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ABSTRACT 

Ultrasonography is said to be the safest technique in medical 

imaging and is hence used extensively. But the images are noisy 

with speckle, acoustic noise and other artifacts. The classical 

segmentation methods fail completely or require post processing 

step to remove invalid object boundaries in the segmentation 

results. Problems associated with traditional mode, initialization 

and poor convergence to concave boundaries of the snakes, 

however, have limited their utility. A new external force for 

active contours largely solves both problems. This external force, 

call gradient vector flow (GVF), is computed as a diffusion of the 

gradient vectors of a gray-level or binary edge map derived from 

the image. The resultant field has a large capture range and 

forces active contours into concave regions. The intensity images 

are input to the method and a GVF snake is initialized. The 

snake deforms and finally reveals the contour of the kidney. The 

proposed method has successfully segmented the kidney part 

from the ultrasound images.  
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1. INTRODUCTION 
Medical diagnosis seeks information from various sources for 

proper conclusions on diseases. The sources can be results of 

clinical tests, patient history, histological reviews, and imaging 

techniques. Imaging techniques have contributed a lot to the 

development of medical diagnosis. One such safe and easily 

available technique is the Ultrasound imaging technique. But the 

methodology has certain disadvantages, as the images are not 

very clear and needs an expert to intervene and segment the 

organ from the image.  Moreover, the process takes considerable 

time for the expert to get the image and to identify the particular 

part he/she wishes to examine. Further, the process also causes 

discomfort to the patient. Delay in diagnosis and lack of clarity of 

image are major issues. A great deal of expertise is needed to get 

to conclusions using this imaging technique. 

The Ultrasound is basic step in the investigation of the disease 

and is also the safest means of imaging, as the ultrasound waves 

are less harmful than the other rays used in other methods of 

medical imaging. Hence it is very commonly used. But, its use is 

restricted to the expert. Hence, a method for easy recognition of 

the parts seen through ultrasound imaging device is needed. 

Research efforts in Image processing techniques have contributed 

to the developed of Medical Sciences [11]. Researchers have 

contributed to the improved vision of medical images. A 

Segmentation method based on active contour without edges is 

proposed by Dhandra and Ravindra Hegadi [1] in which an 

endoscopic image is classified as normal or abnormal based on 

number of regions generated in the image after segmentation. 

Many research papers on segmentation of kidney region in 

Ultrasound images have been published using various 

methodologies in the past.         

Bakker et. al. [2] determined the in-vitro kidney volume using an 

ellipsoidal method in which manual adjustment of an ellipse 

template was made over the presumed external boundary of the 

kidney to estimate the volume. Semi-automatic segmentation 

method was also reported by Matre et. al [3] for in-vitro kidney. 

In these methods the contour estimation was made for in-vitro 

kidney, but in real clinical situation the kidney is in-vivo. 

Classical segmentation methods are fast and useful only for 

simple and controlled situation. As US kidney images are noisy 

and have poor signal-to-noise ratio, robust method that makes 

use of a-priori information to compensate for such difficulty may 

be used as an alternative. Jun xie et.al. [4] developed a semi-

automatic segmentation frame work using both texture and shape 

priors for kidney contour estimation from noisy Ultrasound 

image. A novel approach for contour detection of human kidneys 

from Ultrasound images was also proposed by Marcos Martin-

Fernendz et.al. [5]. But these semi-automatic schemes require 

either a prior knowledge of image in terms of shape and features, 

which is used to form a smooth contour or need a predefined 

template for unsupervised deformation. Abouzar Eslami et.al [6] 

concerned in particular a cystic kidney and developed an 

automatic approach for renal cyst segmentation from US images. 

This method is faster and also non-iterative with better accuracy. 

The semi-automatic or automatic segmentation procedures 

suggested so far deals with contouring the kidney region by 

extracting localized features that reflect the region property.  

Though the performance of the methods in contouring the kidney 

region is well appreciated, they fail to formulate a generalized 

scheme by considering various kidney categories. Unless a 

common method for contour estimation irrespective of kidney 

category exists, the implementation of a computer aided 

diagnosis (CAD) system may not be possible. Mostly the normal 

kidney images have been considered except where the cystic 
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kidneys have been taken for implementation. Due to the presence 

of speckle noise and other constraints establishing the general 

segmentation scheme for different classes of kidney is difficult 

and so far not been reported. But efforts of B.Raja et.al [10] have 

shown the systematic segmentation of kidney using the improved 

higher order Spline Interpolation method. 

In this paper, a reliable semi-automatic segmentation scheme 

using a Gradient Vector Force is obtained. Uniqueness of this 

method lies in utilizing the GVF force to deform the initial 

contour and pull it to fit the actual boundaries of the object. This 

Paper shows use of the deformable model. There are basically 

two types of deformable models, parametric deformable models 

and Geometric deformable models. Under the Parametric 

deformable models there are again two types one the Energy 

minimizing formulation and the other is Dynamic force 

formulation. The two formulations lead to similar results, the 

first formulation has the advantage that its solution satisfies a 

minimum principle whereas the second formulation has the 

flexibility of allowing the use of more general types of external 

forces. The next section briefly explains the Dynamic Force 

Formulation using external force GVF that can effectively attract 

deformable models toward the desired image features.  

2. METHODOLOGY 
It is convenient to formulate the deformable model [7] directly 

from a dynamic problem using a force formulation. Such a 

formulation permits the use of more general types of external 

forces that are not potential forces, i.e., forces that cannot be 

written as the negative gradient of potential energy functions [12-

15]. According to Newton‟s second law, the dynamics of a 

contour X(s, t) must satisfy 
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 where µ is a coefficient that has a mass unit and Fdamp is the 

damping (or viscous) force defined as 
t

X , with γ being the 

damping coefficient. In image segmentation, the mass coefficient 

µ in front of the inertial term is often set to zero, since the 

inertial term may cause the contour to pass over the weak edges. 

The dynamics of the deformable contour without the inertial term 

becomes 
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The External Forces are often expressed as the superposition of 

several different forces: 
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where N is the total number of external forces. 

There are several kinds of external forces for deformable models. 

One of them is the Gradient Vector Flow [8] we shall explain it 

in this section. 

2.1 Parametric deformable models 
A traditional snake is a curve x (s) =[x(s), y(s)], s  [0, 1], that 

moves through the spatial domain of an image to minimize the 

energy functional 
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Where  and  weighting parameters that control the snake‟s 

tension and rigidity, respectively, and x (s) and x (s) denote the 

first and second derivatives of x(s) with respect to s. The external 

energy function Eext is derived from the image so that it takes on 

its smaller values at the features of interest, such as boundaries. 

Given a gray level image I(x, y), viewed as a function of 

continuous position variables   (x, y),
 
typical external energies 

designed to lead an active contour toward step edges [7] are 
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Where G (x, y) is a two-dimensional Gaussian function with 

standard deviation  and  is the gradient operator.  If the image 

is a line drawing (black on white), then appropriate external 

energies include [15]: 

),(),(
)3(

yxIyxEext    (4) 

).,(*),(),(
)4(

yxIyxGyxEext   (5) 

A snake that minimizes E must satisfy the Euler equation  

0)()( extEsxsx .   (6) 

This can be viewed as a force balance equation  

Fint + Fext
(p) = 0    (7) 

 where Fint = )()( sxsx  and Fext
(p) = - extE . The internal 

force Fint discourages stretching and bending while the external 

potential force Fext
(p) pulls the snake toward the desired image 

edges. The snake is made dynamic by treating x as function of 

 

 (a)        (b)        (c) 

Figure 1: (a) Convergence of a snake using (b) traditional 

potential forces, and (c) shown close-up within the 

boundary concavity. 
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time t as well as s-i.e., x(s, t). Then, the partial derivative of x 

with respect to t is then set equal to the left hand side of (6) as 

follows: 

.),(),(),( extt Etsxtsxtsx   (8) 

When the solution x(s, t) stabilizes, the term ),( tsxt vanishes 

and we achieve a solution of (6). A numerical solution to (8) can 

be found by discretizing the equation and solving the discrete 

system iteratively. 

2.2 Behavior of Traditional Snake 
An example of the behavior of a traditional snake is shown in 

Figure 1. Figure 1(a) shows 64X64 pixel line-drawing of a U-

shaped object having a boundary concavity at the top. It also 

shows a sequence of curves (in black) depicting the iterative 

progression of a traditional snake ( =0.6 and = 0.0) initialized 

outside the object but within the capture range of the potential 

force field. The potential force field Fext
(p) = - extE  where  

pixel is shown in Figure 1(b). We note that the final solution in 

Figure 1(a) solves the Euler equations of the snake formulation, 

but remains split across the concave region. The reason for the 

poor convergence of this snake is revealed in Figure 1(c), where 

a close-up of the external force field within the boundary 

concavity is shown. Although the external forces correctly point 

toward the object boundary, within the boundary concavity the 

forces point horizontally in opposite directions. Therefore, the 

active contour is pulled apart toward each of the “fingers” of the 

U-shape, but not made to progress downward into the concavity. 

There is no choice of   and  that will correct this problem.  

Another key problem with traditional snake formulations, the 

problem of limited capture range, can be understood by 

examining Figure 1(b). In this figure, we see that the magnitude 

of the external forces die out quite rapidly away from the object 

boundary. Increasing  in (5) will increase this range, but the 

boundary localization will become less accurate and distinct, 

ultimately obliterating the concavity itself when becomes too 

large. Cohen and Cohen [16] proposed an external force model 

that significantly increases the capture range of a traditional 

snake. The performance of a snake using distance potential 

forces also shows results similar to Figure 1.  

This snake also fails to converge to the boundary concavity. This 

can be seen by inspecting the magnified portion of the distance 

potential forces which is similar to what is shown in Figure 1(c). 

We see that, like traditional potential forces, these forces also 

point horizontally in opposite directions, which pulls the snake 

apart but not downward into the boundary concavity. 

2.3 Gradient Vector Flow Snake 
An external potential force generated from the variational 

formulation of a traditional snake must enter the force balance 

equation (6) as a static irrotational field, since it is the gradient 

of a potential function. Therefore, a more general static field 

Fext
(g) can be obtained by allowing the possibility that it 

comprises both an irrotational component and a solenoidal 

component. 

The overall approach is to use the force balance condition (7) as 

a starting point for designing a snake. We define below a new 

static external force field Fext
(g) = v (x, y), which we call the 

gradient vector flow (GVF) field. To obtain the corresponding 

dynamic snake equation, we replace the potential force extE in 

(8) with v(x, y), yielding  

.),(),(),( vtsxtsxtsxt   (9) 

We call the parametric curve solving the above dynamic equation 

a GVF snake. It is solved numerically by discretization and 

iteration, in identical fashion to the traditional snake. 

2.4 Edge map 
An edge map f(x,y) derived from the image I(x,y) having the 

property that it is larger near the image edges. We can use any 

gray-level or binary edge map defined in the image processing 

literature for example, we could use 
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Where i =1, 2, 3, or 4. Three general properties of edge maps are 

important in the present context. First, the gradient of an edge 

map f has vectors pointing toward edges, which are normal to 

the edges at the edges. Second, these vectors generally have large 

magnitudes only in the immediate vicinity of the edges. Third, in 

homogeneous regions, where I(x,y) is nearly constant, f is 

nearly zero. Because of the first property, a deformable contour 

initialized close to the edge will converge to a stable 

configuration near the edge. This is a highly desirable property. 

Because of the second property, however, the capture range will 

be very small. Because of the third property, homogeneous 

regions will have no external forces whatsoever. These 

undesirable properties can be overcome by extending the 

gradient map further away from the edges and into homogeneous 

regions using a computational diffusion process. The inherent 

competition of the diffusion process will create vectors that point 

into boundary concavities. 

When the gradient of an edge map is used as an external force, 

because of the first property, a snake initialized close to the edge 

will converge to a stable configuration near the edge. This is a 

highly desirable property. Because of the second property, 

however, the capture range will be very small, in general. 

Because of the third property, homogeneous regions will have no 

external forces whatsoever. These last two properties are 

undesirable. Our approach is to keep the highly desirable 

property of the gradients near the edges, but to extend the 

gradient map farther away from the edges and into homogeneous 

regions using a computational diffusion process. As an important 

benefit, the inherent competition of the diffusion process will 

also create vectors that point into boundary concavities. 

The Gradient vector flow field is the vector field 

)],(),,([),( yxvyxuyxv  that minimizes the energy functional 
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This variational formulation follows a standard principle that of 

making the result smooth when there is no data. In particular, we 

see that when f  is small, the energy is dominated by sum of 

the squares of the partial derivatives of the vector field, yielding 

a slowly varying field. On the other hand, when f is large, the 

second term dominates the integrand, and is minimized by 

setting v= f. This produces the desired effect of keeping v 

nearly equal to the gradient of the edge map when it is large, but 

forcing the field to be slowly-varying in homogeneous regions. 

The parameter  is a regularization parameter governing the 

tradeoff between the first term and the second term in the 

integrand. This parameter should be set according to the amount 

of noise present in the image (more noise, increase ).  

Using the calculus of variations, it can be shown that the GVF 

field can be found by solving the following Euler equations  

0))(( 222
yxx fffuu  (12a) 

0))(( 222
yxx fffvv  (12b) 

Where 2 is the Laplacian operator. These equations provide 

further intuition behind the GVF formulation. In a homogeneous 

region [where I (x, y) is constant], the second term in each 

equation is zero because the gradient of f (x, y) is zero. 

Therefore, within such a region, u and v are each determined by 

Laplace‟s equation, and the resulting GVF field is interpolated 

from the region‟s boundary, reflecting a kind of competition 

among the boundary vectors. This explains why GVF yields 

vectors that point into boundary concavities. The numerical 

implementation and demonstration is given in detail in [8]. 

Equations (12a) and (12b) can be solved by treating u and v as 

functions of time and solving 

)),(),()).(,(),,((),,(

),,(

222 yxfyxfyxftyxutyxu

tyxu

yxx

t
 

)),(),()).(,(),,((),,(

),,(

222 yxfyxfyxftyxvtyxv

tyxv

yxy

t
 

The steady solution (as t → ∞) of these linear parabolic 

equations is the desired solution of the Euler equations (12a) and 

(12b), which can be further solved as separate scalar partial 

differential equations in u and v. After computing v(x, y), 

replacing the potential force - extE in the dynamic snake 

equation as a GVF snake, solved in similar fashion as the 

traditional snake, (i.e. by discretization and iterative solution), 

gives us the desired result. Figure 2 shows the movement of the 

traditional as well as GVF snake. Figure 2(a) shows the 

deformation of traditional snake. Figure 2(b) shows how 

traditional, and also other non-GVF, snakes fail to converge to 

boundary concavities. In figure 2(c) the snake contour is 

initialized with object of interest within its boundary and the 

snake contour successfully converged completely over the object 

when GVF was applied (figure 2(d)). The proposed GVF method 

could successfully converge even when the snake initialization 

was done crossing over the object of interest as shown in figure 

2(e) and 2(f). 

3. RESULTS 
The Experimentation is carried out for 5 left kidney and five 

right kidney ultrasound images. The Gray images of size 

256X256 are considered for the proposed segmentation process. 

Figure 3 (a) shows the original input image containing left 

kidney. A seed point is selected in the image which lies within 

the kidney portion of the image and an initial contour is drawn in 

the form of circle around the seed point as shown in Figure 3 (b). 

This initial contour will deform by Gradient Vector flow method 

[1] towards a possible edge of kidney image, as shown in Figure 

3 (c). Figure 3 (d) shows the resulting segmented image after 200 

iterations. It is found from the experimentation that the edge will 

arrive to the stability after around 100 iterations. Figure 4 (a) 

through (d) illustrate the outcome of the segmentation process for 

another image this time a right kidney. The Kidney boundaries 

can be seen clearly in the segmented images. 

  

Figure 2 (a)  Figure 2(b)  

A traditional snake must start close to the boundary and still 

cannot converge to boundary concavities. 

     

 Figure 2 (c)   Figure 2 (d) 

A GVF snake can start far from the boundary and will 

converge to boundary concavities. 

    

 Figure 2 (e)  Figure 2 (f) 

A GVF snake can even be initialized across the boundaries, 

a situation that often confounds traditional snakes and 

balloons. 
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4. CONCLUSION 
A method of segmenting kidney from an Ultrasound image has 

been proposed. The Snakes help to deform the initial contour 

towards the possible edge of the kidney in Ultrasound images. 

The experimentation has shown successful segmentation of both 

left and right kidneys. Based on the segmentation results the 

kidney size can be estimated. Further experimentation can be 

Instance 2 

 
Figure 4 (a): Image of Normal Right Kidney. 

 
Figure 4 (b): Initial Contour. 

 
Figure 4 (c): Deformed snake revealing the kidney 

contour. 

 
Figure 4 (d): The Final output showing the segmented 

kidney. 

 

Instance 1 

 
Figure 3 (a): Ultrasound Image of Normal Left Kidney. 

 
Figure 3 (b):  Initial Contour. 

 
Figure 3 (c): Deformed Snake identifying the Kidney 

boundaries. 

 
Figure 3 (d): The final contours displaying the segmented 

kidney. 
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carried out for identification of presence of abnormalities such 

renal calculus, multi cystic kidney, in these images. Other image 

features like texture, curvature of the edge and shape of 

segmented object can be used for better identification and 

classification. 
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