have 
been applied to boundary definition and allows for training 

information to be updated and used dynamically as part of the 
normal boundary definition process. It is important to note that the 
last three contributions are realized only through the second 
contribution: the ability to generate all the optimal paths at 
interactive speeds. 

In conclusion, when compared to tedious manual tracing, the 
Intelligent Scissors segmentation tool provides a quicker, more 
accurate, and more reproducible general purpose tool for defining 

 

 

 

 

Figure 2: (a) Initial local cost matrix (b) seed point 

expanded (c) two points expanded (d) five points expanded 

(e) 47 points expanded (f) finished cumulative cost and path 
matrix with two of many paths. 

 

 

 

 

Figure 3: Showing the boundary of the segmented abnormal 
region of the growth in esophageal region. 
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object boundaries within images. As such, Intelligent Scissors 
can, and has been, applied to medical image volume 
segmentation, digital image composition, general colour and 
grayscale image segmentation, and line extraction from scanned 
document. 
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