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ABSTRACT 

In this paper, a new dimensionality reduction technique called 
Diagonal Locality Preserving Projections (DiaLPP) is proposed. In 
contrast to Locality Preserving Projection (LPP) and Two 
Dimensional Locality Preserving Projection (2DLPP), DiaLPP 

directly seeks the optimal projection vectors from diagonal images 
without vector transformation. The 2DLPP method seeks optimal 
projection vectors by using the row information of the image and 
the Alternate 2DLPP method seeks optimal projection vectors by 
using the column information of the image, whereas the DiaLPP 
seeks optimal projection vectors by interlacing both the rows and 
column information of the images. Experimental results on subset 
of UMIST and ORL face database shows that the proposed method 

achieves higher recognition rate than 2DLPP, Alternate 2DLPP and 
DiaPCA (Diagonal Principal Component Analysis). 

Keywords: Locality Preserving Projection (LPP), Two-

dimensional LPP, Principal Component Analysis (PCA), 
Dimensionality Reduction, Diagonal image, face recognition. 

1. INTRODUCTION 

 In most of the pattern recognition applications measurements made 

are inherently multidimensional in nature and a representation of 
data in fewer dimensions can be advantageous for processing the 
data. Therefore, a procedure called Dimensionality Reduction (DR) 
is required to find the intrinsic low dimensional structures hidden 

in the high dimensional observations. Many statistical learning 
problems involve some form of dimensionality reduction either 
explicitly or implicitly. The goal may be one of feature selection in 
which, we aim to find linear or nonlinear combination of the 
original set of variables or one of the variable selection in which we 
wish to select a subset of variable from the original set. The 
dimensionality reduction is concerned with the problem of mapping 
data points that lie on or near low-dimensional manifold in a high 

dimensional data space to a low dimensional embedding space. 
Hence much importance has been attributed to the process of 
dimensionality reduction which is the most fundamental and one of 
the important stages in the field of Pattern Recognition. Principal 
Component Analysis (PCA) [7] is a well known dimensionality 
reduction technique widely used in the area of pattern recognition, 
computer vision, signal processing etc. In PCA, the main idea is to 
project the original data on the reduced number of orthogonal 

projection axes that restores the largest possible variance in the 
original data and it is a well known method for dimensionality 
reduction. But PCA is not optimal for general classification 
problems because it is unsupervised and ignores the valuable class 
label information. The Linear Discriminant Analysis (LDA) [1] is 

used to maximize the ratio of between-class variance to the within-
class variance thereby guaranteeing maximal separability between 
the classes. The performance of LDA is degraded when 
encountering the small sample size and singularity problems. The 

Independent Component Analysis (ICA) [6] is a higher order 
method that seeks linear projection not necessarily orthogonal to 
each other that is as nearly statistically independent as possible. 
Recently several novel methods have been proposed to tackle the 
non linear data namely Kernel PCA (KPCA)[9], Locally Linear 
Embedding (LLE) [8], Isomap [13] and Supervised Isomap (S-
Isomap) [13] etc. The KPCA is a non linear approach to extend 
PCA such that it can find non linear subspace with high variance. 

The Kernel PCA finds principal components which are nonlinearly 
related to the input space by performing PCA in the space produced 
by the nonlinear mapping (through Kernels), where the low 
dimensional latent structure is easier to discover. Both Isomap and 
LLE have attempted to preserve the local neighborhood features 
while trying to obtain highly non linear embeddings (Local 
Embeddings). But LLE and Isomap fail when data are complex and 
noisy. Hence S-Isomap is proposed to recover the true manifold of 
the noisy data and to preserve the class label information. 

Laplacianfaces [5] is based on a technique called Locality 
Preserving Projection (LPP) [4] which finds an embedding that 
preserves local information and obtain face subspace which best 
detects the essential face manifold structure. If training samples are 
insufficient and data dimension is high, especially for image data 
LPP can’t be used directly due to singularity of matrices. In the 
above mentioned subspace based models, images are transformed 
into 1D vector by adjoining either column by column or row by 

row. This leads to high dimensional vector space and evaluation of 
covariance matrix and eigenvectors is time consuming. To 
overcome this difficulty, two dimensional PCA (2DPCA) [14] and 
2DLPP [3, 10] are proposed in which an image covariance matrix 
is constructed from the image matrices for feature extraction. It 
evaluates the image covariance matrix more accurately and 
computes the corresponding eigenvectors more efficiently than 
PCA and these methods operates on image matrix and works in 

row direction of the image. To consider the column direction of the 
images, alternate 2DPCA and alternate 2DLPP [11] were proposed. 
Two Directional two Dimensional LPP (2D)2LPP[12] was also 
proposed which simultaneously consider both the row and column 
direction of the image. Motivated by the work Diagonal 
PCA(DiaPCA) by Daiquiang and Zhou[2], in this paper we 
propose Diagonal LPP(DiaLPP) which seeks optimal projection 
vectors from diagonal images  so that the correlation between the 

variations of both  rows and  columns of images can be preserved. 
The experimental results indicate that DiaLPP give higher 
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recognition accuracy with less recognition time when compared to 
2DLPP, Alternate 2DLPP and DiaPCA. 

The rest of this paper is organized as follows: Section 2 briefly 
reviews the 2DLPP method; The proposed DiaLPP method is 
introduced in Section 3; In Section 4, some experiments on COIL 

object dataset are given to reveal the performance and superiority 
of the proposed method over 2DLPP, Alternate 2DLPP and 
DiaPCA. Conclusion is presented in the Section 5. 

2. TWO-DIMENSIONAL LOCALITY PRE-

SERVING PROJECTION (2DLPP): A 

REVIEW 

Let A = [A1,A2,…,AN] be the N  sample images taken from an (m x 

n) dimensional image space. The 2DLPP is applied on these N 
sample images to obtain an n-dimensional unitary column vectors: 
W=(w1,w2,…,wn). The feature matrix Xi for the image Ai  is 
obtained by  projecting onto W  using the following 
transformation:   

Xi= AiW, i=1,2,…,N.  
The computation of transformation function W is outlined below. It 
shall be observed here that the computation of transformation 

function W does not require the transformation of an image matrix 
into vector form and hence is two dimensional rather than one 
dimensional. 
1). Constructing the nearest-neighbor graph: Let G denote a 

graph with N nodes, ith node corresponding to image Ai. Insert 
an edge between nodes i and j if Ai and Aj are nearer. Either 
the method a) or b) given below can be used as a measure of 
closeness. 

 a) k-nearest neighbors: Nodes i and j are connected by an edge if i 
is among k nearest neighbors of j or j is among k nearest 
neighbors of i. 

 b) ε-neighborhoods: Nodes i and j are connected if   ║Ai – Aj ║< ε 
where the distance between two matrices ║*║ is just the 
Euclidean distance between their vectorization representation 
in Rmn 

2). Choosing the weights: If there is an edge between nodes i and j, 
put a similarity weight Sij on it, otherwise let Sij=0. Then a 

sparse symmetric similarity matrix [S]NxN is obtained and the 
similarity weight Sij can be any one of the following 

      a) Simple-minded: Sij=1 if and only if nodes i and j are linked 
by an edge 

      b) Heat kernel: If nodes i and j are linked, then   
2|| ||

t

i jA A

ijS e  where t is some constant.  

3). Eigenmap: Compute the eigenvectors and eigenvalues for the 
generalized eigenvalue problem: 

A
T
(L  Im)AW =  λA

T
(D  Im)AW (1) 

 where D is diagonal matrix with
j ijii SD ;  L = D - S is the 

Laplacian matrix; A is an (mNxn) matrix generated by arranging all 

the image matrices in column 
TT

N

T

2

T

1 ]A,...,A,A[A , Operator 

 is the Kronecker product of the matrices and Im is the identity 

matrix of order m. 

Let w1,w2,…,wd be the first d unitary orthogonal solution vector 
corresponding to the d smallest generalized eigenvalues, ordered 
according to their magnitude 0 ≤ λ1 ≤ λ2 ≤ …≤ λd. These 

eigenvalues are nonnegative because  A
T
(L  Im)A and  λA

T
(D 

 Im)A are both symmetric and positive semi definite. Thus the 

embedding is as follows: 
 Xi = AiW, W=(w1,w2,…,wd), i=1,2,…,N, 
Here, Xi is (m x d) feature matrix of Ai and W is the (n x d) 
transformation matrix. These matrices are used for classification 
purpose using nearest neighbor classifier. 
 

3. PROPOSED MODEL 

3.1 Diagonal Locality Preserving Projection 

(DiaLPP) 

From the literature we observe that, the 2DPCA [14] and 2DLPP [3, 
10] reflects only the information between rows, which implies 
column information is missing. Similarly, Alternate 2DPCA and 
Alternate 2DLPP [11] reflects only column information by 
omitting the row information.  This implies that with standard 
2DLPP or Alternate 2DLPP method, we can only capture either 
row or column information at the same instant. We attempt to solve 
this problem by transforming the original faces into corresponding 

diagonal face images. Because the rows (or columns) in the 
transformed diagonal images simultaneously integrate the 
information of rows and columns in the original images, it can 
reflect both information between rows and columns. 
Suppose that there are M images denoted by m by n matrices Ak ( k 
= 1,2,…,M). For each image, define the corresponding diagonal  
image as follows:  
(1) If the height m is equal to or smaller than the width n, use the 

method illustrated in Figure 1 to generate the diagonal image 
D for the original image A. 

(2) If the height m is bigger than the width n, use the method 
illustrated in Figure 2 to generate the diagonal image D for the 
original image A. 

(3) After obtaining the diagonal images as shown in Figure 3(b) for 
all the M images, apply the 2DLPP algorithm explained in 
Section 2.  

Algorithm :DiaLPP[Training Phase] 

Input:  Set of images: A =  }M...1j,N...1i|A{
j

i  where N is 

the number of images; M is the number of views and each image 

is of size m x n. 

Output: Knowledge base :  F = }M...1j,N...1i|F{
j

i   

Method: 

[A] Computation of optimal projection axes in row direction : W 

 Compute the diagonal image D of size (mN x n ) by 
arranging all images  column wise.  

 Find eigenvectors by solving the equation (1). 

 Choose d eigenvectors W = (w1,w2…,wd) associated with 
first d smallest eigenvectors . 

[B]  Create knowledge base by projecting W on the set of images 
as follows: 
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         F =  }...1,...1|{ MjNiWAF j

i

j

i  

Algorithm DiaLPP [Training Phase] ends 

 

Algorithm : DiaLPP[Recognition Phase] 

Input :  Test Image I(m x n), 

             Knowledge base F , 
             Optimal projection axes : W 

Output : Class label of  I 

Method:  

1. Obtain the feature matrix  
fI of the input image I using W and Z, 

WIZI Tf
 

2. Find 
S

rF  such that  

2 2|| || arg min(|| || , 1... , 1... ),f S f j

r iI F I F i N j M  

where || . ||2 denotes the Euclidean distance 
3.   Classify the test image I as a member of the rth class 

Algorithm DiaLPP[Recognition Phase] ends 

4. EXPERIMENTAL RESULTS 

In this section, we present the experimental results of proposed 

model. To corroborate the success of the proposed model, the well 
known existing dimensionality reduction techniques such as 
2DLPP, Alternate 2DLPP and Diagonal PCA have been 
considered for comparative study. The superiority of the proposed 
model is established through the recognition accuracy and 
recognition time. We performed all experiments on the standard 
UMIST face dataset. All our experiments are carried out on a 
Core2 Duo PC machine (2.20 GHz, 2.19 GHz) and 1GB RAM 

under Matlab 7.5 platform. 

 4.1. Results on partial UMIST face database 

The actual UMIST Face Database consists of 564 images of 20 
people. Each covers a range of poses from profile to frontal views. 
The files are all in PGM format, approximately 220 x 220 pixels in 

256 shades of grey. For the purpose of reducing the computation 
burden of Kronecker product in 2DLPP, Alternate 2DLPP and 
DiaLPP, we have taken the faces of all 20 people with 8 different 
views contains both left views and right views , each with reduced 
size of 50 x 50.  We have conducted experiments on this dataset in 

order to corroborate the success of the proposed method for face 
recognition. We have used the disjoint set for training and testing. 
It can be observed from Table 1 and Figure 4 (a)-(d) that the 
proposed DiaLPP method has better recognition rate with very less 

recognition time when compared to other methods.  

4.2 Results on partial ORL face database 

The actual ORL database contains 400 images from 40 individuals, 
each providing 10 different images with the size of 112 x 92. For 
the purpose of reducing the computation burden of Kronecker 
product in 2DLPP, Alternate 2DLPP and DiaLPP, we have taken 
20 images with 10 different views, each with reduced size of 50 x 

50. We have conducted a series of experiments to compare the 
performance of DIALPP, Alternate 2DLPP, 2DLPP and DiaPCA 
with varying number of training views and testing views. The 
recognition accuracy and recognition time of each method is 
summarized in Table 2. It shall be observed from Table 2 that the 
DiaLPP consumes less time for recognition with relatively higher 
recognition rate when compared to other methods. The recognition 
performance of 2DLPP, Alternate 2DLPP, DiaPCA and DiaLPP 

with varying number of dimension of feature vectors and varying 
number of training samples is shown in Figure 5 (a)-(d).   

5. CONCLUSION 

In this paper, a new dimensionality reduction method DiaLPP is 
introduced which is suitable for an efficient face representation and 
recognition. Here diagonal image which contain both the row and 
column information is considered to compute the transformation 
function. The main advantage of DiaLPP is that it requires fewer 
coefficients needed for face representation and recognition unlike 

PCA/2DPCA/2DLPP. The success of the proposed model is 
demonstrated experimentally by considering the standard face 
datasets UMIST and ORL. The proposed model is relatively faster 
and has better recognition rate when compared to the other well 
known dimensionality reduction approaches like 2DLPP, Alternate 
2DLPP and DIAPCA.  
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Figure 1.  Way of producing diagonal image when the width is greater than the height 
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                         Original Image                     Diagonal Image 

D 

 

a11 a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 

a51 a52 a53 a54 

a11 a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 

a51 a52 a53 a54 

Figure 2. Way of producing diagonal image when the height is greater than the width 

 

 

(a) Sample UMIST face  dataset    

 

(b) Diagonal image of UMIST  face dataset             

 
(c) Sample ORL face  dataset    

 
(d) Diagonal image of ORL face dataset             

Figure 3. Sample dataset and their corresponding diagonal images 
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Figure 4: Performance with varying number of training samples and varying number of dimension of feature vectors (a) 2DLPP  (b) Alternate 
2DLPP (c) DiaPCA (d) DiaLPP for UMIST face  dataset 

  

  
Figure 5: Performance with varying number of training samples and varying number of dimension of feature vectors (a) 2DLPP (b) Alternate 

2DLPP (c) DiaPCA (d) DiaLPP for ORL  face dataset 
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Table 1: Face Recognition Performance of 2DLPP, Alternate 2DLPP, DiaPCA and DiaLPP for UMIST face dataset 

 
Table 2: Face Recognition Performance of 2DLPP, Alternate 2DLPP, DiaPCA and DiaLPP for ORL face dataset 

No. of Views used 
for training 

No. of Views 
used for testing 

Percentage of  Recognition and (Recognition time in seconds) 

2DLPP(10 x 50) Alt-2DLPP(50 x 14) DiaPCA (14 x 50) DiaLPP (14 x 50) 

100 100 95.73(216.56) 97.58(337.62) 97.63(98.03) 97.88(84.14) 

80 120 92.96(207.31) 90.97(320.58) 92.92(93.24) 93.18(89.38) 

60 140 91.36(182.51) 90.24(281.32) 91.19(88.34) 91.43(84.12) 

40 160 88.91(140.53) 85.63(217.18) 89.10(72.56) 89.21(62.53) 
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No. of Views 
used for training 

No. of Views 
used for testing 

Percentage of  Recognition and (Recognition time in seconds) 

2DLPP (14 x 50) Alt-2DLPP(50 x 6)    DiaPCA (14 x 50) DiaLPP (6 x 50) 

80 80 92.94 (140.96) 93.98 (139.62) 94.10 (30.18) 95.42 (26.18) 

60 100 92.92 (126.54) 93.88 (131.31) 92.99 (27.35) 95.14 (24.82) 

40 120 91.94 (106.94) 93.79 (106.51) 91.33 (24.31) 94.17 (20.23) 


